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Large-scale power grid hierarchical segmentation based on power-flow
affinities

A. Marot, S. Tazi, B. Donnot, P. Panciatici (RTE R&D)!

Abstract— The segmentation of large scale power grids into
zones allows a better understanding of its structure, as the
control room operators will naturally but manually do for any
study. In this paper we provide a new automatic hierarchical
method based on the community detection algorithm Infomap.
Our main contribution is to offer as input a new representation
of the power grid, called the security analysis, that represents
power flow affinities beyond the connectivity of the grid, a point
that will become even more relevant for tomorrow’s cyber-
physical system. Indeed we already discover few relevant and
important clusters that are not connected in the actual grid
topology. To better describe and investigate the method, we
apply it here on the well-studied IEEE-RTS-96 and IEEE-
118. We further applied our method on the large-scale French
Power Grid which showed promising results given its puzzling
resemblance with the historical RTE regional segmentation.

I. INTRODUCTION

Well-established power systems are starting to see a com-
ing phase transition with a steep rise in complexity. This
is due in part to the changing nature of the grid, with an
end to the ever increasing overall consumption. This shifts
the way we traditionally develop the grid, from expanding
it with heavy investment relying on growth in revenues, to
rather optimizing the existing one with every flexibilities at
our disposal. We can also notice the revival of DC current,
hybridizing the current AC grid with new dynamics. But this
new complexity is also due to other external factors such as
the changing energy mix with the massive integration of re-
newables, as well as the ever more fragmented set of actors at
a more granular level like prosumers or at the supranational
level with an interconnected European grid for instance. This
new complexity will bring new dynamics with more varying
flow amplitude but also changing flow directions, as opposed
to what was the case in the past with centralized production
from large power plants, “pushing” the flows to the loads
in a very hierarchical and descendant way. New distributed
controls will also be implemented, going toward an always
more entangled cyber-physical system, not only physical as
it is mainly today. Therefore, rethinking the way we operate
the grid has become a necessity.

To handle the current complexity, our control room opera-
tors have built over time their own mental representations of
the grid, cutting it into static zones to study them efficiently,
that is being able to quickly identify remedial actions given
security risks around. However we anticipate that these static
views will be less and less relevant in the future to operate the
grid, with moving electrical ’frontiers” given this dynamic
context, even along the course of a day. But we believe that
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a zonal segmentation will still be relevant to operate the grid
by efficiently synthesizing the information to offer proper
context awareness, helping in the decision making process.
That is why an automatic segmentation built in a dynamic
fashion to fit the specific context of a situation is needed.
Hence, how can we build such contextual segmentation?

For segmentation, the overall goal is to cluster ’similar”
power lines or buses while avoiding clustering “dissimilar”
ones. To achieve this, one needs to define a measure of sim-
ilarity, that will represent the mutual influence between all
the power lines or buses of the grid in our case, and then run
a clustering algorithm on it. Previous works have relied on
the one hand on gathering proper dynamical phasor measure-
ments on the grid to compute disturbance-based coherency
in the time-domain and find similarities between electrical
nodes [1], [2], [3]. This supposes a massive deployment
of PMUs or very accurate large-scale dynamic simulations.
On the other hand, other approaches have investigated the
electrical distance between buses and use different clustering
methods [4] (hierarchical clustering), [5] (spectral clustering)
[6] (hybrid K-means/evolutionary algorithm). This is much
less costly but not grid state specific.

This paper however proposes a new method based on
a weakly invasive perturbation to build an original influ-
ence graph which connectivity goes beyond the actual grid
topology, an idea expressed by [7] and reminiscent of [§]
when studying cascading failures. This approach will be even
more relevant compared to topological ones as the system
becomes more cyber-physical. To define similarity between
power lines, we run with a simulator smooth topological
sensibilities on a well-meshed grid to compute an influence
matrix called the security analysis. We further run a suitable
clustering algorithm, Infomap, on this influence graph to find
electrically coherent zones. Our main objective is to demon-
strate the relevance of this similarity for grid segmentation.

