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Abstract—This article introduces a spectral method for sta-
tistical subspace clustering. The method is built upon standard
kernel spectral clustering techniques, however carefully tuned by
theoretical understanding arising from random matrix findings.
We show in particular that our method provides high clustering
performance while standard kernel choices provably fail. An
application to user grouping based on vector channel observa-
tions in the context of massive MIMO wireless communication
networks is provided.

I. INTRODUCTION

Clustering, be it for graphs (community detection) or multi-
variate data, is an important leg of machine learning by which
one aims at grouping together alike elements in a completely
unsupervised manner (that is based on no training examples).
With the advent of the big data paradigm, clustering of large
dimensional datasets becomes a key ingredient of machine
learning. Because the underlying problem (that of devising
an optimal grouping) is inherently discrete and often compu-
tationally expensive, most clustering strategies are based on
relaxed optimization schemes. This is the case of spectral
kernel clustering [1] and notably of the popular Ng–Weiss–
Jordan algorithm [2], which will be our starting point here.

Precisely analyzing the performance of spectral kernel
algorithms is quite challenging for two essential reasons:
(i) studying generically the eigenvectors of a data-driven
adjacency (or similarity) matrix is intractable, and (ii) even
if made possible, the non-linear kernel function induces an
involved correlation structure within the kernel matrix. To
tackle this difficulty, [3] proved that kernel spectral clustering
methods are consistent when the number of observations tends
to infinity while the data dimensions remain fixed. This is a
desirable result but that makes non desirable assumptions from
a big data perspective, where the observation dimensions may
be larger than their number. Recently, in [4], a novel approach
was considered, whereby the size and number of samples were
assumed simultaneously large and the data to be clustered
arising from a Gaussian mixture. In this case, it is shown that,
thanks to a concentration of measure effect, the kernel function
can be expanded in a Taylor series, resulting in the kernel
matrix being asymptotically equivalent to a well-understood
random matrix model. The results of [4] notably evidence the
inner mechanisms under play in spectral clustering and allow
for many improvements. Besides, simulations on real datasets
(MNIST database) suggest an extremely close fit in perfor-
mance when compared to inputs extracted from a Gaussian

mixture with same (empirical) means and covariances as the
dataset.

A particularly striking finding of [4] is that, for data vectors
with vanishing differences in (empirical or statistical) means
across classes, a very specific kernel choice allows for a dra-
matic (asymptotic) performance improvement – corresponding
in fact to a phase transition towards a faster convergence
regime. The purpose of this article is to study this setting
in depth. Precisely, we shall consider the kernel spectral
clustering of a Gaussian zero mean mixture and shall focus
on clustering the data upon their “normalized shape” (i.e.,
irrespective of their amplitude). This setting places us naturally
in a subspace clustering context. Subspace clustering is an
important branch of clustering, whereby the objective is to
identify groups of data living in similar subspaces [5].

We will place ourselves in a regime where classical spectral
clustering kernel choices provably fail, while our proposed ap-
proach achieves arbitrarily good performance. Our theoretical
results are then appended into a novel algorithm for zero-mean
subspace clustering when multiple independent copies of each
sample is available. This algorithm finds concrete applications
in user grouping for modern massive MIMO wireless commu-
nications [6], [7]. Practically speaking, the performances of
the proposed massive MIMO method dramatically improves
over alternatives [6], [8] where an extremely large number
of channel observations from each user is assumed, while
we obtain good performances already for very few channel
observations.

II. MAIN RESULTS

Let x1, . . . , xn ∈ Rp be n independent vectors such that,
for n1, . . . , nk with

∑
i ni = n,

xn1+...+nj−1+1, . . . , xn1+...+nj
∼ N (0, p−1Cj)

where C1, . . . , Ck ∈ Rp×p are nonnegative definite covariance
matrices satisfying 1

p trCa = 1 for each a = 1, . . . , k. The
latter constraint is inconsequential for the remainder and is
merely imposed for convenience. The fact that the xi’s labels
are sorted per class is merely for convenience and is no more
restrictive. We shall say that xi ∈ Ca when xi ∼ N (0, p−1Ca).

