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Abstract

The costs of current data centers are mostly driven by their energy consumption

(specifically by the air conditioning, computing and networking infrastructure).

Yet, current pricing models are usually static and rarely consider the facili-

ties’ energy consumption per user. The challenge is to provide a fair and pre-

dictable model to attribute the overall energy costs per virtual machine (VM)

in heterogeneous environments. In this paper we introduce EPAVE, a model

for Energy-Proportional Accounting in V M-based Environments. EPAVE al-

lows transparent, reproducible and predictive cost calculation for users and for

Cloud providers. It provides a full-cost model that does not account only for

the dynamic energy consumption of a given VM, but also includes the propor-

tional static cost of using a Cloud infrastructure. It comes with PowerIndex,

a profiling and estimation model, which is able to profile the energy cost of a

VM on a given server architecture and can then estimate its energy cost on a

different one. We provide performance results of PowerIndex on real hardware,

and we discuss the use cases and applicability of EPAVE.
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1. Introduction

The trend of computing in the Cloud grows, which consequently requires big-

ger data centers, more processing power and hence more CPUs. Whereas the

hardware gets more and more energy-efficient the overall energy consumption of

data centers increases. Actually, today’s Cloud computing requires more elec-

tricity in the form of energy than entire countries such as India or Germany [1].

It is hence not surprising that energy represents one of the main cost factors

of a data center. The major energy consumers are the air conditioning, the

network infrastructure (routers, switches) and the servers [2]. However, these

costs are rarely reflected in the attribution of energy consumption to a single

consumer (e.g., a virtual machine).

As users share the same resources on a single node, most of the existing

models concentrate on attributing the power consumption of this shared node

to a single consumer. For instance, how much of the CPU power consumption

can be related to a VM [3], [4], [5]?

Our vision is to consider energy accounting on the data center level to en-

able pricing models where every user will pay for the actual usage of resources.

The first challenge is to provide a fair attribution model that is predictable

to provide incentives for energy-efficient computing in the Cloud. The second

challenge is to consider the mobility of VMs. A VM can be easily spawned

on a different node, which might have different hardware specifications. These

different hardware specifications might lead to different energy behavior.

In this paper we tackle these two challenges, by

1. showcasing EPAVE (Energy-proportional Profiling and Accounting in V ir-

tualized Environments) for realizing accounting of real energy costs of the

data center to each client considering the major consumers and the entire

facility costs and

2. extend EPAVE with PowerIndex that allows us to predict the energy con-

sumption of the same VM on different hardware.
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More specifically, we target energy proportional accounting for each virtual ma-

chine (VM) in a heterogeneous environment. EPAVE provides a full-cost model

that does not account only for the dynamic energy consumption of a given VM,

but also includes the proportional static cost of using a Cloud infrastructure

(comprising air conditionning, servers’ static power consumption, etc.).

Context. Currently the relation between IT infrastructure and facility en-

ergy costs are modeled with the Power Utilization Efficiency (PUE) metric. This

metric is used to help operators on decisions regarding new hardware infrastruc-

ture. For instance, Google measures the PUE per site each three months1 for

each of its data centers. While the PUE is a useful metric for reflecting the

overall efficiency of a data center, its applicability for the day-to-day operation

of the data center is limited because it does not grasp the variability of the

actual power consumption of the data center.

In a data center, the instant power consumption can be divided into static

and dynamic parts. The static parts are the base costs of running the data center

when being idle; the dynamic costs depend on the current usage. In an ideal

case, the overall power consumption would be proportional to the utilization

of the hardware (power proportionality). However, having non-negligible static

parts, power proportionality is not yet achievable [6], [7]. Nonetheless, we can

get closer to power proportionality by accrediting the static power parts to

each application, depending on the time and the resources used. Since time

plays a major role, we will focus on energy instead of power consumption (an

instant measure). Hence, we talk about energy proportionality rather than

power proportionality.

Challenges. Dynamic power consumption mainly depends on the resources

which are used: computing, storage, networking resources. In the case of virtual

environments, the hardware resources may be shared among different users and

different virtual machines, if they run on the same host. In this context, a power-

1http://www.google.com/about/data centers/efficiency/internal/
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aware model needs to estimate the relative utilization per user to attribute the

dynamic costs of the physical resources to a particular VM.

The static costs have to be considered at different levels:

• at the data center level: power delivery components, cooling systems,

other miscellaneous components such as data center lighting. This part is

captured by the PUE.

• at the resource level: idle power consumption of servers and routers.

The main challenge we tackle in this paper is to divide the static costs

among the users in a fair and predictable way, considering the utilization of the

resources per VM. We have shown in [8] that a simplistic model is not enough for

distributing the costs among a number of VMs as the static costs attributed to

each VM would be highly dependent on the utilization of the same server (i.e.

number of VMs). To ensure fairness among the users and predictability, our

energy proportional accounting model is independ from the Cloud provider’s

VM management (not in control of the users): a given VM size executing a

given application will get the same static cost from the EPAVE model even if

executed at different dates on different servers.

As for dynamic costs, they can vary significantly from one server architecture

to a different one. Performance and energy consumption heterogeneity among

the servers is inherent to Cloud data centers. Typically, 3 to 5 server generations,

with a few hardware configurations per generation, are hosted at the same time

on a data center [9]; and this hardware heterogeneity leads to an important

variability in terms of server performance [10]. In this paper, we extend EPAVE

with PowerIndex, as we believe that a fair cost attribution should not only hold

for a homogeneous setup, but our vision is also to be able to predict the costs

of the VM when running on different hardware.

