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Abstract—This work considers the downlink of a massive
MIMO system in which L base stations (BSs) of N antennas each
communicate with K single-antenna user equipments randomly
positioned in the coverage area. Within this setting, we are
interested in studying the effect of power normalization on the
sum rate of the system when maximum ratio transmission (MRT)
or zero forcing (ZF) are employed as precoding schemes. In
particular, we consider the most common two power normal-
ization methods known as vector and matrix normalizations.
The analysis is conducted assuming that N and K grow large
with a non-trivial ratio K/N under the assumption that the
data transmission in each cell is affected by channel estimation
errors, pilot contamination, an arbitrary large scale attenuation,
and antenna correlation at the BSs. The asymptotic results are
instrumental to get insights and make comparisons. For medium
to high signal-to-noise ratios, simulations and theory concur
to show that vector normalization largely outperforms matrix
normalization for both MRT and ZF and thus allows to scale
down the number of antennas required to achieve a target sum
rate.

I. INTRODUCTION

Massive MIMO (also known as large scale MIMO) is

considered as one of the most promising technology for next

generation cellular networks [1]–[4]. The massive MIMO tech-

nology aims at evolving the conventional base stations (BSs)

by using arrays with a hundred or more small dipole antennas.

This allows for coherent multi-user MIMO transmission where

tens of users can be multiplexed in both the uplink (UL) and

downlink (DL) of each cell. It is worth observing that, contrary

to what the name “massive” suggests, massive MIMO arrays

are rather compact; 160 dual-polarized antennas at 3.7 GHz

fit into the form factor of a flat-screen television [5].

In this work, we consider the downlink of a massive

MIMO system in which L base stations (BSs) of N antennas

each communicate with K single-antenna user equipments

randomly positioned in the coverage area. We assume that

maximum ratio transmission (MRT) or zero forcing (ZF)

are employed as linear precoding schemes. Both techniques

have been extensively studied and compared in the massive

MIMO literature under different operating conditions and

using different power normalization methods. The two most

common normalization techniques are known as vector and

The research of Luca Sanguinetti and Romain Couillet has been supported
by the ERC Starting Grant 305123 MORE and by the HUAWEI project
RMTin5G.

matrix normalizations. For example, in [6] the authors consider

a simple single cell network and compare the performance

of MRT and ZF in terms of spectral efficiency and energy

efficiency under the assumption that matrix normalization

is employed. The same analysis is carried out in [3] for

a more realistic multi-cellular network in which the data

transmission in each cell is affected by channel estimation

errors, pilot contamination, an arbitrary large scale attenuation,

and antenna correlation at the BSs. The vector normalization

method is employed in [7] wherein a new multi-cell minimum-

mean-square-error (MMSE) scheme is proposed for massive

MIMO networks to exploit all available pilots for interference

suppression. The vector normalization is also used in [8] to

deploy dense networks for maximal energy efficiency. To the

best of our knowledge, it is not clear yet which one of the

two normalization methods should be used. A first attempt

to evaluate the impact of power normalization is carried out

in [9] wherein the authors consider the DL sum rate of a

massive MIMO system composed by three BSs connected

via one digital unit. It turns out that vector normalization is

better for ZF while matrix normalization is better for MRT.

However, the analysis is conducted under the assumption of

perfect channel state information, full cooperation among the

three BSs. Also, the large scale attenuation is neglected though

this has a fundamental effect on the choice of normalization

method.

The aim of this work is to provide a detailed treatment on

the impact of the two above power normalization methods

on the DL sum rate of a massive MIMO system affected

by channel estimation errors, pilot contamination, an arbitrary

large scale attenuation, and antenna correlation at the BSs. The

analysis is conducted assuming that N and K grow large with

a non trivial ratio K/N . The asymptotic results are necessary

to provide insights and enable us to compare the effect of

normalization without the need to carry out extensive Monte-

Carlo simulations. For a practical network setting and different

values of N and K , it turns out vector normalization largely

outperforms matrix normalization for both precoding schemes.

In turn, this means that the use of vector normalization allows

to scale down the number of antennas N required to meet a

given target sum rate.

The remainder of this paper is organized as follows. Next

section introduces the system model and precoder design. The



asymptotic analysis is performed in Section IV and validated

by means of numerical results in Section V. Conclusions are

drawn in Section VI.

