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ABSTRACT

Robust high dimensional covariance estimators are consid-
ered, comprising regularized (linear shrinkage) modifica-
tions of Maronna’s classical M-estimators. Such estimators
aim to provide robustness to outliers, while simultaneously
giving well-defined solutions under high dimensional sce-
narios where the number of samples does not exceed the
number of variables. By applying tools from random matrix
theory, we characterize the asymptotic performance of such
estimators when the number of samples and variables grow
large together. In particular, our results show that, when out-
liers are absent, many estimators of the shrinkage-Maronna
type share the same asymptotic performance, and for such
estimators we present a data-driven method for choosing
the asymptotically optimal shrinkage parameter. Although
our results assume an outlier-free scenario, simulations sug-
gest that certain estimators perform substantially better than
others when subjected to outlier samples.

Index Terms— Robust estimation, covariance matrices,
random matrix theory

1. INTRODUCTION

The estimation of covariance or scatter matrices under large
dimensions is a fundamental problem in statistical signal
processing [1, 2], with applications ranging from finan-
cial engineering [3] to biology [4]. Among such estimates,
the sample covariance matrix (SCM) 1

n

∑n
i=1 yiy

†
i , where

y1, · · · ,yn ∈ CN are data samples, is a particularly ap-
pealing choice since its structure is simple and it converges
(when the yi are i.i.d.) to the population covariance matrix in
the asymptotic regime n → ∞, with N fixed. Nonetheless,
the SCM is known to suffer from three major drawbacks: (i)
it is a poor estimate of the true covariance matrix whenever
the number of samples n and the number of variables N are
of similar order, (ii) it is not invertible for n < N , and (iii)
it is not robust to outliers. Several methods have been pro-
posed to address the first issue, the most popular being linear
shrinkage [5] which consists of a linear combination of the
SCM and a shrinkage target, such as the identity matrix.
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This results in an estimator of the form

(1− µ) 1
n

n∑
i=1

yiy
†
i + µνIN , (1)

where µ is a regularization parameter and ν is a scaling
factor. Hereafter, this estimator will be referred to as the
Ledoit-Wolf estimator [5]. Albeit powerful to deal with data
scarcity, linear shrinkage does not alleviate the problem of
the sensitivity to the presence of outliers. In order to provide
a better inference of the true covariance matrix when outly-
ing samples corrupt the data (or when the distribution of yi
is heavy-tailed, as when dealing with elliptical data), robust
covariance M-estimation methods were designed [6, 7, 8]
with the purpose of harnessing these presumed outlying
samples. Such estimators are however only defined when
the number of samples exceeds the number of variables;
thus, regularized versions have been proposed to account for
possibly scarce data [1, 2, 9]. These works typically focus on
a particular type of M-estimator, known as Tyler’s estimator.
Despite the fact that the behavior of Tyler’s estimator is now
well understood (at least in the large N,n regime [10]), it
suffers from two shortcomings: (i) if there is a certain num-
ber of samples that lie in a given subspace of the data, it may
not be defined [11], and (ii) in the presence of outliers, it
may even favor outliers over actual data [12].

It then becomes important to consider a wider class of
robust estimators that can alleviate the aforementioned two
issues. In particular, Maronna’s M-estimators encompass
a wide range of estimators whose particular form has been
shown essential when the data is corrupted by outliers [12].
In this work, we focus on a regularized version of these esti-
mators [11], thus well-defined when the number of variables
exceeds that of the samples. Building upon recent works
[10, 11], we first aim at understanding the asymptotic be-
havior of these estimators in the large N,n regime. Upon
properly choosing the shrinkage parameter, it is shown that,
in the absence of outliers, the performance of a wide class
of M-estimators can be optimized with respect to (w.r.t.) the
Frobenius norm of the matrix approximation error. A sim-
ple data-driven approach is proposed to estimate the optimal
parameter, the efficiency of which is validated through sim-
ulations.

Notations: ‖A‖ and ‖A‖F denote the spectral norm and
the Frobenius norm of the matrix A, respectively.



2. PROBLEM STATEMENT AND MOTIVATION

Let Y = [y1, · · · ,yn] ∈ CN×n be a matrix whose columns
are N -dimensional data samples, drawn from yi = C

1/2
N xi,

where CN ∈ CN×N � 0 is deterministic and x1, · · · ,xn
are i.i.d. random vectors the entries of which are i.i.d. with
zero mean, unit variance and finite (8 + σ)-th order moment
(for σ > 0).