Contribution.

In this paper, we cover the accounting of dynamic and static costs to VMs

in heterogeneous data centers and introduce the following two tools:
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• EPAVE, a power-aware attribution model for VMs taking into account

the overall consumption of the data center hosting them

• PowerIndex, a profiling and estimation model for accounting the costs (in

terms of utilization and execution time) of a VM when running on different

nodes

Organization. This paper is organized as follows. Section 2 presents the

related work. The EPAVE model for energy attribution is detailed in Section 3.

Energy mapping with PowerIndex is described and evaluated in Section 4. We

discuss the properties of both models in Section 5 and provide an outlook on

the usage of EPAVE and PowerIndex in Section 6. Finally, Section 7 concludes

the paper.

2. Related work

Benefiting from economies of scale, Cloud infrastructures can effectively

manage their resources and offer large storage and computing capacities while

minimizing the costs for users. However, the rapid expansion of these infrastruc-

tures led to an alarming and uncontrolled increase of their power consumption.

For instance, in 2010, the services offered by Google were based on 900,000

servers that consumed an average of 260 million Watts [11].

Moving from instrumenting to modeling the energy consumption is a tough

but necessary task in order to improve the energy efficiency of distributed in-

frastructures. It is indeed essential to understand how the energy is consumed

to be able to design energy-efficient policies.

2.1. Resource-based models

Most of the models found in literature split the consumption of an entire

server into the consumption of each component of the server [3] or consider that

consumption is proportional to the load [12]. Several studies are focused on

modeling the energy consumption of particular components: CPU [13] influ-

enced by the frequency, voltage and workload, network card [14] with costs per
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packet and per byte, and disk [15] driven by the rotational speed and the read

and write operations.

However, we have shown in [16] the limits of these approaches for modeling

the energy consumption of entire servers under various workloads. Concerning

the experimental approaches found in literature, they mainly consider just one

type of machine, or even only one type of application [16]. So, it is necessary

to design unified models closer to reality. Concerning the consumption of entire

infrastructures, the authors of [17] show that computing resources represent the

biggest part in Clouds consumption. An alternative approach [18] shows that,

depending on the studied scenario, the energy costs of the network infrastructure

that links the user to the computing resources can be bigger than the energy

costs of the servers.

As shown in [16], simple models are not convincing in the general case and

especially for multicore architectures – which tend to become widespread. It

is therefore necessary to depend on benchmarks for the development and vali-

dation of reliable energy cost models for these heterogeneous resources. These

benchmarks need to propose several kinds of workloads: computation-intensive,

disk-intensive, etc.

2.2. VM models

Virtualization adds another layer of complexity and software power mod-

els are needed because it is not possible to attach a power meter to a vir-

tual machine [19]. In general, VMs can be monitored as black-box systems

for coarse-grained scheduling decisions, e.g., as done with Joulemeter [4]. If

we want to be able to do fine-grained scheduling decisions—e.g., with hetero-

geneous hardware—we need to be able to consider finer-grained estimation at

sub-system level and might even need to step inside the VM.

Bertran et al. [20] propose an approach that uses a sampling phase to gather

data related to performance-monitoring counters (PMCs) and compute energy

models from these samples. With the gathered energy models, it is possible to

predict the power consumption of a process, and therefore apply it to estimate
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the power consumption of the entire VM. This is similar to the work presented

by BitWatts [5], which is further capable of estimating the power consumption

of a process running within a VM and supports CPU-specific features such as

hyperthreading and turbo frequencies.

Another example is given by Bohra et al. in [3], where the authors propose

a tool named VMeter that estimates the consumption of all active VMs on a

system. A linear model is used to compute the VMs’ power consumption with

the help of available statistics (processor utilization and I/O accesses) from

each physical node. The total power consumption is subsequently computed by

summing the VMs’ consumption with the power consumed by the infrastructure.

2.3. Idle power consumption

The idle power concerns the power consumed by an infrastructure which is

powered on but not running any task. Typically, for a server, it consists of the

energy consumed while idle, but fully powered on. This consumption depends

on the hardware of the server, but it can also depend on the operating system

installed on it as it is responsible for the background tasks running continuously

on the server (like monitoring tasks). This power is usually not taken into

account by VM-based models described in the previous section. For an entire

data center, the idle power consumption includes all the power which does not

depend on the workload.

Often only the power consumption of IT equipment is considered although air

conditioning can consume 33% of the global power needed by a data center [21].

This cost can be reduced by free cooling techniques exploiting outside air [22].

The power consumption of such cooling techniques is tightly correlated to the

weather, and thus vary over time even if the workload does not vary. Therefore,

their power consumption, which is considered to belong to the static idle part,

can vary over time.

Most of the studies do not use the same definition for the energy costs of the

computing infrastructure: for instance, the network used to link the computing

resources is not taken into account most of the time. In the same way, as sur-
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veyed in [2] some works take into account only the dynamic consumption of the

machines and not their static consumption (corresponding to the consumption

when machines are powered on but idle) which can yet represent more than

half of the total power consumption. In our context, we will consider all the

equipment operated by the Cloud provider: the data centers (including cooling

infrastructures) and the network links inside and between the data centers.

In addition to these considerations, simply measuring the power consumption

of computing resources may pose problems of security and confidentiality as

identified in [23]. Indeed, it is shown that by simply having access to the energy

consumption of a cloud server, one can guess with high probability what type

of application, among various possible, was running in its virtual machines.