The objective is to devise an appropriate spectral clustering
method to group the xi’s within their respective classes
C1, . . . , Ck. We recall that spectral clustering [1] consists first
in building a matrix K ∈ Rn×n with Kij = κ(xi, xj) contain-
ing some affinity metric between vectors xi and xj . Here we



shall consider a radial kernel κ(xi, xj) = f(‖xi−xj‖2). It can
then be shown by intuitive arguments that, when clustering is
“not too difficult”, K tends to have large isolated eigenvalues,
the eigenvectors of which look like noisy step functions (when
the xi are sorted per class as above). Each plateau of the step
functions is mapped to one class and thus clustering can be
performed by smartly exploiting these eigenvectors. Calling
u1, . . . , u` the ` dominant eigenvectors of K, the natural
method to do this smart exploitation is to perform standard
low-dimensional clustering (such as k-means or expectation
maximization) on the n vectors ([u1]i, . . . , [u`]i) ∈ R` for
i = 1, . . . , n. The top graph in Figure 3 at the end of this
document provides an ` = 2-dimensional representation of
n = 400 vectors ([u1]i, [u2]i) ∈ R2 with colors corresponding
to ground truth classes.

Our precise objective is to select an appropriate function
f such that the aforementioned clustering approach provides
non-trivial performances in difficult scenarios. To this end, we
shall place ourselves in a regime where p, n → ∞ and shall
impose growth rates of n, p and C1, . . . , Ck in such a way that
the probability of misclustering remains of order O(1).

Assumption 1 (Growth Rate): As p → ∞, n/p → c0 ∈
(0,∞) and, for each a ∈ {1, . . . , k}, na/n→ ca ∈ (0, 1). Be-
sides, for each a, b ∈ {1, . . . , k}, denoting C◦ =

∑k
i=1

ni

n Ci
and C◦a = Ca − C◦,

1
√
p

trC◦aC
◦
b converges in [0,∞).

We shall further define

T =

{
lim
p→∞

√
cacb
p

trC◦aC
◦
b

}
ω =
√

2 lim
p→∞

1

p
tr(C◦)2.

The fundamental assumption here is that trC◦aC
◦
b =

O(
√
p). It is shown in [4] that, if trC◦aC

◦
b = o(p), then it is in

general impossible to recover the classes using the kernel ap-
proach, while non-trivial clustering probability can be achieved
when trC◦aC

◦
b = O(p). However, [4, Remark 12] points to

an exception to this statement for a very specific choice of
the kernel. Under this choice, it is proved that asymptotically
perfect clustering is achieved when trC◦aC

◦
b = O(p). One of

our contributions here is to show that, for this very kernel
option, trC◦aC

◦
b can be made as small as O(

√
p) with non-

trivial class recovery.
We make this discussion more precise below by introducing

the kernel matrix of interest.
Assumption 2 (Kernel Matrix): For x1, . . . , xn ∈ Rp,

denoting x̄ = x
‖x‖ , let

K =
{
f(‖x̄i − x̄j‖2)

}n
i,j=1

where f : R+ → R+ is a three-times differentiable function
satisfying f ′(2) = 0 and f ′′(2) 6= 0.

Examples of functions f satisfying the conditions of As-
sumption 2 are fpoly(t) ≡ a(t− 2)2 + b for some a, b > 0 or,

to anticipate evident problems of robustness to outliers using
polynomials, fexp(t) ≡ exp(−a(t− 2)2) for some a > 0.

Letting D = diag(K1n) with 1n ∈ Rn the vector of ones,
we define the (normalized centered) Laplacian matrix of K as

L = nD−
1
2KD−

1
2 − nD

1
2 1n1TnD

1
2

1TnD1n

which is the central object of interest (rather than K itself)
here, reminiscent of the Ng–Weiss–Jordan Laplacian [2].

Note that D
1
2 1n is the eigenvector of D−

1
2KD−

1
2 corre-

sponding to its leading eigenvalue 1 (a well-known property
of Laplacian matrices). Thus, the matrix L is (up to the scalar
n) the projection of the matrix D−

1
2KD−

1
2 on the subspace

orthogonal to D
1
2 1n. This projection, also exploited in [4],

allows for a simplified spectral study of nD−
1
2KD−

1
2 which

is composed of (i) a dominant unit rank eigenspace carried
by D

1
2 1n with associated eigenvalue n (thus diverging) and

(ii) an n− 1 orthogonal space with associated eigenvalues of
order O(1). As shown in [4], the subspace (i) does not contain
any valuable information and thus the dominant eigenvector
of nD−

1
2KD−

1
2 asymptotically contain no clustering infor-

mation. We shall therefore restrict ourselves to the study of L
as defined above.