The paper is organized as followed. Section II is dedicated
to the method, where we describe the security analysis ma-
trix, justify its relevance compare to more classical distance
matrices and talk about the suitability of the “Infomap”
clustering algorithm. In section III we present the results on
the 96-RTS and 118 IEEE grids on which we can compare it
to other methods mentioned above. We eventually give some
insights on how relevant this method is on large-scale power
grids such has the French power grid with about 6 000 nodes.
Finally, section IV provides conclusions on this work.



II. METHOD
A. Small simulated perturbations as an inspective tool

A power grid is a complex system with intricate power
flows that have multiple long distance interactions. Only
representing a grid state as a graph of electrical nodes, tied
by power lines, doesn’t highlight these complex interactions
of flows, given productions, consumptions and topology.
Simulators hopefully allow us to assess freely and quickly
sensibilities on a grid state from which we can build an
influence graph. But all sensibilities are not representative
of either physical phenomena or expert knowledge for grid
operations and hence don’t properly sense its interactions.

For instance, a classical perturbation consist in playing a
transaction of power between 2 electrical nodes as used by
[6] for assessing their clustering quality. This shadows the
influence of injections and their localizations, almost only
capturing topological patterns. Indeed, since the topology is
not modified, the superposition theorem allow us to linearly
decompose the resulting grid state (currents and voltages) as
the original grid state plus the perturbation, hence the sensi-
bility results are nearly the same for power-flows whatever
the injections and the power flows were in the original grid
state. So it is not as state dependent as desired. Moreover the
meaning of such a perturbation is not obvious. It assumes in
essence that some power originally flows directly from one
node to another, which cannot be clearly measured. Not to
forget that electrical nodes are of different types: production,
consumption, transmission. Some are active whereas other
are passive which have consequences as explained by [9]
who are actually working towards a better formalization
under the use of those power injection perturbations.This
is finally a component by component approach, not really
taking into account that we are actually studying an inter-
acting multi-component system. This kind of perturbations
is closely related to the equivalent resistance computation
between any two nodes, and as [6] mentioned it is limited
to be a static segmentation not state dependent.

Instead we believe that the tripping of a line is a more
meaningful perturbation to consider, smooth in a well-
meshed grid, and grid state dependent: we are redistributing
on the grid an existing and identified flow on the tripped
line, which originally depends on the injection plan and
topology. These multiple independent small perturbations
over the grid can be viewed as many distributed sensors and
local estimators of the interactions in place.

B. Security analysis influence graph: a new appropriate
representation of the grid

In control rooms, dispatchers continually run security
analysis on forecasted grid states to study contingencies.
Recall that a contingency is a power line potentially turning
out of service, resulting in power flow re-dispatch on other
power lines. That way, they can anticipate possible overloads,
somehow building mental representations for patterns of
power-flow re-dispatch in the meantime, and study them to
find remedial actions.

Hence, to have a representation of the power flow affinities
of the grid power lines, we can play those perturbations on
each line independently, one after the other. We can then
construct the security analysis matrix where each row ¢ is
the result of active AC power-flow transfer on every line on
the grid when tripping the line ¢ (: € £, with £ the lines
ensemble), the element j (j € £) hence being the power-flow
transfer on line j:

Si]‘ = PowerFlow (])z tripped — PowerFlow (j)originally ( 1 )