II. SYSTEM MODEL AND PRECODER DESIGN

Consider1 the downlink of a multi-cell multi-user MIMO

system composed of L cells, the BS of each cell comprising

N antennas to communicate with K < N single-antenna UEs.

A double index notation is used to refer to each UE as e.g.,

“user k in cell j”. Under this convention, let hjlk ∈ CN be

the channel from BS j to UE k in cell l within a block and

assume that

hjlk = Θ
1/2
jlk zjlk (1)

where zjlk ∈ C
N is the small-scale fading channel assumed to

be Gaussian with zero mean and unit covariance and Θjlk ∈
CN×N accounts for the corresponding channel correlation

matrix (from BS l to UE k in cell j). Note that (1) is very

general and includes many channel models in the literature as

special cases [10].

Denoting by gjk ∈ CN the precoding vector of UE k in

cell j, its received signal can be written as

yjk = hH
jjkgjksjk +

K
∑

i=1,i6=k

hH
jjkgjisji

+

L
∑

l=1,l 6=j

K
∑

i=1

hH
ljkglisli + njk (2)

with sli ∈ C being the signal intended to UE i in cell l,
assumed independent across (l, i) pairs, of zero mean and unit

variance, and njk ∼ CN (0, 1/ρdl) where ρdl accounts for the

signal-to-noise ratio (SNR) in the DL. We assume that the BS

and UEs are perfectly synchronized and operate according to

a time-division duplex (TDD) protocol wherein the downlink

data transmission phase is preceded in the uplink by a training

phase for channel estimation.

If an MMSE estimator is employed [3], then the estimate

ĥjjk of hjjk is distributed as ĥjjk ∼ CN (0,Φjjk) with

Φljk = Θllk

(

L
∑

n=1

Θlnk +
1

ρtr
IN

)−1

Θljk (3)

where ρtr accounts for the SNR during the uplink training

phase. Therefore the estimated uplink channel of cell j be-

comes Ĥjj = [ĥjj1, . . . , ĥjjK ].
As in [1], [3], [11], [12] (among many others), we assume

that there are no downlink pilots such that the UEs do not

have knowledge of the current channels but can only learn

1The following notation is used throughout the paper. Scalars are denoted
by lower case letters whereas boldface lower (upper) case letters are used for
vectors (matrices). We denote by IN the identity matrix of order N and call
[A]i,k the (i, k)th element of the enclosed matrix. A random vector x ∼
CN (m,C) is complex Gaussian distributed with mean m and covariance
matrix C. The trace, transpose, conjugate transpose, real part, and expectation
operators are denoted by tr(·), (·)T , (·)H , Re(·), and E[·].

the average channel gain E{hH
jjkgjk} and the total interfer-

ence power. Using the same technique from [13], an ergodic

achievable information rate for UE k in cell j is obtained as

rjk = log2(1 + γjk) (4)

where γjk is given by

γjk =
|E[hH

jjkgjk]|2

1
ρdl

+
L
∑

l=1

K
∑

i=1

E[|hH
ljkgli|2]− |E[hH

jjkgjk]|2
(5)

where the expectation is taken with respect to the channel

realizations. The above result holds true for any precoding

scheme and is obtained by treating the inter-user interference

(from the same and other cells) and channel uncertainty as

worst-case Gaussian noise. As mentioned earlier, we consider

MRT and ZF as precoding schemes [1], [3], [4], [11]. Denoting

by Gj = [gj1, . . . ,gjK ] ∈ CN×K the precoding matrix of BS

j, we have that

Gj = FjD
−1/2
j (6)

where Fj = [fj1, . . . , fjK ] ∈ CN×K takes the form

Fj =











Ĥjj for MRT

Ĥjj

(

ĤH
jjĤjj

)−1

for ZF

(7)

whereas Dj ∈ C
K×K is a diagonal matrix whose entries are

chosen so as to satisfy the following average power constraint

E[trGjG
H
j ] = K ∀j. The two common approaches for

satisfying power constraints are known as vector and matrix

normalizations [9]. If vector normalization (VN) is used, then

the kth element of Dj is computed as

[Dj ]k,k = E[fHjkfjk]. (8)

On the other hand, if matrix normalization (MN) is employed,

then Dj = ηjIK with

ηj = E[trFjF
H
j ]. (9)

The objective of this work is to study the effect of VN and

MN on the ergodic sum rate of the system defined as:

rE =
L
∑

j=1

K
∑

k=1

log2(1 + γjk). (10)

Plugging Gj into (5), it follows that for both precoding

schemes γjk depends on the statistical distribution of {hjlk}
and {ĥjlk}. This makes it hard to compute γjk and, conse-

quently, rjk in closed-form. Therefore, a large system analysis

is provided in the next section to find tight approximations for

{γjk}.



