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A Hamilton-Jacobi-Bellman approach for the
numerical computation of probabilistic state
constrained reachable sets

Mohamed Assellaou and Athena Picarelli

Abstract Aim of this work is to characterise and compute the set of initial condi-
tions for a system of controlled diffusion processes which allow to reach a termi-
nal target satisfying pointwise state constraints with a given probability of success.
Defining a suitable auxiliary optimal control problem, the characterization of this
set is related to the solution of a particular Hamilton-Jacobi-Bellman equation. A
semi-Lagrangian numerical scheme is defined and its convergence to the unique
viscosity solution of the equation is proved. The validity of the proposed approach
is then tested on some numerical examples.

1 Introduction

We consider the control of stochastic differential equations in Rd of the following
form {

dX(s) = b(s,X(s),u(s))ds+σ(s,X(s),u(s))dB(s), ∀s ∈ [t,T ]
X(t) = x

. (1)

Given a fixed time horizon T > 0, we aim to characterize the set of initial states
from which, with an assigned level of probability, it is possible to reach a target set
at time T satisfying some state constraints along the whole interval [t,T ].

More precisely, let C and K be two non-empty subsets of Rd representing re-
spectively the target set and the set of state constraints and let ρ ∈ [0,1). We define
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the state constrained backward reachable set under probability of success ρ as the
set, hereafter denoted by Ω

ρ

t , of initial points x ∈ Rd for which the probability to
steer the system (1) towards C maintaining the dynamics in the set K is higher than
ρ , i.e.{

x ∈ Rd : ∃u ∈U , P
[
Xu

t,x(θ) ∈K , ∀θ ∈ [t,T ] and Xu
t,x(T ) ∈ C

]
> ρ

}
,

where Xu
t,x(·) represents the strong solution to (1) associated with the control u∈U .

Assumptions on the coefficients in (1) and on the set of controls U will be made
clear in the next section. Such backward reachable sets play an important role in
many applications, as the set Ω

ρ

t can be interpreted as a “safety region” for reach-
ing C remaining in the set K , with confidence ρ . It turns out that the set Ω

ρ

t can
be characterized by means of the so-called level set approach. At the basis of this
approach there is the idea to look at the set of interest, the set Ω

ρ

t in our case, as
the level set of a certain function solution of a suitable partial differential equation
(PDE). Such a characterization of the set is particularly useful in view of its numer-
ical approximation, since it opens the way to the use of a wide choice of numerical
methods designed for PDEs. Originally introduced in [25] to model front propaga-
tion problems, this approach immediately resulted in a very powerful method for
studying backward reachable sets of continuous non-linear dynamical systems un-
der very general conditions. In [16,24] this idea is used to describe the reachable sets
for deterministic problems. The link between stochastic target problems and level
set approach is established in [26]. More recently, the level set approach has been
extended to the case of state-constrained controlled systems [9,10] and probabilistic
reachability problems [6].

In our case, we will show that it is straightforward to see that

Ω
ρ

t =

{
x ∈ Rd : ϑ(t,x)> ρ

}
, (2)

where ϑ is the value function associated to the following optimal control problem:

ϑ(t,x) := sup
u∈U

E
[
1C (Xu

t,x(T ))
∧

min
θ∈[t,T ]

1K (Xu
t,x(θ))

]
, (3)

with the standard notation a∧b :=min(a,b). In particular, equality (2) characterises
the set Ω

