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Abstract—Executing Big Data workloads upon High Perfor-
mance Computing (HPC) infrastractures has become an attrac-
tive way to improve their performances. However, the collocation
of HPC and Big Data workloads is not an easy task, mainly
because of their core concepts’ differences. This paper focuses
on the challenges related to the scheduling of both Big Data and
HPC workloads on the same computing platform.

In classic HPC workloads, the rigidity of jobs tends to
create holes in the schedule: we can use those idle resources
as a dynamic pool for Big Data workloads. We propose a
new idea based on Resource and Job Management System’s
(RJMS) configuration, that makes HPC and Big Data systems
to communicate through a simple prolog/epilog mechanism. It
leverages the built-in resilience of Big Data frameworks, while
minimizing the disturbance on HPC workloads.

We present the first study of this approach, using the pro-
duction RJMS middleware OAR and Hadoop YARN from the
HPC and Big Data ecosystems respectively. Our new technique
is evaluated with real experiments upon the Grid5000 platform.
Our experiments validate our assumptions and show promising
results. The system is capable of running an HPC workload with
70% cluster utilization, with a Big Data workload that fills the
schedule holes to reach a full 100% utilization. We observe a
penalty on the mean waiting time for HPC jobs of less than 17%
and a Big Data effectiveness of more than 68% in average.

Index Terms—HPC and Big Data Convergence, Infrastructure,
Scheduling, Best Effort, Resource Management.

I. INTRODUCTION

The amount of data produced either in the scientific com-
munity or the commercial world, is constantly growing. This
growth induces changes of scales on the processes of collect-
ing, processing and storing data. The field of Big Data has
emerged to handle these new challenges. The processing tools
available in the Big Data community are easy to use but lack
computation performances.

One of the main objective of High Performance Computing
(HPC) field is to provide infrastructures to make computing
as fast as possible, at the largest possible scale. To achieve
performance, HPC users are using low level programming
models that make applications hard to write and maintain.

Thus, Big Data and HPC convergence is inevitable. How-
ever, even though both fields share a common objective, they
do not share the same core concepts. HPC infrastructure can
be defined by a set of computing resources with low latency
interconnect and a Parallel File System (PFS) that provide fast
storage for all of these resources. HPC workloads consist in

a set of rigid jobs with a strict resource and time requirement
(i.e. 10 CPU for 2 hours). This time requirement is called
walltime: it is not a prediction of the execution time but an
upper bound after which the job will be killed.

On the other hand, a Big Data workload is made of
malleable jobs that have requirements on multiple resources
but no time requirements (i.e. 4 CPU and 10GB of memory).
This workload is made of any type of task-oriented jobs that
is able to cope with a dynamic resource allocation: Hadoop
MapReduce stands in this category, but also more complex
frameworks like Spark or Flink. It uses a Distributed File
System (DFS) over all the compute nodes to store datasets,
using replication to avoid data loss and load balance the
data. It comes with the great advantage that most of the data
movement can be avoided by bringing computation directly
where the data is stored.

Our goal is to provide a way to collocate traditional HPC
workloads and Big Data workloads on the same HPC infras-
tructure, in a way that one user can submit HPC and/or Big
Data jobs directly to the RJMS, like he is used to do, without
modifying the resource managers. We propose a new system
called BeBiDa that performs Best effort Big Data Analytics
on HPC infrastructure. To get the best of both world, we keep
the PFS and the DFS leveraging their specialization for both
workloads.

Collocation is interesting for owners, users and operators
of these platforms:
From the owners point of view, collocation increases the
platform utilization and attracts new users to HPC clusters by
providing Big Data tools alongside traditional HPC tools;
From the users point of view, collocating HPC and Big
Data workloads will permit new workflows that mix both
approaches and benefit from the best computation tools from
the HPC field and the best data analysis tools from the Big
Data field;
For the operators point of view, HPC systems, on their own,
are producing a large amount of data from hardware counters
and services logs. The administrators of HPC systems could
take advantage of Big Data tools to do constant analytics
of these data in order to detect silent failures, user misuses,
configuration errors and so on.