It’s a square matrix of dimension nL xnL where nL is the
total number of lines of our system : nL = card(L). It can
be represented as a weighted and oriented graph structure,
in which the security analysis plays the role of the adjacency
matrix. Each node in that graph is a power line in the grid and
the edge weights are determined by the flow transfer after a
power line disconnection. We will name it as the Influence
Graph. It should be emphasized that its graph structure is
different from the classical topological graph structure of
the power grid which will further makes sense later. For our
security analysis matrix, most lines transfer sensible active
power flow to a limited number of other lines, by sensible
we mean more than IMW on the French Grid for instance.
This still results in a relatively sparse matrix from which one
wants to gather lines with high mutual dependency. Since
we want to cluster lines with high mutual influence, we only
care about the absolute value. Thus the matrix elements of
our similarity matrix are:

a;j = |Si] @)
C. Infomap: a generic hierarchical clustering algorithm

There are several algorithms for graph segmentation,
known in literature as community detection algorithms [10],
[11], [12]. One can refer to the following article for a review
on community detection algorithms [13]. The algorithm
developed by Rosvall et al. [14] known as "Infomap”, has
the advantage of being particularly suitable for oriented,
weighted graphs, and able to identify flow patterns inside the
graph. It is recursively hierarchical [15] and can automati-
cally find the proper number of levels and clusters. By level
on a power grid, we mean that in the case of the European
grid we should discover aggregates of National Grid on
top, then regions like the ones for RTE French power grid
and then more focused areas of production, transmission or
consumption. In addition, ”Infomap” can handle overlapping
[16] which could be of interest for future works. Indeed
electrical frontiers are fuzzy and it could make sense that
some lines interconnect some clusters. We will here briefly
describe the main ideas of this method, the reader can refer
to the original article for a complete description.

The idea is to use the duality between the problem of
minimizing the description length of places visited along a
path given the influence graph, and the problem of how we
should best partition the network with respect to flow.

Aiming at minimizing the description length L of a likely
path, we simulate a random walk on the graph where



each node are identified by a codeword and weighted-edges
that represent the random walker likely direction. To better
minimize the average length of codewords, one can take ad-
vantage of the graph regional cycling structure that highlights
modules M, and define a "module codebook” for each area
that contains all the nodes codewords of this area. Thereby
it is possible to use the same codeword for different nodes
since we can specify which module codebook to use. We then
need an “index codebook” containing a codeword for each
”module codebook”. Going from one node to another in the
same region, one only needs to refer to a short codewords to
identify it, knowing the region codebook. An easy analogy
is the case of maps with streets, cities and countries. For
instance, in different cities you will find the same street
names, and you can do so because you can name the city as
well, to better identify this street in a country. But being in
a given city, you don’t even need to name the city again to
refer to a street in it: you compressed the information while
still being able to communicate it.

Thus to calculate the shortest description length one can
apply the Shannon’s source coding theorem from information
theory. It establishes the limits to possible data compression,
for n codewords describing n states of a random variable
X that occur with frequencies p;, the average length of a
codeword can be no less than: H(X) = — "7 p;log(p;). We
can then apply it for the average length of codewords from
the index codebook and the module codebooks, weighting
them by their rates of use. This leads to the map equation:

L(M) = g~ H(Q)+ > _ pt, H(P') 3)
i=1
with H(Q) the weighted average length of codewords in
the codebook index and H (P;), the weighted average length
of codewords in the module codebook 7. The codeword index
is used at frequency ¢~ the probability to change module
at every step of the random walk. The 7 module codebook
is used at frequency p’o which is the number of moves
continually spent in module i plus the probability to leave.
D. Beyond the grid graph
Very little works for grid segmentation have tried to use
representations of the grid that go beyond its connectivity, a
hard constraint which seems at first natural and intuitive.
Nevertheless, this might overlook that a power grid is a
very entangled system with complex interactions, sometimes
counter-intuitive as [7] explained. Here we use the security
analysis whose graph has a different connectivity than the
grid as shown in figure 1 for RTS-96 system [17]: it is
actually more connected. But in the segmentation process,
some links will appear stronger and relevant while other will
be weak and ignored. As a consequence, the results will most
generally lead to connected elements in clusters from the
grid topological graph. But some might not be connected,
which could highlight complex interactions between flows
and potential areas where the grid needs to be reinforced.
This is one of the striking facts we retrieve when applying
our method.