ρ

t for t ∈ [0,T ] by means of the function ϑ .
We point out that, in the discrete time setting, a similar approach has been con-

sidered in [1, 2, 22]. In this case, the value function is obtained recursively by solv-
ing the dynamic programming principle. In the present paper, we are interested in
the approximation of the probabilistic backward reachable sets for time-continuous
stochastic processes by PDE techniques. In the non controlled framework, an alter-
native numerical algorithm consist in using Monte Carlo simulations to generate a
set of trajectories starting from a given initial position. The percentage of trajectories
reaching the target without violation of the state constraints gives an approximation
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of the probability of success when starting from this position. On the other hand,
for linear stochastic systems, a bound for the probability of hitting a target can be
obtained by using the enclosing hulls of the probability density function for time
intervals, see [3, 4]. However, it is worth noticing that these approaches are used
to calculate the probabilities of success but do not allow to define the entire set of
points that have the same given probability. In addition, Monte-Carlo based methods
often require a large number of simulations to obtain a good accuracy. We will use
such simualtions in Section 5 as a comparison to validate our approach. In the con-
text of financial mathematics, the problem of characterizing the backward reachable
set with a given probability was first introduced by Föllmer and Leukert [18]. This
problem was also studied and converted into the class of stochastic target problems
by Touzi, Bouchard and Elie in [11]. However in these references the possible pres-
ence of state constraints is not taken into account.
In order to apply a dynamic programming approach and characterize the value func-
tion ϑ as the unique viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equa-
tion we face two main difficulties. First, the discontinuous cost functional given by
the presence of the indicator functions would require to make use of the notion of
discontinuous viscosity solutions. Establish uniqueness results in such a framework
is usually a very hard task, so we propose here to work on a regularized version
of problem (3). Second, the non commutativity between expectation and maximum
operator makes problem (3) not satisfying the natural “Markovian structure” nec-
essary to apply the dynamic programming arguments. We here follow the ideas
in [8, 10, 19, 21] and define an auxiliary optimal control problem in an augmented
state space and derive the HJB equation for this problem recovering the value func-
tion ϑ solution of the original problem at a later stage. The obtained HJB equation
is defined in a domain and completed with mixed Dirichlet and oblique derivative
boundary conditions. Derivative conditions (to be considered in the viscosity sense,
see Definition 1) typically arise dealing with running maxima in the cost functional
(see also [8, 10]), while the Dirichlet condition will be naturally satisfied pointwise
by our value function. We discuss the numerical approximation of the obtained HJB
equation. We introduce a semi-Lagrangian (SL) approximation scheme which in-
corporates the aforementioned boundary conditions and we prove its convergence
to the viscosity solution following the framework in [7]. We recall that SL scheme
for second order HJB equations have been introduced by Menaldi in [23] and then
studied by Camilli and Falcone [13]. We refer to [15] and the references therein
for an overview. Derivative boundary conditions have been added to the scheme
in [10], while the case of mixed Dirichlet-derivative conditions has been recently
studied in [21].

The paper is organised as follows. In Section 2 we present the problem and give
some preliminary results. The regularized problem is introduced in Section 2.2. Sec-
tion 3 is devoted to the development of the dynamic programming arguments and
the HJB characterization. In Section 4 we discuss the numerical aspects and state
the main convergence result. Numerical tests are presented in Section 5
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2 Formulation of the problem and preliminary results

2.1 Problem formulation.

Let {Ω ,Ft ,{Ft}t≥0,P} be a filtered probability space and B(·) a given p-dimensional
Brownian motion. Let T > 0. We denote by U the set of all progressively measur-
able processes valued in U ⊂Rm, U compact set. For any u ∈U , let us consider the
following system of stochastic differencial equations (SDEs) in Rd :{

dX(s) = b(s,X(s),u(s))ds+σ(s,X(s),u(s))dB(s), ∀s ∈ [t,T ]
X(t) = x.

(4)

The following classical assumptions will be considered on the coefficients b and σ :

(H1)σ : [0,T ]×Rd ×U → Rd×p and b : [0,T ]×Rd ×U → Rd are continuous func-
tions and there exist constants L,M > 0 such that

|b(t,x,u)−b(t,y,u)|+ |σ(t,x,u)−σ(t,y,u)| ≤ L(|x− y|),
|b(t,x,u)|+ |σ(t,x,u)| ≤M,

for any t ∈ [0,T ],x,y ∈ Rd and u ∈U .