Assumption 1. The growth regime is such that cN ,
N/n → c ∈ (0,∞) as N,n → ∞. We further as-
sume that for all N , TrCN = kN , with k ≥ 0 and that
lim supN ‖CN‖ <∞.

Let us define u as a non-negative, continuous, bounded
and non-increasing function on [0,∞), and such that φ(x) ,
xu(x) is non-decreasing with φ∞ , limx→∞ φ(x) < ∞.
For each α ≥ 0 and β > 0, we define the shrinkage
Maronna’s M-estimator ĈN (α, β) associated with the func-
tion u as the unique solution to the equation in Z:

Z = α 1
n

∑n
i=1 u

(
1
N y†iZ

−1yi

)
yiy
†
i + βIN . (2)

Note that for an unbounded u function, (2) does not nec-
essarily have a solution for all α ≥ 0, β > 0. In particular,
for u(x) = 1/x, the equation in Z

Z = α 1
n

∑n
i=1

yiy
†
i

1
N y†iZ

−1yi
+ βIN , (3)

admits a solution when n < N if and only if 0 ≤ α < n/N
and β > 0 [2, 11]. In the case where (α, β) = (1 − ρ, ρ),
with corresponding restriction on ρ, it was shown in [10] that
Tyler’s estimator constitutes a particularly appealing choice
when dealing with a broad class of heavy-tailed distribu-
tions, e.g. elliptical data [13]. Nevertheless, a recently pro-
posed large-dimensional analysis of robust M-estimators in
the presence of outliers [12] showed that such Tyler’s estima-
tors fail to handle certain types of outliers, hence providing
motivation for studying the wider class of shrinkage estima-
tors which are solutions of (2). As the form of the estimator
in (2) is rather involved, we first aim at characterizing its
behavior in the large n,N regime.

3. ASYMPTOTIC BEHAVIOR

Assumption 2. αcφ∞ < 1.

Definition. Under Assumptions 1-2, let v : [0,∞) →
(0, u(0)] be defined as v(x) = u(g−1(x)) where g−1 de-
notes the inverse function of g(x) = x

1−αcxu(x) , mapping
[0,∞) onto [0,∞). The function v thus defined is contin-
uous, non-increasing and onto. Also define I as the set of
compacts included in [0, 1/cφ∞)× (0,∞].

Theorem 1. Let ĈN (α, β) be the unique solution to (2).
Then, as N,n→∞, under Assumptions 1-2,

∀I ⊂ I, sup
(α,β)∈I

∥∥∥ĈN (α, β)− ŜN (α, β)
∥∥∥ a.s.−−→ 0

where

ŜN (α, β) , αv(γ) 1n
∑n
i=1 yiy

†
i + βIN , (4)

with γ the unique positive solution to the equation

γ = 1
N Tr

[
CN

(
α v(γ)

1+cαv(γ)γCN + βIN

)−1]
.

Furthermore, when seen as a function of β, β 7→ γ(β) is
bounded, continuous on (0,∞] and away from zero.

Proof. Follows along similar lines to [10, Theorem 1],
adapted to account for a general u function and parameters α
and β. Details will be provided in an extended version.

Remark 1. Theorem 1 shows that the proposed estimator
asymptotically behaves (uniformly on (α, β) ∈ I) as a par-
ticular version of the Ledoit-Wolf estimator, with weights
(αv(γ), β) in lieu of the parameters (1− µ, µν) in (1).

Notice that the matrix ŜN (α, β) is only defined when
Assumption 2 is verified, i.e. α < 1/cφ∞. For α ≥ 1/cφ∞,
although a solution to (2) does exist, it is not clear whether it
can be characterized under double asymptotics. To alleviate
this issue, we can resort to the following assumption (which
is a particular case of Assumption 2):

Assumption 3. cφ∞ ≤ 1.

Under Assumption 3, ŜN (α, β) is now defined for all
α < 1. In the following, with this assumption, we show
that the two-parameter formulation (α, β) can be reduced to
a single parameter (1− ρ, ρ) formulation.

Proposition 1. Under Assumption 3, for all (α, β) ∈ [0, 1)×
(0,∞), there exists ρ ∈ (0, 1] such that

ŜN (α, β)

αkv(γ(α, β)) + β
=

ŜN (1− ρ, ρ)
(1− ρ)kv(γ(1− ρ, ρ)) + ρ

.