To reach our objective we don’t want to provide yet another



tool that claims to manage every possible workload while
reducing the number of specific features available. We want
a solution as simple as possible without loosing features.
Moreover, RJMS are massive industrial grade projects highly
optimized for their specific workloads: for instance, Slurm
(RJMS for HPC) and Yarn (RJMS for Big Data), have more
than 45k effective line of code1. That is why we want to fully
leverage the advantages of each middleware on their area of
expertise.

The contributions of this paper are:
1) a definition of the HPC and Big Data collocation prob-

lem
2) a new method, called BeBiDa, for collocating HPC and

Big Data workloads
3) an implementation of this method using industrial grade

RJMS
4) an in-depth analysis of this implementation
The remainder of this paper is organized as follows: First,

we define problems regarding the assumptions listed in Sec-
tion II. Then, we describe the original idea of simple com-
munication between RJMS with prolog/epilog to make them
interact with different priority levels in Section IV. Section V
provides a proof of concept implementation of our approach
and the results of its evaluation. Finally, Section VI concludes
this paper.

II. DEFINITION OF THE COLLOCATION PROBLEM

We are interested in the problem of collocating a Big Data
RJMS and an HPC RJMS, in order to run a Big Data workload
(WBigData) and an HPC workload (WHPC) on the same
cluster. Here is a general definition of this problem.

We defined M as the set of all the considered machines
(a.k.a resources). The machine set M is divided into groups
defined as follows:

• MHPC−only are dedicated resources for WHPC , they are
not visible for the Big Data RJMS

• MBigData−only are dedicated resource for WBigData,
they are not visible for the HPC RJMS

• Mshared is the part of the cluster that is shared between
the two systems: it can be used to execute jobs from both
WBigData and WHPC .

• M is union of all these sets:

M = MHPC−only ∪Mshared ∪MBigData−only

Note that, if Mshared = ∅ we go back to a static partitioning
of the cluster. On the other hand, if MBigData−only = ∅ and
MHPC−only = ∅ then, the cluster is entirely shared.

Also, to be able to talk about HPC jobs and Big Data
applications seamlessly, in the rest of this article, the generic
term jobs will be used for both.

1Computed with cloc on the official GitHub repository excluding blank and
comment lines

For the sake of clarification, the following list presents the
assumptions that are used for the rest of this paper:

• The cluster contains a set of machines M
• One HPC RJMS is set up, and have access to Mshared

to schedule jobs of from WHPC .
• One Big Data RJMS is set up, and have access to Mshared

to schedule jobs from WBigData.
• All the software stack is managed by an administrator and

not by the users. Both systems are already configured to
start their jobs: no deployment needed.

• Jobs in WHPC use a dedicated Parallel File System (PFS)
to store data.

• Jobs in WBigData use a Distributed File System (DFS)
that is spread over a set of machines:

MDFS ∈ MBigData−only ∪Mshared

• HPC Jobs are statically allocated (rigid or moldable).
• Big Data jobs are malleable and resilient to the interrup-

tion of all, or part of, their resource allocation.

III. RELATED WORKS

At application level, the Big data software stack is be-
ing transformed to take advantages of the high performance
hardware provided in HPC, like fast interconnect and fast
Parallel File Systems (PFS) [19]. Some are taking the opposite
direction, and use HPC traditional technologies, like MPI,
to build new Big Data tools because the resilience of the
Big Data software stack do not compensate for the lack of
performances [16]. Thus, we conclude that it is worth to use
the traditional Big Data tools on HPC infrastructure only if
we leverage their dynamicity and resilience.

At resource management level, it exists multiple ways to
make Big Data and HPC workloads run together.

The most obvious one is to have two different clusters which
will be dedicated to each workload. But, data transfer between
the two clusters will be a serious bottleneck. Moreover, there
is no load balancing between the clusters because of the strict
separation of concern.

Another simple approach is to let the user manage his own
Big Data software stack inside HPC batch jobs using a set of
scripts [5]. It works for simple workflows with a small amounts
of data but it have drawbacks: (a) Even if the scripts can
help, the user has to operate and configure part of the system
by himself and it can be complex while the software stack
grows. (b) The Big Data software stack has to be deployed,
configured, started and shutdown for each job: the overhead
is important, especially for small jobs. (c) If the amount of
data is too big to fit in the user home, a third-party storage
would be needed and the data mouvement produced by data
ingestion can dominate the execution time [11].