It is therefore necessary to consider an instrumentation of these platforms that

guarantees the privacy of the user, of the provider regarding its machines, and of

the applications. This is why our model do not rely only on direct measurements

on the physical machines: because it would reveal too much information. For

instance, it could reveal the server’s position in the rack as it influences the

power consumption due to the air conditionning situation [16].

2.4. Heterogeneous data centers

Existing research often assumes that data centers consist of homogeneous

hardware. However, this is not realistic in real-world data centers, as shown

in [24]. We often find different generations of the same hardware in a data

center, or even different types of hardware combined. This tendence led to

the concept of warehouse scale computers (WSCs) [25] composed of diverse

microarchitectures and configurations.

Running workloads on heterogeneous hardware can impact the energy effi-

ciency of the entire setup. In previous work [26] we presented our study on the

impact of energy patterns on scheduling decisions in heterogeneous data cen-

ters. We considered a very simple scenario where we placed ten workloads on

3 heterogeneous machines. Half of the workloads were writes of 30 seconds to

the disk and the other half were CPU/memory-intense factorial computations
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of a large number. We compared the total energy consumption of the different

scheduling scenarios. Only by placing the workload on a non-appropriate server

increased the energy consumption at least by 12 % and up to 14 times more in

the worst case, in comparison to the optimal placement, as shown in Figure 1.

In order to place a workload correctly on the best-fitting available resource (i.e.,

physical machine), we need to know the power consumption of the machines for

specific types of workloads.

setup1 setup2 setup30
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100
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200

250
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gy
 (k

J)

1.12x

14x

Figure 1: Different placement configurations in heterogeneous data centers have a large impact

on energy consumption [26].

Paragon is a scheduler aware of heterogeneity and interference [9] [27]. It

decides for a specific workload on which server configuration it will perform best

(heterogeneity). It also considers how much interference it will cause to other

applications and how much interference it can tolerate regarding its own shared

resources. This approach mainly focusses on performance and preserving the

QoS rather than power or energy efficiency.

Another existing approach focusses more on the power aspect: It defines

an intelligent workload allocation method that efficiently maps workloads to

the best matching platform [28]. The authors show that their approach signifi-
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cantly reduces the overall power consumption of the data center (12-22% power

saving over random allocation). In their evaluation, they measure power and

performance across each platform and then extrapolate the measured data using

a data center allocation simulator.

3. Energy attribution with EPAVE

The key idea of EPAVE is to attribute the data center’s static and dynamic

costs (C) to each VM, which can be then used as a basis for several use cases

as described later. As costs we consider the total consumption (Ctotal) during

the execution of a VM in the context of a data center.

Ctotal = Cstatic + Cdynamic

The static costs comprise the idle consumption of each node and the idle con-

sumption of the routers as well as induced consumption of the entire data center

(routers, air conditioning, power distribution units, etc.). To cover the entire

data center the Power Usage Effectiveness (PUE) has become the industry-

preferred metric for measuring infrastructure energy efficiency for data cen-

ters [29, 30]. It is defined as the ratio of total facilities energy to IT equipment

energy:

PUE =
Total Facility Energy

IT Equipment Energy

Therefore, we will use the PUE to account for the consumption part exterior

to the IT equipment itself which is already taken into account. As outlined in

the data center industry survey conducted by Uptime Institute Network (a user

group of large data center owners and operators) [30], the adoption of PUE is

rising worldwide, and its measurement and improvement are widely targeted by

the 1,000 surveyed data center operators and IT practitioners. That is why we

believe that the PUE metric is easily accessible for Cloud providers for their data

centers. From the PUE definition, for 1 Watt consumed by the IT equipment,

the entire data center infrastructure consumes in fact 1×PUE Watts. Therefore,
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the static costs of a data center have to be multiplied by the data center’s PUE:

Cstatic =

(
#nodes∑

Cidlenode
+

#routers∑
Cidlerouter

)
· PUE

The dynamic costs include the dynamic energy consumption part of the

servers, routers and storage devices, which we can formulate as a weighted sum

of the individual costs. The weights represent the resource usage of the current

workloads, which can be between 0 and 1, where 1 means maximum utilization

of the given resource and 0 means no utilization.

Cdynamic = α · Ccomp + β · CIO + γ · Cnet

To attribute the overall costs to a single VM, we first need to distribute the

idle costs in a fair and transparent manner. In many cases the idle costs (or

idle power consumption) are only divided by the number of VMs [3]. However,

for energy-proportional accounting it is necessary to consider the size of a VM,

and in particular, its number of vCPU as CPU is the most consuming device

in a server [2]. Inspired by the VM types chosen by Amazon we will differen-

tiate VMs by the number of their assigned virtual CPUs (often proportional

to their assigned memory volume). In addition we want to take into account

heterogeneous data centers.

The dynamic costs are determined when the VM finishes by using the real

resource utilization of the physical resources. The total costs are limited to the

static costs as the lower bound, and on the maximum consumption as the upper

bound. Reporting these bounds to the user makes the final VM’s costs pre-

dictable (bounded) and keeps the spirit of the pay-as-you-go manner although

the dynamic part of the costs is in most cases smaller than the static parts

(reflecting the reality of the power consumption of typical data center servers).