We argue that the security analysis Influence Graph should
a priori be a better and smoother representation of the grid
for our purpose. Indeed, it actually represents that every lines
are interacting with one another with distributed strengths as
one would expect for a system, in contrast of the binary
topological grid adjacency representation. In particular, we
can see a quite colored row and filled rectangle for the 7th
and last detected cluster in our security analysis Influence
Graph matrix on figure 1, which is totally ignored by the
other representations. Let’s now display and describe our
findings.

heatMap of Security Analysis Line Connectivity Matrix
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Fig. 1. HeatMaps to illustrate graph connectivity given different represen-
tations for RTS-96 system, ordered by the clusters found by our method: a)
security analysis Influence Graph Matrix b) topological adjacency Matrix.

III. RESULTS

We applied our method on 3 different kinds of systems to
test the method genericity: on the 96-RTS toy system which
has been studied in the past as an interesting baseline for
segmentation purposes, on the 118-bus system which is a
realistic and readable middle-sized one, and finally over the
large-scale French power grid to demonstrate how it scales.

A. IEEE-RTS-96

Taking the reliability test system 1996 we obtained the
clustering showed in figure 2. It highlights one level and
7 clusters, 6 agreeing with the power grid connectivity and
1 not. We argue that this surprising non-connected cluster
comes from the system and is not an artifact of our method.
As for the 6 others, since they represent the same IEEE-24
case[18], it is consistent to segment them in the same way.

About the non-connected one, it gathers high voltage
interconnecting power lines close to productions that link
the three same sub-grids corresponding, but leave aside the
low voltage one close to loads, which can be understood. We
rediscovered that that these lines were artificial additions for
the purpose of this toy grid, and not the result of a coherent
grid development. Cutting one of those power lines leads to
significant changes in flows over the whole grid, as illustrated
in the security analysis heatmap in figure 1. Hence these
interconnecting lines play the same roles in the power grid,
even if they are non-connected, and it then makes sense to
cluster them together. This is a first example of one possible
other application of our method: identifying weakly meshed
interconnecting areas that are strongly interacting over long
distance.

It could not have been possible to identify this role with
other classical representations. To prove so, we run a naive
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Fig. 2. IEEE-RTS-96 segmentation. Node sized by injection volume,
production in red and load in blue. Thick edges for non-connected cluster.

comparison with the adjacency matrices, the pure power
line connectivity one (clustering lines) and the electrical
conductance-weighted one (clustering nodes). Both resulted
in a similar 3-clustering. But being only topological, it misses
a better clustering by subgrids which are balanced systems
given the injections.

Fig. 3. Naive IEEE-RTS-96 segmentation with: a) connectivity matrix b)
conductance matrix.

To test the robustness of our security analysis representa-
tion and show that the information can be captured beyond
the grid connectivity, we set to O the adjacent coefficients
that are represented in black in the connectivity matrix figure
1. Those a; ; coefficients are usually non-zero and the ones
with the highest flow transfers, being neighbors of the line
tripped. Doing so, we reduce the total available information
by 40%, if we consider the amount of information as the sum
of matrix coefficients. Running the Infomap algorithm on
this even sparser matrix with missing information, it is still
able to recover the previous clustering. This further validates
that our method is a good system representation: the whole
system is actually shaking under a perturbation, not only the
supposed neighboring lines which we can actually overlook.

Finally, we compare the results of our method to other
works in figure 4, [6] who uses electrical distance and [1]
who uses time-domain measurements. Overall, the cluster-
ings are very similar while being computed by 3 different
methods which might indicate we are close to an inter-
esting clustering. There are however slight differences we
can comment. In addition to this non-connected cluster we
highlighted, we can notice 2 differences as circled on the
figure 4, besides that we are actually clustering lines and they
are clustering nodes. We argue that our method properly cir-
cumscribes the upper cluster to a meshed clique whereas the
other clustering has slight less obvious unmeshed extensions.