One more idea would be to run HPC jobs within a Big Data
stack. The bigger problem is that most HPC applications are
not able to run within Big Data RJMS because they need
to implement a communication layer with it. A rewrite of
most HPC applications is required which makes this approach
unfeasible in the HPC community.



An integrated approach is to add a new abstraction level
to integrate one system to the other with an adaptor that
convert Big Data RJMS resource requirements into HPC
RJMS allocations [1], [15]. But these approaches are tightly
coupled to specific technologies, have to evolve with them and
are limited to them. It restricts this solution to the implemented
adaptors, and the cost of maintaining this whole new layer can
be too high.
In comparison, our approach is based on configuration and the
only code that has to be adapted while changing technologies
is the prolog/epilog scripts that count 60 lines of bash in our
implementation.

A more sophisticated approach is to encapsulate HPC on
Hadoop or, Hadoop on HPC with a Pilot-based abstrac-
tion [12]. The authors provide a new layer of software that
glue the two systems.
The main reason we take another approach is the complexity
of this solution. Also, it relies heavily on Hadoop while our
approach is more technology agnostic and capable to adapt to
any kind of system that is able to dynamically commission and
decommission resources, and any HPC scheduler that have a
prolog/epilog mechanism.

One of the key aspects of Big Data on HPC is the data
management. We made the choice to use a DFS to avoid the
traditional HPC IO bottleneck and scale linearly in terms of
bandwidth [20], without adding expensive hardware to scale
up the PFS [8].

More than a decade ago, when desktop grids and volunteer
computing have been introduced, systems such as Boinc [2]
and Ourgrid [3] have started handling collocation of different
types of workloads using similar techniques like ours. In
the same area, the lightweight grid meta-scheduler Cigri [9]
is based on OAR’s RJMS best-effort jobs type in order to
schedule bag-of-tasks grid workloads when the local HPC
jobs leave idle resources on the cluster. BeBiDa mechanism
is based on the same idea of exploiting idle resources but
without introducing another level of scheduling.

To the best of our knowledge, the approach presented in this
paper is the first to use two unmodified RJMS that collocate
HPC and Big Data workloads on the same cluster, without
adding a third tool to coordinate them.

IV. BEBIDA SOLUTION DESCRIPTION

A. Description

The main idea of BeBiDa is to run two industrial grade
RJMS collocated on the same cluster: One Big Data RJMS
and one HPC RJMS. Big Data is running in best-effort, i.e.,
it uses HPC idle resources as a dynamic resource pool.
It relies on the prolog and epilog mechanisms that are provided
by most HPC RJMS: The prolog (resp. epilog) is a script that
is executed before (resp. after) the execution of each job.
Here is detail description of this process:

1) By default, all resources are attached to the Big Data
resource pool

2) when an HPC job starts: the prolog decommissions the
resources needed by the HPC job from this pool

3) When an HPC job finishes: The epilog is giving the
resources back to the Big Data resource pool

From our solution derives the following additional assump-
tions:

• WHPC as priority over WBigData

• The set of collocated machines Mshared are seen by the
HPC RJMS as always available.

• The Big Data RJMS sees only the part of Mshared that
is not running HPC job as available. This part is dynamic
over time.

B. Advantages and drawbacks

The main advantages of this solution is to be easy to
implement and as simple as a configuration problem for both
RJMS: it do not requires any third tool, it avoids tight coupling
between the two systems and can be easily implemented
against most of the HPC and Big Data RJMS.

This configuration have to be done by the cluster adminis-
trator that manage both RJMS. The solution is transparent to
final users: they submit HPC and Big Data jobs thought there
respective traditional interfaces.

Only small scripts are needed (60 lines of bash) for HPC
RJMS prolog and epilog, no code modification is needed for
any tool inside both software stack.

Also, it leverages Big Data frameworks resilience and
dynamicity by using a dynamic resource pool and do not
disturb the HPC applications by ensuring that no processes
left on the compute nodes after decommissioning, except for
the DFS daemon. The impact of this daemon is beyond the
scope of this publication.

It also impact HPC jobs’ waiting time due to the pro-
log/epilog execution time: this is discuss in the V-B section.