To sum up, the maximum costs of a VM grow with its size as shown by an

illustrative example in Figure 2. In this experiment we were inspired by the

Amazon VM sizes. The static costs, Cstatic(VM), depend on the number of

cores reserved by the VM, and the dynamic costs Cdynamic(VM) on the actual
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usage (in our case performed by the stress command). In more details, we model

the static and dynamic costs per VM as described in the following paragraphs.

Small Medium Large XLarge 2XLarge

C
o
s
ts

 p
e
r 

V
M

Static costs

Dynamic costs

Figure 2: Example of maximum costs distribution among different types of VM

3.1. Static costs

For the static costs, we could define them depending of the VM size along all

its resources: CPU, memory and disk.Yet, it would require a complex formula

to weight the dimensions in order to reflect their impact on power consump-

tion, and this weighting would depend on the hardware capacities of a given

server. Such a formula would be difficult to instanciate in practice [31]. This

is why we adopted a simple model similar to the one currently in application

at Amazon [32]: the costs are proportionnal to the number of virtual CPUs

assigned to each VM. As we want these costs to be static and independent from

the hypervisor, we use a weighted averaged value of the idle power consumption

of all the servers. This model is similar to the one currently in application at

Amazon [32]: the costs are proportional to the number of virtual CPUs (vCPU)

assigned to the VM:

Cstatic(VM) =
#vCPU(VM)∑#nodes

#CPU(node)
· Cstatic
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3.2. Dynamic costs

The dynamic costs are hardware and application dependent and require mon-

itoring. According to [33] the acceptance of dynamic models is increased if the

costs are limited by an upper bound. Indeed, a VM cannot exceed the physical

resources allocated to it (CPU, RAM and disk mainly), so the upper bound

can be determined for each type of VM over each type of physical node. The

actual dynamic costs per VM will be in the range of 0 (idle) and the maximum

resource usage. The challenge is to attribute the maximum dynamic costs to

a VM. In general, the dynamic costs of a VM are the measured or estimated

energy consumption (E), which is the integral of the power consumption (P)

measured/estimated per time unit (T).

Cdynamic(VM) = E(VM) =

∫ T

0

P (VM) dt

In general, a VM cannot consume more than the maximum dynamic costs

of the entire server (Cdynamic). If the VM is co-located with other VMs it is

necessary to split up the dynamic costs. Here, we use a very simple model to

define an approximate upper bound for the costs of a VM, by using the number

of cores the VM got assigned as a basis. Note that the focus on the number

of vCPUs (ignoring the disk and network) is chosen because the number of

vCPUs usually differentiates VM sizes offered by Cloud providers. Additionally,

the CPU is one of the highest power consumers on a node and CPU-intensive

applications are the most consuming ones [16].

0 ≤ Cdynamic(VM) ≤ #vCPU(VM)

#CPU(node)
· Cdynamic(node)

An alternative would be to use a software power estimation model that

is capable of attributing the dynamic costs to a VM, such as VMeter [3], or

Bitwatts [5].

3.3. Use Cases

In this section, we showcase how to calculate Cstatic(VM) and Cdynamic(VM)

based on real-world experiments. Based on the real data we can use EPAVE
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to estimate the costs of different use cases. For the experiments, we rely on se-

lected nodes from the Grid’5000 cluster to which powermeters are attached [34].

Specifically, we performed the experiments on two kinds of nodes, Taurus and

Sagittaire, whose characteristics are specified in Table 1. We further consider

different sizes of VMs, which are inspired by the Amazon instances and shown

in Table 2.

Table 1: Hardware characteristics of the selected systems

Hardware Taurus: Dell PowerEdge R720 Sagittaire: Sun Fire V20z

Model Intel Xeon e5-2630 (2.3GHz) AMD Opteron 250 (2.4GHz)

Cores/Threads 2×6/12 2/2

RAM (GB) 32 2

TDP (W) 2×95 215

# Servers 16 79

3.3.1. Homogeneous setup

Figure 3 presents the costs Ctotal(VM) for a homogeneous cluster with Tau-

rus servers with 12 cores each. Their average idle power consumption is 95W per

server. In a real setup the calculations need to include network costs and PUE,

hence we need to add the costs for a number of switches (approx. 350W each)

and multiply by the PUE (e.g., 1.22). In this specific example, we demonstrate

the cost models based on the idle power of the servers as a matter of simpli-

fication for the calculations. The static costs per core are easy to compute:

95/12 = 7.92. The dynamic part represents the maximal achievable dynamic

power consumption when running the stress command. Together these costs

represent the upper bound of costs per VM. We can see that the static costs

increase proportional to the number of cores assigned to the VM and two VMs

having together 12 cores will reach the same static costs as the machine itself.

Hence, in a homogeneous setup EPAVE would fall back to a trivial model, where

only the upper bound of costs Ctotal(VM) have to be reported.
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Table 2: VM types

Type Medium Large XLarge 2XLarge

Number of cores 1 2 4 8

1 vCPU 2 vCPU 4 vCPU 8 vCPU Server
 (12 cores)
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Figure 3: Example of maximum cost distribution among different types of VM for a homoge-

neous cluster

3.3.2. Heterogeneous setup

If we switch to a heterogeneous use case (as shown in Figure 4) and run again

the stress command, the static costs are not proportional anymore to the number

of virtual cores as the idle power of the machines might be unbalanced. We

showcase the unbalanced scenario with experiments performed on two different

kinds of servers, whose characteristics are summarized in Table 1. The two

clusters are heterogeneous in terms of server architecture, but also in terms of

number of nodes, and number of cores per node. The idle power consumption

represents the average power consumption of a server over the entire cluster.