It is well known that, under assumption (H1), for any u∈U there is a unique strong
solution to (4) [27, p. 42, Thm. 6.3]. We denote by Xu

t,x(·) such a solution.

Let C and K be nonempty open sets in Rd , representing respectively the target
set and the set of state constraints. Let ρ ∈ [0,1) an assigned value of success prob-
ability. We define the backward reachable set under probability of success ρ , as the
set Ω

ρ

t of initial points x ∈ Rd from which it starts a trajectory Xu
t,x(·) such that the

probability to reach the target C at the final instant T satisfying the constraint K in
the interval [t,T ] is grater than ρ , i.e.:

Ω
ρ

t :=
{

x ∈ Rd : ∃u ∈U , P
[
Xu

t,x(θ) ∈K , ∀θ ∈ [t,T ] and Xu
t,x(T ) ∈ C

]
> ρ

}
.

For a given set O ⊆ Rd we will denote by 1O its indicator function, i.e.

1O(x) :=

{
1 if x ∈ O

0 otherwise.

One can easily verify that

1C (Xu
t,x(T ))

∧
min

θ∈[t,T ]
1K (Xu

t,x(θ)) =

{
1 if Xu

t,x(θ) ∈K ∀θ ∈ [t,T ] and Xu
t,x(T ) ∈ C

0 otherwise,
(5)

i.e. the expression on the left hand side is an indicator function for the event
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Xu
t,x(θ) ∈K ∀θ ∈ [t,T ] and Xu

t,x(T ) ∈ C .

It follows that, for any u ∈U , P
[
Xu

t,x(θ) ∈K , ∀θ ∈ [t,T ] and Xu
t,x(T ) ∈ C

]
can

be expressed by

E
[
1C (Xu

t,x(T ))
∧

min
θ∈[t,T ]

1K (Xu
t,x(θ))

]
.

As a consequence, it is possible to describe the set Ω
ρ

t using optimal control tools
just looking at the evolution of the level sets of the following value function:

ϑ(t,x) := sup
u∈U

E
[
1C (Xu

t,x(T ))
∧

min
θ∈[t,T ]

1K (Xu
t,x(θ))

]
. (6)

Proposition 1. Let assumption (H1) be satisfied. Then, for t ∈ [0,T ], we have:

Ω
ρ

t = {x ∈ Rd : ϑ(t,x)> ρ}.

Proof. If x ∈Ω
ρ

t , thanks to equality (5)

E
[
1C (Xu

t,x(T ))
∧

min
θ∈[t,T ]

1K (Xu
t,x(θ))

]
> ρ

for some control u ∈U and it follows ϑ(t,x)> ρ .
Let us now suppose that ϑ(t,x)> ρ . By the definition of the supremum and the fact
that U is a non empty set, one has that, for some control ū ∈U ,

E
[
1C (X ū

t,x(T ))
∧

min
θ∈[t,T ]

1K (X ū
t,x(θ))

]
> ρ

and then, using again (5), x ∈Ω
ρ

t .

Motivated by this result, we are going to focus on the characterization and nu-
merical approximation of the function ϑ . Problem (6) is an optimal control problem
with a discontinuous cost in a “minimum form”. This is not a standard formulation
in optimal control theory for two main reasons: first, the discontinuity of the cost
functional prevents the characterization of (6) as the unique viscosity solution of a
HJB equation, second the loss of Markovian structure in the cost, due to the presence
of the minimum operator inside the expectation, makes the dynamic programming
arguments not directly applicable. We discuss the first issue in the next section.