For the Big Data workload, resource preemption during a
job execution can be a problem: if it happens too often, its cost
can be unsustainable and Big Data computation will become
unpredictable. This is also measured in the V-B section.

Obviously, this approach will perform well when Big Data
is dominant in the workload; i.e. when the HPC utilization
is low. On the opposite, we expect to have poor Big Data
performance on a loaded HPC cluster because the number
of killed -on duty- workers will increase, inducing more re-
computation and data movement.

V. EXPERIMENTATIONS WITH BEBIDA

Our goal in this section is to describe our BebiDa proof
of concept implementation, and to present the experiment’s
design and results.

A. BeBiDa implementation

In this implementation, no modifications have been done
to the RJMS. Only their configuration have been adapted to
fit our needs. Configuring industrial grade software can be
seen as a straightforward task but it is not. Both RJMS have
hundreds of parameters that needed to be set (scheduling,



resources, accounts, security policies, file systems, . . . ). All
code and experiment scripts can be found in a public Git
repository2. These experiments are implemented using State-
of-the-Art tools for reproducibility [17] [10].

1) Hardware: Our experiments run on the Grid5000 in-
frastructure [4]. We choose the Graphene cluster on the site
of Nancy: It has 1x Intel Xeon X3440 with 4 cores/CPU,
16GB RAM and 298GB HDD. We select M = 34 nodes,
with Mshared = 32 and MBigData−only = 2 and an additional
master node to host YARN and OAR masters.

2) Software: We use OAR 2.5.4 as HPC RJMS. OAR is
easy to deploy and configure and integrates well with our
testbed.

Prolog and epilog scripts are added as hooks that are exe-
cuted before and after each HPC jobs on OAR’s configuration.

We choose YARN from Apache Hadoop 2.7.3 as the Big
Data RJMS. With Yarn, we use Spark as computation frame-
work and HDFS as distributed file system.

Spark 2.1.0 is configured to run 2 executors by node and all
the applications are run in client mode with 1 core and 1GB
of memory for the application master.

Also, because Spark Application Master is a single point of
failure for the application, we use the node label capabilities of
the YARN capacity scheduler and of Spark to pin the Applica-
tion master to the MBigData−only nodes. As side effect, this
setting limits the number of concurrent running applications to
the number of Application Master MBigData−only can host.

3) Workloads: For this experiment we need mixed work-
loads of HPC and Big Data jobs but, because such workloads
are pretty new, we do not have access to real traces for now.
To be able to test our system on different HPC and Big Data
workloads we chose to generate those workloads based on the
statistical study done in [7]. But, to generate these workloads
we need job profiles for each type of workloads.

The Big Data workloads are composed of 3 different type of
applications taken from the BigDataBench benchmarks [18]:
Grep, WordCount and K-means. We choose to use 3 size of
datasets for each application (32GB, 64GB, and 128GB) that
are generated using the BigDataBench generation tool [13].
These datasets are injected into HDFS at the beginning of the
experiment with a replication factor of 3.

The HPC workloads are composed of 3 different appli-
cations type taken from the NAS Parallel Benchmarks [14]:
IS, FT and LU. Those applications are compiled for different
number of resources, each power of two from 22 to 27 (the
number of cores in the cluster), and different size from C to E.
Then these job profiles are filtered to obtain a 14 jobs profiles
that run for at least 1 minute and less than half an hour. The
workloads generated contains 250 jobs randomly picked in this
pool using previously mentioned method.

We use our simulator, Batsim [6], to select the generation
parameters in order to get an average utilization around
70%. We have selected this level of utilization because it is
representative of small to medium size HPC center.

2https://gitlab.inria.fr/mmercier/bebida

B. Results

With this experiment, we want to answer the following
questions:

1) Does BeBiDa work in real conditions?
2) What is the overall utilization of the cluster?
3) Is the Big Data computation effective in these condi-

tions?
4) What is the overhead on the HPC workload?