In this use case we can calculate the static costs for a one-vCPU VM as

follows:

Cstatic(VM) =
1∑#nodes

#CPU
·
#nodes∑

Cidlenode

=
16 · 95 + 79 · 215

16 · 12 + 79 · 2
= 52.87

These costs are more than 6 times higher than in the homogeneous case
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with only Taurus nodes, but they represent half the costs of a cluster with only

Sagittaire nodes. Therefore, heterogeneity among nodes leads to average static

costs per virtual CPU which can be far from the costs per cluster. However, this

is a healthy property of EPAVE: in order to cover the real energy costs with this

accounting, the Cloud provider has to favor the utilization of the most energy-

efficient servers. To provide incentives for clients to use the most energy-efficient

setup, we introduce PowerIndex later.

1 vCPU 2 vCPU 4 vCPU 8 vCPU Taurus
 (12 cores)

Sagittaire
 (2 cores)
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Figure 4: Example of maximum cost distribution among different types of VM for a hetero-

geneous cluster with unbalanced idle power for the server architectures

3.3.3. Underutilization of reserved resources

To show the applicability of our models, we performed experiments using

real-world applications on a Taurus node. We installed Hadoop Yarn [35] on

each of the nodes and ran sort and wordcount from the HiBench [36] benchmark

suite. We run the workloads within a VM to be able to limit the number of

cores they use in total. We started the VM once with only a single core, and

once with all cores available. This experiment is the basis for three use cases,

where we want to showcase the effects of underutilization of reservations. Note

that the dynamic costs are always measured in real experiments and the static

costs are predetermined based on the idle power consumption.

The workloads have different power consumption patterns as shown by the
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example of the wordcount workload executed on all available cores in Figure 5.

The idle power of the Taurus nodes is 95W. We also know the maximum total

power of 220W, and 125W as basis for Cdynamic for all reserved cores without

idle power. These values can be predetermined and have to be collected only

once per architecture. The actual dynamic costs of the workload vary between 0

and 100W over a runtime of 200 seconds. This shows the necessity of considering

energy rather than power consumption, as we need to provide models that reflect

the actual usage of the VM over time.
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Figure 5: Power profile of the wordcount workload using all available cores

If we consider the pay-as-you-go model as a basis, a VM would cost according

to its size (i.e., resources reserved) and according to the time used. The same

idea is followed by EPAVE, but we consider both static and dynamic energy as

a basis of costs. As an example, for the single core experiment, we calculate

Ctotal(VM) according to our model and fill it with values from our experiments.

Ctotal(VM) = Cidle ∗ ratiovCores ∗ runtime+ Cdynamic

As shown in Figure 6 the static costs for using only a single core are smaller.

However, because the single core is used for a longer time span, the dynamic

costs are much higher leading to higher total costs than if all cores are used and

reserved.

Let us consider a use case where the workload is not optimized for paral-
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Figure 6: Costs of two parallel workloads with a reservation of one core and twelve cores

lelization, but still the reservation covers all of the cores. If a workload only

uses a single core out of 12, the dynamic costs will not change in comparison to

the former use case, however, the static costs are distributed among the number

of cores served. Taking the dynamic costs of the former experiment as a basis,

this would mean a significant increase in costs for the VM (see Figure 7). In an

ideal case a user is encouraged to reserve resources according to the resources

required and parallelization capabilities of the workload.
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Figure 7: Costs of two workloads with underutilization of reserved cores

The runtimes of the former experiments are rather low and we assumed that
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the reservation for a VM ends with the end of the workload. However, in reality

most VMs are reserved for a given time span. For instance, if we consider the

default minimum reservation of VMs of around 20 minutes the cost distribution

for the same workloads changes and the results are depicted in Figure 8. Hence,

if we reserve all cores for 20 minutes but only use them for the first few minutes

the static costs exceed the dynamic costs and the single core reservation is much

more advantageous.

With EPAVE it is possible for a user to identify such discrepancies and

decide for what kind of reservation is useful. Another possibility is to use tools

such as PowerIndex as introduced in Section 4 to provide insights on what costs

should be expected when running in a heterogeneous setup.
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Figure 8: Costs of two workloads with predetermined reservation time of 20 minutes per VM

4. Energy mapping with PowerIndex

With EPAVE we are able to predict the costs of a VM in a coarse grained

manner on a machine it should run on. For the final decision on where the

user should run the VM, we introduce PowerIndex. PowerIndex is a tool to

map different workload scenarios in a heterogeneous environment. Given a

specific workload, PowerIndex provides an estimation of the potential energy

consumption for execution on different types of machines. Usually, this would
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require to profile a given application on all available types of machines. This

is obviously not efficient and not practical. The goal of PowerIndex is to be

predictable and lightweight, only requiring minimal profiling effort. PowerIndex

is a tool that is based on offline and online profiling, especially applicable for

repetitive applications. The offline profiling is performed only once per machine

type and allows us to build a reference power profile and mapping between a

reference machine and all other machines. In the online phase a new workload is

only profiled on the reference machine and the power and utilization mappings

are used for predicting the VM’s approximate costs on all other machines to

perform proper scheduling decisions. These characteristics of PowerIndex makes

it a useful tool for Cloud users in order to rightly dimension their VMs for a

given workload.

4.1. Offline Profiling

Our offline profiling approach consists of two main components: the Power

Table and the Utilization Mapping.