2.2 Regularized Problem

The discontinuity introduced by the presence of the indicator functions and the con-
sequent necessity of dealing with the notion of discontinuous viscosity solutions
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(see for instance [17, Section VII.4] for their definition) pose nontrivial issues when
attempting to establish uniqueness results for the associated HJB equation. To over-
come this difficulty, from now on we will work with a regularized version of the
cost functional in (6). In particular, observing that the indicator functions 1C and
1K can be written as

1C (z) =

{
1 if d∂C (z)< 0
0 if d∂C (z)≥0

, 1K (z) =

{
1 if d∂K (z)< 0
0 if d∂K (z)≥0

where d∂C and d∂K are respectively the signed distance function to ∂C and ∂K ,
we consider the following regularized functions φ ε

C and φ ε

K (see Figure 1):

φ
ε

C (x) := min(1,max(0,−1
ε

d∂C (x))), φ
ε

K (x) := min(1,max(0,−1
ε

d∂K (x)))

and the optimal control problem

ϑ
ε(t,x) := sup

u∈U
E
[

φ
ε

C (X
u
t,x(T ))

∧
min

θ∈[t,T ]
φ

ε

K (Xu
t,x(θ))

]
. (7)

dO (x)

1

−ε

φ ε

O (x)

Fig. 1 Regularization of the indicator function in the case O = (−∞,0)

Remark 1. Note that the choice of φ ε
. is such that φ ε

. ≤ 1. which implies

ϑ
ε(t,x)> ρ ⇒ ϑ(t,x)> ρ.

Hence if we are able to find a numerical approximation ϑ̃ ε of ϑ ε such that |ϑ̃ ε −
ϑ ε | ≤ η for some η ≥ 0, we will have ϑ̃ ε(t,x)> ρ +η ⇒ ϑ ε(t,x)> ρ ⇒ ϑ(t,x)>
ρ .

This regularization allow us to deal with a continuous cost and also to obtain the
following regularity result for the associated value function:
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Proposition 2. Let assumption (H1) be satisfied and let ε > 0. The value function
ϑ ε is Lipschitz continuous with respect to x and 1

2 -Hölder continuous with respect
to t, i.e. there exists a constant Lε > 0 such that

|ϑ ε(t,x)−ϑ
ε(s,y)| ≤ Lε

(
|x− y|+ |t− s|

1
2 (1+ |x|+ |y|)

)
for any t,s ∈ [0,T ], x,y ∈ Rd .

Proof. Let 0 ≤ t ≤ s ≤ T , x,y ∈ Rd . Thanks to the property of minimum operator
|(a∧b)− (c∧d)| ≤ |a− c|∨ |b−d|, one has:

|ϑ ε(t,x)−ϑ
ε(t,y)| (8)

≤ sup
u∈U

E
[∣∣(φ ε

C (X
u
t,x(T ))

∧
min

θ∈[t,T ]
φ

ε

K (Xu
t,x(θ))

)
−
(
φ

ε

C (X
u
t,y(T ))

∧
min

θ∈[t,T ]
φ

ε

K (Xu
t,y(θ))

)∣∣]
≤ sup

u∈U
E
[∣∣φ ε

C (X
u
t,x(T ))−φ

ε

C (X
u
t,y(T ))

∣∣∨ max
θ∈[t,T ]

∣∣φ ε

K (Xu
t,x(θ))−φ

ε

K (Xu
t,y(θ))

∣∣]
and

|ϑ ε(t,x)−ϑ
ε(s,x)| (9)

≤ sup
u∈U

E
[∣∣φ ε

C (X
u
s,Xu

t,x(s)
(T ))−φ

ε

C (X
u
s,x(T ))

∣∣∨ max
θ∈[t,s]

∣∣φ ε

K (Xu
t,x(θ))−φ

ε

K (x)
∣∣

∨
max

θ∈[s,T ]

∣∣φ ε

K (Xu
s,Xu

t,x(s)
(θ))−φ

ε

K (Xu
s,x(θ))

∣∣].
It can be easily verified that φ ε

C and φ ε

K are Lipschitz continuous functions with
Lipschitz constant 1/ε . Then by (8) and (9) we get

|ϑ ε(t,x)−ϑ
ε(t,y)| ≤ 1

ε
sup
u∈U

E
[

max
θ∈[t,T ]