First, the system works correctly with the aforementioned
configuration and setup: It is able to run HPC jobs normally
and Big Data jobs in the holes of the HPC scheduling. You
can see Gantt chart of one experiment instance in Figure 1.
To show this level of details we have chosen one experiment
instance. We try to pick a representative experiment regarding
HPC utilization. Note that in the Big Data workload each band
represented a Spark executor with a common color for each
application. Spark is configured to have 2 executors per node
and when this is the case the executors are overlapping and the
colors are mixed. You can also notice that, as the prolog/epilog
scripts are very simple, they do not have a vision of what will
happen in the future: that’s why even if two HPC jobs are
consecutive executors they are started during the guard time
of 60s that OAR puts between 2 jobs. Also, we can notice that
executors are overlapping on HPC jobs: this is due to the fact
that Spark induces a delay between the real kill of an executor
and the report of this kill in the application logs.

Having a full cluster utilization is one of the HPC owner
main goals. With BeBiDa, The overall utilization of the cluster
virtually goes from 70% on average to 100% if the WBigData

contains enough work to fill the holes left in the schedule by
WHPC . But, this statement is mitigated by 2 points: First there
is a small delay when resource goes back to idle state before it
is actually used to compute WBigData which correspond to the
Big Data scheduler’s delay; Second, resource preemption cost
on the Big Data jobs reduces their work efficiency. The cost of
this preemption highly depends on the computation framework
capacity to manage these events. To tackle this last point we
define the efficiency E of the computation done by the Big
Data framework, here Spark. It can be computed with the time
spent in tasks that are complete and not resubmitted over the
total task computation time:

E =

∑
Tcomplete − Tresubmitted∑

Tcomplete + Tfailed

To understand this metric the reader need to understand
how Spark works: It uses an internal in-memory representation
called RDD [21] that uses lazy evaluation and lineage to
recompute only what is necessary if some intermediate data
is missing. When a preemption happens, currently running
tasks are killed; computation time is lost (Tfailed), and these
results are lost but also the intermediate data of previously
successful tasks have to be recomputed elsewhere: this is
the time resubmitted tasks (Tresubmitted). Figure 2 shows the
effectiveness goes from 44% to 91% with a mean of 68%.

https://gitlab.inria.fr/mmercier/bebida
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We also measure the time taken by prolog and epilog
themselves.
The prolog hook happen when when an HPC job is allocated:
it decommissions the resources associated to this job by killing
YARN containers if present, and the NodeManager afterwards
on these resources. This process (i.e. the prolog) takes from 2
to 16 seconds depending if there is running containers or not:
It takes around 16s if there is 1 or multiple containers.
The epilog process that restart the NodeManager takes less
than 3 seconds.

Both hooks implies a small penalty on each job’s waiting
time that can seen in Figure 3. But, The mean waiting time
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overhead is less then 17% on average.
We can notice that, for some measures, the workload 3

mean waiting time’s is highly impacted: this is due to a bad
backfilling decision on a big job that delayed a lot of small
and medium jobs. It only happens in specific condition that are
not met at every run. It illustrates the highly sensitive nature
of scheduling where small changes can dramatically impact
the whole system.

All experiment combination are executed 3 times.
The mean execution time of HPC jobs is also impacted by

BeBiDa: It is increased by 6% in average. This is due to the
network contention created by WBigData and the memory and



computation overhead due to the HDFS daemon that is still
running during HPC job execution.

VI. CONCLUSION

This paper defines the problem of collocating HPC and Big
Data workloads on the same HPC cluster. We propose a new
approach called BeBiDa that is seamless for end users and
requires only configuration from the cluster administrator. It
is based on a simple job prolog/epilog mechanism, which is
very common on HPC batch schedulers. This solution exposes
all nodes that do not run HPC jobs to the Big Data resource
manager as a dynamic pool of resources.

We provide a proof of concept and run experiments over
it. It shows that with an HPC utilisation of around 70%,
the system is able to run Big data jobs on the unused
resources. The high dynamicity of the Big Data resources pool
induces a loss of efficiency. We define the time effectiveness
metric to mesure this efficiency. In our experiments, the time
effectiveness goes from 44% to 91% (with a mean of 68%)
depending on the Big Data and the HPC workloads. As a
future work, we will implement a model of this system over
the batsim simulator to be able to explore a wider range of
parameters.

We also want to study the interferences of a DFS on HPC
applications is order to limit its impact. Our approach can be
extended to any systems with the notion of scheduling with
priority. Finally, finding good metrics that can be optimized in
new scheduling heuristics remains a big challenge.
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