The central hypothesis of Assumption 2 is the choice
of f ′(2) = 0 without which kernel spectral clustering is
asymptotically infeasible. Equipped with these intuitions, we
are in position to introduce our main result which provides
a tractable random matrix equivalent for L. This matrix is
much simpler to study than L itself and will allow for a clear
understanding of the eigenvectors content.

Theorem 1 (Random Matrix Equivalent): Under Assump-
tion 1, as n, p→∞, almost surely,

L =
f(0)− f(2)

f(2)
P +

2f ′′(2)

f(2)

{
1

p
trC◦aC

◦
b

1na
1Tnb

p

}k
a,b=1

+
2f ′′(2)

f(2)
PΦP +O‖·‖(p

− 1
2 )

where P = In − 1
n1n1Tn and Φ ∈ Rn×n is defined by

Φij = δi 6=j

[
(xTi xj)

2 − 1

p2
trCaCb

]
with xi ∈ Ca, xj ∈ Cb, and ‖ · ‖ denotes the operator norm.
In particular, we can evaluate, for i 6= j, xi ∈ Ca, xj ∈ Cb,

E[Φij ] = 0

Var[Φij ] =
2

p4
(trCaCb)

2 +
6

p4
tr(CaCb)

2 = O(p−2).

As a corollary of Theorem 1, it is easily shown that

L ≡ √p f(2)

2f ′′(2)

[
L− f(0)− f(2)

f(2)
P

]
=

{
1

p
trC◦aC

◦
b

1na1Tnb

p

}k
a,b=1

+ P (
√
pΦ)P + o‖·‖(1)



is a matrix having asymptotically the same dominant eigenvec-
tors as those of L (with eigenvalues defined up to a mapping).
As such, the eigenvectors of interest for clustering are those
of L. In the rest of the article, we shall then exclusively focus
on L rather than L.

Note first that L takes the form of the sum of: (i) a random
matrix with zero mean and entries of variance O(p−1) and (ii)
a maximum rank-k (in fact even k− 1) matrix with eigenvec-
tors made of linear combinations of the canonical class vectors
j1, . . . , jk with ji = (0, . . . , 0, 1Tni

, 0, . . . , 0) ∈ Rn, modulated
by the class informations 1

p trC◦aC
◦
b . This is a spiked random

matrix model of the information-plus-noise type [9]. For such
models, there exists a phase transition phenomenon by which,
if the eigenvalues of matrix (ii) are large enough, L will
contain isolated large amplitude eigenvalues with associated
eigenvectors much aligned to those of (ii) itself. If instead
no such large eigenvalue exists, no isolated eigenvalue is
found in the spectrum of L and no information is exploitable
for clustering. This intuitive discussion is made clear in the
following result.

Theorem 2 (Eigenvalue Localization): Let Assumption 1
hold. Then, as p → ∞, the eigenvalue distribution µn ≡
1
n

∑n
i=1 δλi(L) (with λi(X) the eigenvalues of X) almost

surely converges (in the weak limit of probability measures)
to the probability measure µ with

µ(dt) =
1

2πc0ω2

√
(4c0ω2 − t2)+dt

with support S = [−2
√
c0ω, 2

√
c0ω]. Besides, for all large n

almost surely, there are at most k− 1 eigenvalues of L found
at a macroscopic distance of S. These are defined as follows.
Let ν1 ≥ . . . ≥ νk be the eigenvalues of T . Then, for each
i ∈ {1, . . . , k}, if

√
c0|νi| > ω, for all large n almost surely,

L has an isolated λi satisfying

λi
a.s.−→ ρi ≡ c0νi +

ω2

νi

(since T has a zero eigenvalue, the inequality
√
c0|νi| > ω is

not met at least once).
Theorem 2 unveils a phase transition effect by which, if

|νi|/ω or c0 are large enough, then isolated eigenvalues are
found in the limiting spectrum of L. Figure 1 depicts the
histogram of the eigenvalues of L versus the asymptotic semi-
circle law µ, where one can observe isolated eigenvalues
on the left side of the main bulk. When this occurs, the
eigenvector ui associated with the isolated eigenvalue λi
of L will correlate the eigenvector with eigenvalue νi of
{ 1
p2 trC◦aC

◦
b · 1na

1Tnb
}ka,b=1, this correlation being all the

stronger that |νi| is large. As such, for sufficiently large
|νi|, the eigenvectors ui will tend to behave like (noisy) step
vectors. We make this intuition more rigorous in what follows.