Fig. 4. Comparison of our IEEE-RTS-96 segmentation (line colored)
with two other methods (node colored)[6][1]. Recurrent dissemblances
highlighted on 1 subgrid, plus the thick edges non-connected cluster

B. Middle-sized grid: IEEE-118

One remaining important consideration in a power grid
are unmeshed areas with one-way in or out for power
flow. In these cases, the removal of one electrical node or
power line, the kind of perturbations played in the security
analysis, can split the grid into two systems which need
to be balanced on their own: this is islanding. Taking it
into account leads to non-connected cluster areas shown
on the 2-clustering figure 5 for the black lines and black
area. This is actually an undesired artifact from our N-1
security analysis that the simulator naively compensate for.
Indeed, power grids are rarely islanded in operations except
for exceptional situations. To overcome that undesired effect,
we ignore the related perturbations, removing them from the
security analysis as a pre-processing. For post-processing,
we stick them back to the closest cluster afterwards, using
in that case the grid connectivity. We do so for both the
IEEE-118 and the French Grid.

Fig. 5. IEEE-118 segmentation under islanding artifact: in black th
unmeshed area cluster.

The IEEE-118 bus test case is a reduced model of the
Midwestern US power grid in 1962 [19]. In figure 6, one can
see the IEEE-118 case segmentation without islanding effect.
We can distinguish at the top level 9 clusters, 8 agreeing
with the grid connectivity and 1 which does not. This non-
connected cluster 7 in the grid topology plays the same
role as its counterpart in the IEEE-96-RTS case: important
weakly-meshed interconnections between two well-meshed
East and West grids, with some unbalance here, the East grid
having more production and the West too much consumption.
The remaining connected clusters seem reasonable with a
proper clique segmentation and localized injections. We



could actually expect some overlapping for some lines in-
between clusters so that they each have proper cliques. This
is something we actually observe when running Infomap with
that option and will be further studied in future works, as well
as the level 2 of the hierarchical clustering in which there
might be few clusters that could make sense.
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Fig. 6. IEEE-118 segmentation. The non-connected cluster 7 with East-
West interconnections is highlighted with thick edges.

C. Large grids: the French power grid

Finally, we discuss our segmentation over the French
power grid composed of 6 000 nodes, 10 000 lines and
10 000 injections. On level 1 of the hierarchical cluster-
ing, the 8-clustering results, 8 being an output Infomap
discovered and not a parameter, makes already a lot of
sense qualitatively given its resemblance with RTE historical
regional segmentation on figure 7: identical segmentation for
the West and few differences with Northern and Eastern
parts which were explained qualitatively by our operators.
The historical RTE partition is not a pure electrical one,
human resources, workload, maintenance teams and their
localization were taken into account by that time. Nonethe-
less, this resemblance is a good matter for discussion on
grid management. Further validation on the quality of lower
level clusters such as level 2, that have sizes close to the ones
usually drawn by our dispatchers, could lead to redesigning
some of our study tools and offering some long-awaited
context awareness in a more cyber-physical system.

Fig. 7.  Comparison of a) our French power grid segmentation with b)
historical RTE regional segmentation.

IV. CONCLUSIONS

In this study we derived a new method to efficiently cluster
power grids. The method relies on a suitable algorithm for hi-
erarchical graph clustering, ”Infomap”, and a new representa-
tion of power-flow affinities, the “’security analysis” influence

graph based on a small-perturbation approach. In particu-
lar, this representation allows us to highlight relevant non-
connected clusters, is robust to missing information since it
is distributed, and seems overall a good representation of
the interconnected power systems. It could be extended to
take into account more cyber-physical behaviors, even further
away from the grid connectivity, given that our simulator has
an internal model for those automatic regulations and that we
identify meaningful small perturbations to run. Future works
will be of many kinds: defining more quantitative measures
beside our interesting analytical results, analyzing lower
level clusters, running overlapping, extracting a backbone
clustering over time by clustering aggregation, and eventually
studying the importance of grid state context.
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