III. LARGE SYSTEM ANALYSIS

In what follows, asymptotic approximations (also called

deterministic equivalents) of γjk for MRT and ZF with MN

and VN are derived. These results can then be used to find tight

approximations for the individual rates {rjk}. By applying the

continuous mapping theorem, the almost sure convergence of

the results illustrated below implies that rjk − rjk → 0 almost

surely with [3]

rjk = log2
(

1 + γjk

)

(11)

where γjk denotes one of the asymptotic approximations

computed below.

A. Preliminary assumptions and results

We begin by assuming the following grow rate of system

dimensions:

Assumption 1. The dimensions N and K grow to infinity at

the same pace, that is:

1 < lim inf N/K ≤ lim supN/K < ∞. (12)

For technical reasons, the following reasonable assumptions

are also imposed on the system settings [3].

Assumption 2. As N,K → ∞, the correlation matrix ∀j, l, k
Θjlk has uniformly bounded spectral norm on N , i.e.,

lim sup ||Θ1/2
jlk || < ∞ lim inf

1

N
tr (Θjlk) > 0. (13)

Assumption 3. There exists ǫ > 0 such that, for all large N ,

we have λmin(
1
NHH

jjHjj) > ǫ with probability 1.

Let us also introduce the fundamental equations that will

be needed to express asymptotic approximations of {γjk} for

ZF with MN and VN. The following set of equations:

ulk =
1

N
tr (ΦllkTl) (14)

with

Tl =

(

1

N

K
∑

i=1

Φlli

uli
+ IN

)−1

(15)

admits a unique positive solution [10]. Moreover, we call

T′
lk = Tl

(

1

N

K
∑

i=1

Φlliu
′
k,li

u2
li

+Φllk

)

Tl (16)

where u′
k,l = [u′

k,l1, . . . , u
′
k,lK ]T ∈ CK is computed as

u′
k,l = (IK − Jl)

−1
vk,l (17)

with the entries of Jl ∈ CK×K and vk,l ∈ CK given by:

[Jl]n,i =
1

N2

tr (ΦllnTlΦlliTl)

u2
li

(18)

[vk,l]i =
1

N
tr (ΦlliTlΦllkTl) . (19)

B. Matrix Normalization

An asymptotic expression of γjk for MRT with MN is given

in [3] and is reported below for completeness.

Theorem 1. [3, Theorem 4] Let Assumptions 1 – 3 hold true.

If MRT with MN is used, then γjk − γ
(MRT−MN)
jk → 0 almost

surely with

γ
(MRT−MN)
jk =

λj

(

1
N trΦjjk

)2

1
Nρdl

+ 1
N

L
∑

l=1

K
∑

i=1

λlzjk,li +
L
∑

l=1,l 6=j

λl| 1N trΦljk|2
(20)

where

λj =
( 1

K

K
∑

k=1

1

N
trΦjjk

)−1

(21)

zjk,li =
1

N
trΘljkΦlli. (22)

Although ZF is not considered in [3] (only the regularized

ZF is investigated), an asymptotic expression of γjk for ZF

with MN can be retrieved from [3, Theorem 3] assuming

Zdl
j = 0N and letting ϕdl

l → 0. In doing so, we obtain:

Theorem 2. Let Assumptions 1 – 3 hold true. If ZF with MN

is used, then γjk − γ
(ZF−MN)
jk → 0 almost surely with

γ
(ZF−MN)
jk =

λj

1
Nρdl

+
L
∑

l=1

K
∑

i=1

λl
ǫjk,li

u2

li

+
L
∑

l=1,l 6=j

λl
u2

ljk

u2

lk

(23)

where

λj =

(

1

K

K
∑

i=1

1

uji

)−1

(24)

and

uljk =
1

N
tr (ΦljkTl) (25)

ǫjk,li =
1

N
tr (ΘljkT

′
li)− 2

uljk

ulk

1

N
tr (ΦljkT

′
li)+

+
u2
ljk

u2
lk

1

N
tr (ΦllkT

′
li) . (26)