4.1.1. Power table

The Power Table stores information about the offline power consumption

for each machine type (Machines M = m1 , m2, ..., mm ). To set up the Power

Table, we execute different microbenchmarks consisting of CPU and disk-intense

workloads. The CPU-intense microbenchmark comprises stress and cpulimit.

We stress the CPU with different intervals of CPU load from 5 to 100%, in

steps of 5 %. For the execution of the workloads we want to cover both the

user-space and the kernel-space utilization of the CPU and therefore cover %usr

and %sys metrics. As a result we have a table of power consumption for %usr

utilization intervals and for %sys intervals. The Power Table can be described

formally for the profiling of a machine m1:

Utilization U = {Uusr, Usys}

Interval I = {(x,y),..}; ∀x, y ∈ N;x, y ∈ [0, 100]

Power P = Watt ⊆ N
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Under the condition ∀Ui ∈ U : Ui ⊆ I

Define Power Table PTm1 (for sys and usr) for a machine m1:

∀Ui ∈ U ;∀ui ∈ Ui; f : Ui ×M → P f(ui,m1) = pi,m1

Given a filled power table, function f maps the power consumption to a

utilization interval, e.g., f(ui,m1) = pi,m1 = f((0, 20),m1) = 10W .

4.1.2. Utilization Mapping Table

When a workload runs on one machine, it will most likely not have the

same utilization on another machine. Therefore, we need a basic understanding

of how utilization um1 translates to um2. Out of simplicity we provide the

mapping between a reference machine m1 and all other machines and define the

Utilization Mapping Table.

We define a function utsys to map the system utilization from m1 to the

other machines. Given the utilization on the reference machine for a specific

workload, we want to know what utilization to expect on the other machines.

Utilization U ⊆ N, ∀ui ∈ U, ui ∈ [0, 100]

∀ui ∈ U , ∀mi ∈M

utsys : U → U

utsys(ui,m1,mi) = ui,mi

The corresponding function for usr can be defined analogously.

4.2. Online Monitoring

The major part of our estimation is done in the offline profiling, which has

to be only done once per machine type. The online monitoring is performed

when a new workload arrives (that has not been logged already). PowerIndex

requires that the new workload is run once for a configurable time on the refer-

ence machine and then uses the data from the offline tables to map the energy

consumption on all other machines. The profiling time should be adapted to the

expected workload. If the workload consists of repetitive phases, the profiling

time should cover one or two phases.
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To avoid duplicate profiling of workloads, we identify meta tags for each

workflow and store it in a backend database. We chose this approach because

we want to limit the profiling time of a workflow to as little as possible. This

way, the system can learn any new workload and does not require any profiling

in case of known workload.

4.3. Toy Example

To show the interaction between the offline and online profiling we consider a

simple example. In a real data center, the workloads could be virtual machines

or containers instead of simple workloads and the intervals would be chosen in

a more fine-grained manner. Whenever a new unknown workload (w1) arrives,

we need to profile it on the reference machine and categorize it to obtain power

values for each machine. If the workload w1 is already known, we can just look

up the required values in the database. PowerIndex holds the Utilization and

Power Tables and we use them to get the final power consumption. Note that

for this example we use a simplified set of Power and Utilization tables than

described above due to space reasons. The utilization mapping assumes that

machine m2 has twice as many cores as machine m1.

Table 3: Power Table for %usr and %sys utilization for machine m1 and machine m2

%usr Power m1 (W) Power m2 (W) %sys Power m1 (W) Power m2 (W)

0 0 0 0 0 0

25 7.5 10 2 1 2

50 15 20 4 2 4

75 22.5 30 6 3 6

100 30 40 8 4 8

10 5 10

With the given Power Tables and Utilization Mapping Tables we can start

to estimate a simple workload, as described below.

Workloads W

∀wi ∈W : ∃!usys ∈ Usys : psys = f(usys,m1)

∀wi ∈W : ∃!uusr ∈ Uusr : pusr = f(uusr,m1)
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Table 4: Utilization Mapping Table from reference machine m1 to machine m2 for %usr and

%sys

%sys m1 %sys m2 %usr m1 %usr m2

0 0 0 0

2 1 25 12.5

4 2 50 25

6 3 75 37.5

8 4 100 50

10 5

pwi,mi ∈ P

pidle ∈ P

pwi,m1 = pidle + psys + pusr

In this toy example, we assume a very short workload and that we monitor

it entirely. At each point in execution, the power required for this workload on

machine m1 is the sum of the power required for the sys utilization, for the usr

utilization and the idle power. We assume that the reference machine has an

idle power of 29W. The online profiling of workload w1 on the reference machine

m1 results in the CPU utilization values as shown in Table 5.

Table 5: Utilization trace for the simple workload w1 on machine m1

Time (s) %usr %sys

1 50 6

2 25 6

3 25 6

4 100 0

5 100 0

If we lookup the power for the utilization measured in Table 5 in the Power

Tables of the machine m1, we can easily compute the energy by summing the

power values per second:

Em1 = (29+15+3)+(29+7.5+3)+(29+7.5+3)+(29+30+0)+(29+30+0) =

244J

The execution of workload w1 on machine m1 would thus cost, in terms of
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energy, 244 Joules. To estimate the power on other machines, we need to map

the measured utilization on m1 to the utilization of the other machines using

the Utilization Mapping Tables. Once we obtained the mapped utilization for

machine mi, we can get the power value from mi’s Power Table.