∣∣Xu
t,x(θ)−Xu

t,y(θ)
∣∣]

and

|ϑ ε(t,x)−ϑ
ε(s,x)| ≤ 1

ε
sup
u∈U

E
[

max
θ∈[t,s]

∣∣Xu
t,x(θ)− x

∣∣∨ max
θ∈[s,T ]

∣∣Xu
s,Xu

t,x(s)
(θ)− x

∣∣].
Under assumption (H1), there exists some constant C > 0 such that for any 0≤ t ≤
s≤ T , x,y ∈ Rd the unique strong solution to equation (4) satisfies

E
[

sup
θ∈[t,s]

∣∣Xu
t,x(θ)−Xu

t,y(θ)
∣∣2 ] ≤ C|x− y|2, (10)

E
[

sup
θ∈[t,s]

∣∣Xu
t,x(θ)−Xu

s,x(θ)
∣∣2 ] ≤ C(1+ |x|2) |t− s| (11)

(see for instance [27, Theorem 6.3]).
Hence, the result follows just taking Lε :=C/ε .
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Remark 2. It has been proved in [6, Theorem 3.1] that, if K = Rd and C is a non
empty, convex set with a C1 regular boundary, under the uniform ellipticity condi-
tion, for some α > 0, ∀(t,x,u) ∈ (0,T )×Rd×U ,

σ(t,x,u)σ(t,x,u)T ≥ α1d . (12)

where 1d is the identity matrix, the following holds:

|ϑ(t,x)−ϑ
ε(t,x)| ≤C

1+ |x|2 + | logε|
(T − t)d ε (13)

for some constant C depending only on α and the constants in assumption (H1). We
conjecture that analogous estimates can be obtained in the general case K 6= Rd ,
but a rigorous proof of this fact is still material of ongoing research.

3 Dynamic programming and Hamilton-Jacobi-Bellman
equation

Aim of this section is to characterize the function ϑ ε as a (viscosity) solution to a
suitable HJB equation. For doing this, we closely follow the dynamic programming
arguments recently developed in [10, 19] for optimal control problems with a cost
depending on a running maximum. Therefore, in order to directly use those results
in our framework, we will rewrite the optimal control problem (7) by means of the
cost functional

J(t,x,u) := E
[
−φ

ε

C (X
u
t,x(T ))

∨
max

θ∈[t,T ]
−φ

ε

K (Xu
t,x(θ))

]
(14)

such that the following holds

ϑ
ε(t,x) =− inf

u∈U
J(t,x,u).

The presence of the maximum operator inside the expectation, makes the cost in (14)
non-Markovian preventing the direct use of the Dynamic Programming Principle
(DPP), which is the first fundamental result towards the HJB characterisation. A
classical strategy to overcome this difficulty consists in adding an auxiliary variable
y that, roughly speaking, gets rid of the non-Markovian component of the cost. This
has been originally used in [8] where an approximation technique of the L∞-norm
is used, whereas in [10, 19] the HJB equation is derived without making use of any
approximation.
Let us introduce the following value function:
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wε(t,x,y) := inf
u∈U

E
[
−φ

ε

C (X
u
t,x(T ))

∨
max

θ∈[t,T ]
−φ

ε

K (Xu
t,x(θ))

∨
y
]
. (15)

Defining the process

Y u
t,x,y(.) := max

s∈[t,.]
−φ

ε

K (Xu
t,x(s))

∨
y,

the value function (15) can also be written as

wε(t,x,y) = inf
u∈U

E
[
−φ

ε

C (X
u
t,x(T ))

∨
Y u

t,x,y(T )
]
.