C. Vector Normalization

We now provide asymptotic approximations for γjk with

VN. The proofs follow from random matrix theory results as

those used in [3], [10] and are omitted for space limitations.2

We begin by considering MRT, for which we have the follow-

ing result:

Theorem 3. Let Assumptions 1 – 3 hold true. If MRT with

VN is used, then γjk − γ
(MRT−VN)
jk → 0 almost surely with

γ
(MRT−VN)
jk =

ϑjk

(

1
N trΦjjk

)2

1
Nρdl

+ 1
N

L
∑

l=1

K
∑

i=1

ϑlizjk,li +
L
∑

l=1,l 6=j

ϑlk| 1N trΦljk|2
(27)

2They will be provided in the extended version [14].



where

ϑli =
( 1

N
trΦlli

)−1

(28)

and zjk,li is given in (22).

On the other hand, if ZF is employed we have that:

Theorem 4. Let Assumptions 1 – 3 hold true. If ZF with VN

is employed, then γjk − γ
(ZF−VN)
jk → 0 almost surely with

γ
(ZF−VN)
jk =

ujk

1
Nρdl

+ 1
N

L
∑

l=1

K
∑

i=1

ǫjk,li

uli
+

L
∑

l=1,l 6=j

u2

ljk

ulk

(29)

where uljk and ǫjk,li are given by (25) and (26), respectively.

Note the above results can be achieved by considering

vector normalized precoding in (5) and following the same

procedure as in [3, Theorem 4] and [10, Theorem 3].

D. A case study

The above asymptotic results will be validated in Section IV

and used to make comparisons among the different precoding

schemes. As we shall see, VN will achieve better performance

for both MRT and ZF in medium to high SNR regimes. In

addition to this, they can be used to get some insights. To

this end, let us focus on ZF and assume that Θjk = djlkIN
∀j, k where djlk accounts for the large scale fading channel

attenuation. Therefore, (1) reduces to

hjlk =
√

djlkzjk . (30)

Let

νjk =
1

Nρdl
+

K

N

L
∑

l=1

dljk

(

1− dljk
αlk

)

(31)

with αlk =
∑L

n=1 dlnk+
1
ρtr

accounting for channel estimation

errors and pilot contamination. Then, we have that:

Corollary 1. If the channel is modeled as in (30) and ZF is

used, then

γ
(ZF−VN)
jk =

d2

jjk

αjk
ū

νjk +
L
∑

l=1,l 6=j

d2

ljk

αlk
ū

(32)

γ
(ZF−MN)
jk =

λj

νjk +
L
∑

l=1,l 6=j

λl
d2

ljk

d2

llk

(33)

with λj =
ū

1

K

K∑

i=1

αji

d2
jji

and ū = 1− K
N .

Proof: See Appendix A.

As seen, that the residual interference term is the same for

both normalization methods and given by νjk. On the other

hand, the term due to pilot contamination is different. Applied

to practical networks, the above results may lead to important

insights on how the two normalization methods affect the

network performance (more details on these aspects will be

given in the extended version [14]). Consider for example

a single-cell network. Then, under the assumption of perfect

channel knowledge (i.e., ρtr → ∞) we have that:

Lemma 1. If L = 1 and perfect channel knowledge is

assumed, then ZF with VN outperforms ZF with MN and the

rate gap ∆r ≥ 0 is given by

∆r =
∑

k

log

(

1 +
1

1
Nρdlū

1
dk

)

−

K log









1 +
1

1
Nρdlū

1
K

K
∑

i=1

1
di









. (34)

Proof: From Corollary 1, setting L = 1 and assuming

ρtr → ∞ yields νk = 1
Nρdl

and
d2

k

αk
= dk. Then, applying

the Jensen’ inequality (observe that log (1 + 1/x) is a convex

function) the result easily follows.

A similar result holds true in the high SINR regime:

Lemma 2. If L = 1 and the high SINR regime is considered,

then ZF with VN outperforms ZF with MN and the rate gap

∆r ≥ 0 is given by

∆r = K log

(

1

K

K
∑

i=1

1 + 1
diρtr

di

)

−
K
∑

k=1

log

(

1 + 1
dkρtr

dk

)

. (35)

Proof: The proof easily follows from Corollary 1 when

L = 1 and the rate is approximated as log(γk). Applying the

Jensen’s inequality, it follows that ∆r ≥ 0.