∀wi ∈W : ∃!usys ∈ Usys: measured util. on m1

usys,mi = ut(usys,mi): mapped util. on mi

psys = f(usys,mi)

∀wi ∈W : ∃!uusr ∈ Uusr: measured util. on m1

uusr,mi = ut(uusr,mi): mapped util. on mi

pusr = f(uusr,mi)

pwi,mi = pidle + psys + pusr

This constructs the utilization trace as shown in Table 6.

Table 6: Expected utilization trace for the simple workload w1 on machine m2

Time (s) %usr %sys

1 25 3

2 12.5 3

3 12.5 3

4 50 0

5 50 0

We can then lookup the power consumption for the mapped utilization values

in the Power Tables for machine m2 (Table 3). If we assume an idle power of

50W for machine m2, we get the following energy consumption:

Em2 = (50+10+3)+(50+5+3)+(50+5+3)+(50+20+0)+(50+20+0) = 319J

We expect workload w1 to cost 319 Joule on machine m2. This toy example

assumes that the execution time for workload w1 is the same on machine m1

and machine m2. Otherwise, the execution time would be mapped similar to

the utilization mapping presented in this toy example.
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4.3.1. Real-World Use Case

In this subsection we consider a well known benchmark PARSEC on real

hardware. We use again the Taurus and Sagittaire machines as defined in Ta-

ble 1. These two types of machines have considerable differences in hardware

(number of cores, CPU type, etc.) and therefore are very good examples for

our experiments. We assume that the offline profiling, which is done once per

architecture, has already been executed. Thus, the Power Tables and the Uti-

lization Mapping Table are already available. We execute each benchmark for

20 s on the reference machine Sagittaire, and then look up the results from the

offline profiling. We compare against the measured energy consumption with

the power meters attached to the machines.
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Figure 9: Energy estimation of the parsec workloads on the reference machine Sagittaire.

Figure 9 shows the energy estimation for the Parsec benchmarks on the

reference machine. We observe errors of less than 4%.

Figure 10 depicts the energy estimation on the Taurus machine. In this case

we need to consult the Utilization Mapping Table and the Power Table. The

energy estimation for the Taurus machine is based only on the values measured

on the Sagittaire machine. We encounter an underestimation with a relative
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Figure 10: Energy estimation of the parsec workloads on the Taurus machine.

error that ranges between -4% in the best case and -10% in the worst case.

The errors we encounter are acceptable in our use case. Errors up to 10% are

common in the related work of power and energy estimation [5]. In our case

we can even accept errors that are slightly higher since we do not rely on high

accuracy.

5. Discussion

EPAVE keeps the philosophy of the Cloud: the pay-as-you-go model but

based on energy consumption. The costs of a VM indeed depend on the physical

resources reserved for it (static costs) and on the utilization made of these

resources (dynamic costs). Moreover, the energy costs of a VM are predictable

for the static part, and bounded (by the maximum costs as shown in Figures 3

and 4) and assessable through PowerIndex on heterogeneous nodes. Thus the

user knows the maximal costs of the VM, and is able to estimate the real costs if

the behavior of the running application and their energy consumption is known.

With PowerIndex we extend the estimation of the dynamic costs on different

machines by offering limited profiling on a reference machine.
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However, EPAVE and PowerIndex together are not designed to account for

the real cost of a given VM as it could be measured by external wattmeters

during the entire lifetime of this VM. In this case, the cost of a VM would be

influenced by cloud provider operations like VM migration or allocation of other

VMs on the same host. This does not seem to be a desirable feature as it would

reveal private information from the provider point of view. This is why EPAVE

and PowerIndex are not based on this purely measurement technique and also

why their goal is not to provide real measured costs but predictable, bounded,

energy-proportional costs of a VM. These reflect the energy costs of an average

VM of a given size hosted on a fixed Cloud platform, similarly to what is done

for pricing models [32].

EPAVE provides a complete view of the energy costs related to the hosting

of virtual machines. Indeed, it does not only take into account server-related

costs, but also the costs of the air conditioning, the networking devices, the

power supplies, etc. That is why EPAVE can help the Cloud provider to easily

and fairly distribute the energy consumption of its entire infrastructure over the

customers.

The computation of the energy costs determined by EPAVE relies, for the

static side, on external power measurements (PUE, idle power of the servers),

and for the dynamic side, on wattmeters or software-based tools. If these mea-

sured information are stored over time, the EPAVE energy costs can be re-

computed later, thus becoming verifiable and auditable. PowerIndex only re-

quires offline profiling once for each type of machine, the online profiling relies

on wattmeters or software-based estimation. Also values for PowerIndex can be

recomputed after the short profiling phase.

EPAVE encourages users to dimension adequately their VMs. PowerIndex

additionally helps to motivate the customers to go for the most efficient reserva-

tion in terms of energy. With the Utilization Mapping the case of underutilizing

the VMs can be avoided. Indeed, if a user is asking for a 4 vCPUs VM, but

uses only 2 vCPUs, the two unused vCPUs will still be taken into account into

the static costs – although their dynamic costs will be zero, and even if the
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Cloud provider is applying over-commitment of resources. Indeed, the dynamic

costs are directly measured from the hardware, so all energy saving mechanisms

employed by the user (e.g., energy-aware software) will be directly translated

into a reduction of the dynamic costs of the VM. We assume here that the en-

ergy costs of a VM have somehow repercussions for the user (like a bonus-malus

system, or monetary costs for VMs taking into account the energy).