Assume now that λi is an isolated eigenvalue of L as
per Theorem 2 with unit multiplicity. From the statistical

interchangeability of vectors xi within each class Ca, we may
write the eigenvector ui associated with λi as

ui =

k∑
a=1

αai
ja√
na

+ σai w
a
i

for ja = [0Tn1
, . . . , 0Tna−1

, 1Tna
, 0Tna+1

, . . . , 0Tnk
]T ∈ Rn, wai a

vector of unit norm, supported on the indices of class Ca
and orthogonal to ja, and αai ∈ R, σai > 0 scalars to be
determined. Similarly, for two isolated eigenvalues λi, λi′ of
L, it shall be interesting to study the correlation

σai,i′ ≡
(
uai − αai

ja√
na

)T(
uai′ − αai′

ja√
na

)
with uai = diag(ja)ui ∈ Rn the restriction of ui to its indexes
in class Ca. In particular, (σai )2 = σaii.

These quantities characterize completely the mutual be-
havior of the isolated eigenvectors of L used for spectral
clustering and thus allow for anticipating the performance of
kernel spectral clustering. In the next theorem, we provide the
asymptotic values of those parameters.

Theorem 3 (Expression of Eigenvectors): For each (νi, vi)
eigenpair of T with νi of unit multiplicity satisfying

√
c0|νi| >

ω and for each a ∈ {1, . . . , k}, let αai = 1
na
uTi ja with (λi, ui)

the eigenpair of L mapped to νi as per Theorem 1. Then,
as p → ∞, under the conditions of Assumption 1, for each
a, b ∈ {1, . . . , k},

αai α
b
i

a.s.−→
(

1− 1

c0

ω2

ν2
i

)[
viv

T
i

]
ab
.

Besides, for (λi, ui), (λi′ , ui′) two such eigenpairs of L,
letting σaii′ = 1

na
(uai − αai ja)T(uai′ − αai′ja), we have

σaii′
a.s.−→ δii′

ca
c0

ω2

ν2
i

.

Figure 2 depicts the leading two eigenvectors under the
setting of Figure 1 and the theoretical values for αji and σji .

Remark 1 (Relation to Subspace Clustering): Subspace
clustering consists in grouping vectors xi in classes defined
through the distance between the covariance matrices E[xix

T
i ]

(or between their dominant subspaces). In particular, for k = 2
classes, such a metric may be the Frobenius norm tr(C1−C2)2

between C1 and C2. It appears that this is exactly what
is implemented by the proposed method. For k ≥ 3, the
method instead considers a metric based on the eigenvalues of
{tr(C◦a−C◦b )2}ka,b=1 which is one among multiple possibilities
of such distance definitions.

III. APPLICATION TO WIRELESS COMMUNICATIONS

The setting under study is of broad interest in massive
MIMO wireless communications where, to avoid the bottle-
neck problem known as pilot contamination [7], it is necessary
to smartly schedule data transmissions to users having chan-
nels belonging to as far subspaces as possible. That is, given
a massive MIMO transmitter equipped with a large number
p antennas serving n mobile users with respective channels
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Fig. 2. Leading two eigenvectors of L (or equivalently of L) versus
deterministic approximations of αa

i ±σa
i as per Theorem 3. Setting identical

to that of Figure 1.

h1, . . . , hn ∈ Rp, it is a first objective to the transmitter to
group users into subsets of alike channel subspaces.1 Here the
so-called subspaces relate to the covariances of the zero mean
random channels hi (randomness arising from mobility and
the null mean for the absence of line of sight components).
This problem is traditionally handled by assuming a method
to extract good estimators of each covariance E[hih

T
i ], see

e.g., [6], [8]. For large p (traditionally ∼ 400 in massive
MIMO) and n, this means accessing a tremendous amount
of independent channels which is unrealistic.

Instead, we propose here to use a single channel observation
to meet the same results, which we then refine to several
independent observations. The underlying reason for such a
gain is that, while [6], [8] believe in the need to retrieve
the extremely large matrices E[hih

T
i ], we claim that only

estimating trC◦aC
◦
b for groups a, b of users is enough, and

1For simplicity, we assume here that channels are modeled as real vectors.
When complex, real and imaginary parts can be stacked into a 2p-dimensional
vector.

this is easily obtained through kernel spectral clustering.