Observe that if ∀k dk = d in (34) or (35) then ∆r = 0.

This means that the benefits of VN vanish as UEs have similar

large scale channel statics. This confirms the intuition that

large scale channel attenuation have a fundamental effect on

the normalization methods.

IV. NUMERICAL RESULTS

Monte-Carlo (MC) simulations are now used to validate

the asymptotic analysis for different values of N and K . We

consider a multicell network composed of L = 7 cells, one in

the center and six around. Each cell radius is normalized to

one. The UEs are randomly distributed within each cell. The

channel is modeled as in [15]. In particular, we assume that

the matrices Θ
1/2
ljk are given by

Θ
1/2
ljk =

√

dljkA (36)

where A = [a(θ1), . . . , a(θN )] ∈ C
N with a(θi) given by

a(θi) =
1√
N

[1, e−i2πω sin(θi), . . . , e−i2πω(N−1) sin(θi)]T (37)

where ω = 0.3 is the antenna spacing and θi = −π/2 +
(i− 1)π/N . Also, dljk is the large scale attenuation, which is

modelled as dljk = d0/x
β
ljk where xljk denotes the distance of

UE k in cell j from BS l, β = 3.7 is the path loss exponent

and d0 = 10−3.53. We let ρtr = 6 dB and ρdl = 10 dB,
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Fig. 1. Ergodic achievable sum rate of center cell for MRT and ZF with VN
and MN when K = 10.
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Fig. 2. Ergodic achievable sum rate of center cell for MRT and ZF with VN
and MN when K = 10.

which corresponds to a practical setting [3], [8]. The results

are obtained for 1000 different channel realizations and 10
different UE distributions.

Figs. 1 and 2 illustrate the sum rate of the investigated

cell vs. N when K = 10 and 30, respectively. Bold lines

are obtained using the asymptotic results of Theorems 1 –

4 and markers are obtained from MC simulation. As seen,

the approximation achieved from the deterministic equivalents

(DEs) matches very well with MC simulations even for small

values of K and N , e.g., K = 10 and N = 20. The results

TABLE I
ASYMPTOTIC CALUES OF THE SUM RATE OF THE CENTER CELL FOR

DIFFERENT PRECODING SCHEMES.

No. of ant. Precoding Scheme K = 10 K = 20 K = 30
MRT-VN 15.24 19.59 22.44
MRT-MN 12.25 11.50 16.10

N = 75 ZF-VN 31.83 49.89 56.50
ZF-MN 20.68 24.07 22.43
RZF-MN 22.38 29.08 33.17

MRT-VN 17.41 23.18 26.96
MRT-MN 13.79 12.95 18.61

N = 100 ZF-VN 35.06 57.58 71.48
ZF-MN 23.57 30.59 33.97
RZF-MN 25.16 34.90 42.20

MRT-VN 20.84 28.70 34.28
MRT-MN 16.37 15.28 22.55

N = 150 ZF-VN 39.28 67.64 89.30
ZF-MN 27.33 39.22 48.93
RZF-MN 28.84 42.94 55.38

MRT-VN 23.3 32.94 40.04
MRT-MN 18.11 17.43 25.39

N = 200 ZF-VN 42.06 74.03 100.42
ZF-MN 29.89 44.86 58.80
RZF-MN 31.35 48.34 65.57

MRT-VN 25.23 36.74 44.84
MRT-MN 19.47 19.10 28.26

N = 250 ZF-VN 44.06 78.75 108.33
ZF-MN 31.61 49.00 65.95
RZF-MN 33.06 52.37 71.33

show that VN largely outperforms MN for both MRT and ZF.

Since the asymptotic results of Theorems 1 – 4 match

very well with MC simulations, they are now used to make

comparisons among the different precoding schemes. For

completeness, we also consider the RZF with MN whose

asymptotic analysis is provided in [3, Theorem 3]. Table I

reports the DEs of the investigated schemes for different values

of K and N when ρtr = 6 dB and ρdl = 10 dB. As

seen, if K = 10 ZF-VN requires only N = 75 antennas to

nearly achieve the same sum rate of ZF-MN or RZF-MN with

N = 250. A similar result holds true for K = 20 and 30.