In the case of heterogeneous servers, EPAVE in combination with Pow-

erIndex encourage the Cloud provider to use the most energy-efficient nodes.

For instance, for the case described in Figure 4 with the Taurus cluster and

the old Sagittaire cluster, a VM with 2 vCPUs will have static costs of 105.74

Watts. So, its static costs are bigger than the idle power consumption of a

Taurus server, which is still able to host 5 more of such VMs. However, this

VM’s static costs are nearly twice smaller than the idle power consumption of

a Sagittaire server which cannot host any additional VM.

6. Outlook

This section gives a non-exhaustive outlook on the application of EPAVE

and PowerIndex, and more generically of the utilization of energy-aware cost

models.

6.1. Pricing models

EPAVE can serve as the basis for energy-aware pricing models. The static

part is known at the beginning as it is defined by the VM type. For the dynamic

part, the minimal bound is zero, and the maximal bound (for maximal energy

consumption) can be provided to the user before the purchase. Reporting these

bounds to the user makes costs per VM predictable (bounded) and keeps the

spirit of the pay-as-you-go model because the dynamic part of the costs is in

most cases smaller than the static parts (reflecting the reality of the power

consumption of typical data center servers).
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6.2. SLA with renewable energy sources

Service Level Agreements (SLAs) provide quantified guarantees to the users

concerning quality of service on the reserved VMs. In [37], the authors define

green SLA: an explicit SLA for the percentage of renewable energy used to run

the clients’ workloads. In [38], the terms of green SLAs include also the energy

costs of networking devices and virtual links between VMs. The green SLA is

negotiated between the IaaS provider and each client depending on its needs.

Such an SLA requires to have quantifiable green cloud services [37]. That is

to say, the provider has to know the energy consumption of each VM and the

electricity mix employed by the data centers. EPAVE can be used here to

determine the energy budget spent by the VMs of a given user, and thus, to

deduce the amount of green energy required for the Cloud provider in order to

fulfill the SLA conditions for this user.

6.3. User-oriented utilization

On the user side, EPAVE can be used as an energy cost metric in order to

evaluate the energy-efficiency of a given application running on given VM con-

figuration. This metric can be used in combination with the classical metrics

(duration, performance, QoS, etc.). By extrapolation, EPAVE can serve as a ba-

sis for a cost-benefit analysis including energy costs. Similarly, PowerIndex can

be used for comparing different VM configurations for a given application, and

thus determine the desirable trade-off between QoS and energy consumption.

Combined with energy-aware pricing models on the Cloud provider side,

EPAVE and PowerIndex can be an energy-aware incentive motivation. Energy-

efficient users can be rewarded on the basis of their energy cost if they actively

act towards its reduction. On the contrary, users can have an energy quota for

running their VMs, which can be set by the provider or by the energy-aware

user herself.

The application of EPAVE and PowerIndex described here are in particular

possible because we do not only consider only the dynamic costs, and therefore,

underutilization cases are penalized, as shown in Section 3.3.3. Finally, the
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utilization of EPAVE and PowerIndex simply display the energy costs of VMs

could help raising energy-awareness of users.

6.4. Open points

EPAVE and PowerIndex leave some questions, which will be the subject of

future work. In particular, EPAVE does not account for energy-saving tech-

niques employed by Cloud providers, like switching off idle nodes. Therefore,

it cannot be used to measure the energy efficiency of Cloud facilities. Over-

commitment is a classical technique employed by IaaS providers in order to

decrease resource under-utilization and to maximize profit. EPAVE does not

take this into account. Additionally, the EPAVE cost model presented here

mainly focuses on CPU utilization to attribute both dynamic and static costs.

This limitation might be overcome in future work by: 1) proposing a cost model

based on volume of resources (i.e. depending on the product of required vCPU

and memory instead of only on the vCPU quantity) for the static cost, and 2)

employing a fine-grain monitoring tool such as BitWatts [5] for the dynamic

cost.

PowerIndex relies on profiling parts of an application to make assumptions

on costs on different machines. If the workload is very diverse in terms of power

consumption, the prediction might be inaccurate. However, in combination with

EPAVE the upper bounds of dynamic costs are known and can lower the risk

of misplacement of workloads. This paper presents our first attempt to build a

reliable and intuitive model for energy accounting per VM in a heterogeneous

Cloud infrastructure. We hope this work will start paving the road towards

energy-aware Clouds.

7. Conclusions

In this paper we introduced EPAVE, a model for predictable and transparent

energy cost attribution per user. EPAVE is designed for simple usage, trying to

keep the effort as limited as possible. The static costs comprise the PUE, which
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is already available in many data centers. The remaining static costs only have

to be derived once. The only thing that requires constant monitoring are the

dynamic costs, whereas the maximum dynamic costs can be pre-determined.

In our experiments the actual dynamic costs are measured with a wattmeter

as the nodes were used in a single-user mode. For multi-tenant usage a more

fine-grained monitoring is required, such as provided by BitWatts [5] that ad-

ditionally does not require a wattmeter (except for the model building phase).

Additionnally, BitWatts has been proved to accurately attribute dynamic en-

ergy costs among several VMs hosted on the same host for various kinds of

workloads [5]. As a help to dimension VMs, we also introduce PowerIndex, a

simple profiling tool that allows to display the costs of a workload running on

different types of machines. This tool comprises an offline profiling phase re-

quired only once. The online monitoring phase is done once per new application,

and only performed for a limited amount of time.
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