Proof. Defining LN , αkv(γ(α, β)) + β, we have LN −
1
N Tr ŜN (α, β)

a.s.−−→ 0. Then, using (4), we have:

ŜN (α, β)

LN
=

(
1− β

LN

)
1

n

n∑
i=1

yiy
†
i +

β

LN
IN .

If αk 6= 0, as v is bounded and away from 0, β
αkv(γ)+β → 0

as β → 0 and β
αkv(γ)+β → 1 as β → ∞. As β 7→ v(γ(β))

is continuous on (0,∞), we conclude that there exists ρ ∈
(0, 1] such that the asymptotic equivalent ŜN (α, β) is equal
(up to a trace-normalization factor) to ŜN (1−ρ, ρ). If αk =
0, the result holds for ρ = 1.

Proposition 1 means that, under Assumption 3, it is
equivalent in the large N,n regime to consider the two-
parameter equation (2) or the one-parameter equation:

Z = (1− ρ) 1n
∑n
i=1 u

(
1
N y†iZ

−1yi

)
yiy
†
i + ρIN . (5)



Thus, we may directly work with the solution ĈN (ρ) ,
ĈN (1−ρ, ρ) of (5) for ρ ∈ (0, 1] and its equivalent ŜN (ρ) ,
ŜN (1− ρ, ρ), rather than the more complex model (2). With
this simplification, we have the following useful result:

Proposition 2. For each ρ ∈ (0, 1], there exists a solution
ρ ∈ (0, 1] to the equation

ρ

(1− ρ)kv(γ) + ρ
= ρ

for which we have

ŜN (ρ)

(1− ρ)kv(γ) + ρ
= (1− ρ) 1

n

n∑
i=1

yiy
†
i + ρIN .

Proof. Details will be provided in an extended version.

Proposition 2 implies that any scaled1 Ledoit-Wolf esti-
mator (1) is equal to a trace-normalized estimator ŜN (ρ) for
a particular ρ and therefore, thanks to Theorem 1, converges
a.s. to the corresponding normalized estimator ĈN (ρ) solv-
ing for (5). The advantage of Proposition 2 lies in the fact
that if we are able to characterize a parameter ρ such that
the associated Ledoit-Wolf estimator is optimal w.r.t. a given
loss function (e.g. the Frobenius loss), then, upon finding
a parameter ρ that maps to ρ, the corresponding shrinkage
Maronna estimator will be optimal w.r.t. that same loss func-
tion. This aspect is further developed in the following sec-
tion.

4. OPTIMAL SHRINKAGE

Define, for a given estimator B̂N of CN , the squared Frobe-
nius loss of the difference of the trace-normalized estimator

B̂N
1
N Tr B̂N

to the trace-normalized population matrix CN as

DN (B̂N ) ,
1

N

∥∥∥∥∥ B̂N

1
N Tr B̂N

− CN
1
N TrCN

∥∥∥∥∥
2

F

.

Assumption 4. 1
N TrC2

N converges as N → ∞ to a limit
noted M .

Denote ĈN (ρ) the solution to (5) for a given ρ ∈ (0, 1].
Then we have the following proposition:

Proposition 3. (Optimal shrinkage.) We have

inf
ρ∈(0,1]

DN (ĈN (ρ))
a.s.−−→ D? , c

M + 1− 2k

c+M + 1− 2k
.

Furthermore, denote ρ̂? ∈ (0, 1] a solution to

ρ̂?

(1− ρ̂?)kv(γ) + ρ̂?
= ρ? ,

c

c+M + 1− 2k
,

where ρ? is the shrinkage parameter for which the associated
Ledoit-Wolf esimator (1) would be optimal w.r.t. the Frobe-
nius norm.

1Here, ρ = µν/(1− µ+ µν) in (1).

Then we have DN (ĈN (ρ̂?))
a.s.−−→ D?.

(Optimal shrinkage parameter estimate.) Denote ρ̂N ∈
(0, 1] a solution to

ρ̂N
1
N Tr ĈN (ρ̂N )

=
cN

1
N Tr

[(
1
n

∑n
i=1

yiy
†
i

1
N ‖yi‖2

)2]
− 1

.

Then, under Assumption 3, we have ρ̂N
a.s.−−→ ρ̂? and

DN (ĈN (ρ̂N ))
a.s.−−→ D?.