This means that VN allows to reduce the number of required

antennas by a factor of 3 while providing the same sum rate.

Similar conclusions can be drawn for MRT. From Table I, it

also follows that for a given N MRT-VN improves the sum

rate by 90% (or even more) compared to MRT-MN. For ZF and

RZF, the improvement is around 200% and 70%, respectively.

V. CONCLUSIONS

We investigated the effect of vector and matrix normaliza-

tions on the DL sum rate of MRT and ZF precoding schemes

in massive MIMO systems with a very general channel model

under the assumption that data transmission was affected by

channel estimation errors and pilot contamination. Recent re-

sults from random matrix theory were used to find asymptotic

approximations for the sum rate of the investigated precoding

schemes. These results were used to make comparisons among

the two normalization methods. For a practical network setting

operating from a medium to high SNR regime, it turned out

that vector normalization provides better performance than



matrix normalization for both MRT and ZF. In particular, we

showed that the number of antennas N required to achieve a

target sum rate with vector normalization is smaller than the

one required by matrix normalization by a factor of 3 or 4. The

analysis can be easily extended to other precoding techniques

such the RZF precoding and the MMSE scheme proposed in

[8]. Furthermore, it can be used to get important insights into

the way the two normalization methods perform, especially

with respect to the pilot reuse factor, large-scale attenuations,

operating SNR as well as the number of antennas and UEs.

More details on all the aspects will be given in the extended

version.

APPENDIX A

For simplicity, we only consider ZF with VN. The same

steps can be used for ZF with MN. If the channel is modelled

as in (30), then Θljk = dljk and

Φljk =
dllkdljk
αlk

IN (38)

with αlk =
L
∑

n=1
dlnk + 1

ρtr
. Plugging (38) into (14) and (15)

yields

ulk =
d2llk
αlk

1

N
tr (Tl) (39)

with

Tl =

(

1

N

K
∑

i=1

1
1
N tr (Tl)

+ 1

)−1

IN . (40)

Call ū = 1
N tr (Tl). Therefore, we have that

ū =
1

N
tr (Tl) =

(

K

N

1

ū
+ 1

)−1

. (41)

Solving with respect to ū yields ū = 1 − K
N . Then, we

eventually have that

ulk =
d2llk
αlk

ū (42)

and also

uljk =
dllkdljk
αlk

ū. (43)

Therefore, the pilot contamination term in γjk reduces to

L
∑

l=1,l 6=j

u2
ljk

ulk
=

L
∑

l=1,l 6=j

d2ljk
αlk

ū. (44)

Let’s now compute [Jl]n,i defined as in (18). Using the above

results yields

[Jl]n,i =
1

N2

d2lln
αln

d2lli
αli

1

u2
li

tr

(

T2
)

=
1

N

d2lln
αln

αli

d2lli
. (45)

Similarly, we have that

[vk,l]i =
d2lli
αli

d2llk
αlk

ū2. (46)

In compact form, we may write Jl and vl,k as

Jl =
1

N
alb

T
l vl,k =

d2llk
αlk

ū2al (47)

with [al]i = d2lli/αli and [bl]i = 1/[al]i. Then, we have that

(applying the matrix inversion lemma)

u′
k,l =

d2llk
αlk

ū2

(

IK − 1

N
alb

T
l

)−1

al =
d2llk
αlk

ūal = ulkal. (48)

Plugging the above result into (16) produces

T′
li =

d2lli
αli

T

(

K

N

1

ū
+ 1

)

T =
d2lli
αli

ūIN = uliIN . (49)

We are thus left with evaluating (26). Using the above results

yields

ǫjk,li =
dljk
N2

tr (T′
li)− 2

dljk
dllk

1

N2
tr (ΦljkT

′
li)+

+
d2ljk
d2llk

1

N2
tr (ΦllkT

′
li) (50)

from which, using (38) and (49), we obtain

ǫjk,li =
dljk
N

uli −
d2ljk
αlk

1

N
uli.

Therefore, we have that

ǫjk,li
uli

=
1

N
dljk

(

1− dljk
αlk

)

. (51)

Plugging (42), (44) and (51) into (29) produces

L
∑

l=1

K
∑

i=1

ǫjk,li
uli

=
K

N

L
∑

l=1

dljk

(

1− dljk
αlk

)

. (52)

Collecting all the above results together completes the proof.
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