In the case of a single channel acquisition, the idea here
consists in building a kernel matrix K, and its associated
(modified) Laplacian L, with Kij = f(‖h̄i − h̄j‖2) for
h̄i = hi

‖hi‖ and f with f ′(2) = 0 and f ′′(2) 6= 0, and then
to perform subspace clustering as previously introduced upon
L. When T independent copies of the channels h(1)

i , . . . , h
(T )
i

for each user i are obtained, we suggest to proceed as follows:
(i) build a Tn × Tn matrix K, and subsequently L, for
the ordered channels [h

(1)
1 , . . . , h

(T )
1 , . . . , h

(1)
n , . . . , h

(T )
n ] as if

the channels h(j)
i were arising from Tn rather than n users,

then (ii) to exploit the fact that the vectors h
(1)
i , . . . , h

(T )
i

are mapped to a single user (and therefore a single point
for the clustering problem at hand), average the dominant
nT -dimensional eigenvectors ui of L across the T indexes
corresponding to channels of the same users, resulting into
the n-dimensional vectors

ūi ≡
1

T
(IT ⊗ 1TT )ui (1)

with 1T ∈ RT the all-ones vector, and finally (iii) proceed to
clustering (from k-means or expectation-maximization proce-
dures) over the dominant vectors ūi. The main effect of the
folding operation (1) is to reduce the variance of the rows of
matrix [u1, . . . , un] by a factor T .

To simulate the performance of the method, we model the
h

(j)
i ∈ R2p as two-dimensional real vectors of the stacked

real and imaginary parts of Gaussian circularly symmetric
zero mean channels with covariance matrices Ca ∈ R2p×2p

for users i in class Ca. Letting Γa ∈ Cp×p be the complex
representation of Ca, we consider the popular solid angular
model

[Γa]ij =
1

∆a
+ −∆a

−

∫ θa+∆a
+

θa+∆a
−

exp

(
−2πı

d

λ
sin(t)(j − i)

)
dt

for a linear antenna array with inter-antenna distance d and
transmission wavelength λ taken here such that d = λ. The
array beam focuses uniformly across the angles [θa+∆a

−, θ
a+

∆a
+]. We shall take here ∆a

− = −∆a
+ = π/20 for each a,

while θ1 = −π/30, θ2 = 0, and θ3 = π/30.

Figure 3 illustrates the gain of the per-user folding strategy
(1) on a single random scenario (see figure caption for details).
It is seen that the large spread of data points prior to folding
(top figure) is significantly reduced after T = 10 copies
folding (bottom figure). In both graphs are shown in blue
the theoretical 1σ and 2σ standard deviations obtained from
Theorem 3 and the T -fold reduction in variance from (1).

The performances associated with the setting of Figure 3
are provided in Figure 4, where a comparison between the
classical Gaussian kernel f(t) = exp(−t2) and our proposed
improved kernel f(t) = exp(−(t− 2)2) is provided. The last
step of clustering is performed either via a k-means or an
expectation-maximization (EM) method (assuming Gaussian
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eigenvector fluctuations). As is shown, under the considered
setting, irrespective of T , the Gaussian kernel does not manage
to provide any efficient clustering. In comparison, the kernel
choice with f ′(2) = 0 achieves 100% clustering probability
already for 8 independent channel acquisitions. As is standard
in clustering, k-means operates better than EM at low correct
clustering rates but is then overtaken by EM for higher rates.

IV. CONCLUDING REMARKS

In this article, we have exploited the recent theoretical
analysis [4] on the asymptotic performance of kernel spectral
clustering to produce an improved method for subspace clus-
tering of large dimensional datasets. Possibly the most striking
outcome of the study is its demonstrating that smartly chosen
kernel choices allow for data clustering where traditional
kernels provably fail. This unfolds from a change in regime for
the specific problem at hand when using appropriate kernels.

Generically speaking, this article may be considered as a
first step towards enabling random matrix-based improvements
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Fig. 4. Comparison of the correct clustering probability between the optimal
kernel f(x) (here f(x) = exp(−(x − 2)2)) and the Gaussian kernel
exp(−x2), for different number of observations T per source, using the k-
means or EM algorithms. Setting identical to Figure 3.

in large dimensional machine learning problems. It is envi-
sioned that, based again on the investigation method from [4]
naturally leading to spiked equivalent models of random kernel
matrices, questions such as deep theoretical understanding of
semi-supervised learning and support vector machine methods
for large dimensional datasets could be similarly addressed,
thereby possibly leading to improved versions of these so
popular methods.
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