Proof. Follows along the lines of [10, Propositions 1 and 2].
Details will be provided in an extended version.

In words, Proposition 3 implies that, for any function u
satisfying Assumption 3, there exists a shrinkage parameter
ρ̂? for which the corresponding Maronna shrinkage estima-
tor is optimal (w.r.t. the Frobenius norm) in the large N,n
regime. Though this shrinkage parameter ρ̂? is an oracle
(in that it depends on the unknown population matrix CN ,
through its dependence on γ and M ), Proposition 3 provides
a data-driven way to estimate it, and the associated estimator
has asymptotically optimal performance.

Experiment 1. Let us take N = 150, n = 100 (cN =
3/2 > 1, such that shrinkage becomes necessary when using
Maronna’s estimator), and let [CN ]ij = .9|i−j|. We con-
sider two different u functions: u1(x) = min{1, 1+tt+x} and
u2(x) =

1
cu1(x), with t = .01 (these functions are referred

to as Huber-type functions in the literature. The interest
of such functions will be made clear in the following sec-
tion). Note that u1 does not verify Assumption 3, whereas
its scaled counterpart u2 does. In Fig. 1, for each u func-
tion and ρ ∈ (0, 1] we plot the expected Frobenius loss DN

associated with the solution of (5), as well as that of the cor-
responding equivalent ŜN (ρ) (when defined). The minimal
value D? is also indicated for reference.

Fig. 1: Expected Frobenius loss of the estimator for different u
functions as the shrinkage parameter ρ varies.

First, we observe that for all u functions and all ρ >
1− 1/c, there is a close match between ĈN (ρ) and the cor-



responding, asymptotically-equivalent matrix ŜN (ρ), which
validates Theorem 1. Second, notice that for u1, as Assump-
tion 3 is not verified, we do not have existence of the equiv-
alent ŜN (ρ) for ρ ∈ (0, 1 − 1/c]. However, for u2, which
is a scaled version of u1 such that Assumption 3 is verified,
the matrix ŜN (ρ) is well defined for all ρ > 0. Following
Proposition 3, we can therefore find a shrinkage parameter
such that the associated estimator has a performance close
to D?. With Proposition 3, this optimal shrinkage parameter
can be estimated (ρ̂N , as indicated on Fig. 1 for u2), and
the corresponding estimator is guaranteed to have optimal
performance.

5. PERFORMANCE WITH OUTLIERS

Proposition 3 shows that, as long as the data is not corrupted
by outliers, choosing one particular u function over another
will not affect the (asymptotic) accuracy of the associated es-
timator (upon optimizing the shrinkage parameter ρ). How-
ever, in general this is not the case when the data contains
outlying samples, in which case different u functions lead to
estimators which may behave very differently. The follow-
ing experiment aims at shedding light on this.

Experiment 2. Here we choose N = 150 and [CN ]ij =
.9|i−j| as before. We assume that n − 2 samples are drawn
from the distribution associated with CN and that there
are 2 outlying samples in the data, which are both equal
to 1/

√
N1N , where 1N denotes the vector of all ones.

We consider the functions u2(x) = 1
c min{1, 1+tt+x} and

u3(x) = 1
c
1+t
t+x , properly scaled such that Assumption 3 is

verified. We let n vary from 10 to 150 (therefore, cN varies
from 1/15 to 1), and estimate for each n and each u function
the optimal shrinkage parameter according to Proposition
3. The performance of the estimators associated with these
estimates is reported in Fig. 2.

Fig. 2: Expected optimal Frobenius loss of the estimator for dif-
ferent u functions, as n varies.

Though the estimator associated with u3 is well defined
for all n, it performs poorly, in comparison to the estimator
associated with u2. The reason behind this phenomenon lies
in the fact that estimators corresponding to Tyler-type func-
tions (x 7→ 1/x or x 7→ 1+t

t+x for t small) tend to enhance
certain types of outliers, as explained in [12], while the esti-
mator associated with u2 (Huber-type) can control such out-
lying samples. This experiment thus motivates the need for
considering a large class of regularized robust M-estimators.
Notice that, even in the presence of outliers, the proposed
analysis and the estimation of an optimal shrinkage param-
eter ρ (though assuming clean data) are still useful, since in
general, no prior knowledge about potential outliers is avail-
able. A more thorough study on the impact of different types
of outliers on these estimators is the subject of ongoing work.
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