Observe that the following property holds:

ϑ
ε(t,x) =−wε(t,x,−1), (16)

so from now on only the optimal control problem (15) will be taken into account,
since the corresponding value of the function ϑ ε can be derived by the previous
equality. The following property is satisfied:

Proposition 3. Let assumption (H1) be satisfied. Then, there exists a constant C > 0
such that for any ε > 0, t,s ∈ [0,T ],(x,y),(x′,y′) ∈ Rd+1 one has

|wε(t,x,y)−wε(s,x′,y′)| ≤ C
ε

(
|x− x′|+ |y− y′|+ |t− s|

1
2 (1+ |x|∨ |x′|)

)
.

Moreover, for any family of stopping times {τu,u ∈U } with values in [t,T ] one has

wε(t,x,y) = inf
u∈U

E
[

wε(τu,Xu
t,x(τ

u),Y u
t,x,y(τ

u))

]
(17)

for any (t,x,y) ∈ [0,T ]×Rd+1.

Proof. The regularity of wε with respect to t and x can be proved as in Proposition
2, while the Lipschitzianity with respect to y is trivial.
Thanks to the regularity of wε , the DPP (17) follows by arguments similar to [12]
observing that for the couple of variables (Xu

t,x(·),Y u
t,x,y(·)) the following property

holds: (
Xu

t,x(s)
Y u

t,x,y(s)

)
=

(
Xu

θ ,Xu
t,x(θ)

(s)

Y u
θ ,Xu

t,x(θ),Y
u
t,x,y(θ)

(s)

)
a.s.

for any t ≤ θ ≤ s ≤ T ( with θ possibly a stopping time). We remand to [10] for a
sketch of the proof showing how the arguments in [12] adapt to our case.
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3.1 HJB equation

Proposition 3 is the main tool for proving the next result that characterizes wε as the
unique solution, in the viscosity sense, of a suitable HJB equation. In the sequel we
will restrict our domain to

D := {(x,y) ∈ Rd+1 :−φ
ε

K (x)< y < 0}.

Indeed, the knowledge of wε in D is sufficient to characterize it everywhere thanks
to the following relation:

wε(t,x,y) = y for any y≥ 0
wε(t,x,y) = wε(x,−φ

ε

K (x)) for any y≤−φ
ε

K (x).
(18)

Based on this observation, it is sufficient to characterise wε in the domain D. Letting

Γ1 := {(x,y) ∈ D : y = 0}; Γ2 := {(x,y) ∈ D : y =−φ
ε

K (x)}, (19)

we are going to prove that wε is the unique solution (in the weak sense specified in
Definition 1 below) of the following HJB equation with mixed derivative-Dirichlet
boundary conditions:

−∂tw+H(t,x,Dxw,D2
xw) = 0 [0,T )×D

w = 0 [0,T )×Γ1
−∂yw = 0 [0,T )×Γ2
w(T,x,y) = w0(x,y) D

(20)

with

H(t,x, p,Q) := sup
u∈U

{
−b(t,x,u)p− 1

2
Tr[σσ

T ](t,x,u)Q
}

(21)

and
w0(x,y) :=−φ

ε

C (x)
∨
−φ

ε

K (x)
∨

y.

We point out that the derivative boundary condition −∂yw = 0 on Γ2 is typically
obtained in presence of a running maximum cost, see [8, 10], while the Dirichlet
condition wε = 0 on Γ1 is obtained by the very definition of wε . Observe also that
the constant Dirichlet condition on Γ1 is compatible with the homogeneus deriva-
tive condition on Γ2. This prevents possible problems related with mixed boundary
conditions at the junctions where different components of the boundary cross.

The fully nonlinearity and degeneracy of the equation requires to consider solu-
tions in the viscosity sense (see [14] for an overview on the subject). This notion of
solution requires also to specify in which sense boundary conditions are satisfied.
In paricular, we ask the Dirichlet conditions on Γ1 to be satisfied in the strong sense,
whereas the derivative conditions on Γ2 are considered in the (weak) viscosity sense.

Definition 1. A USC function w (resp. LSC function w) on [0,T ]×D is a viscosity
sub-solution (resp. super-solution) of (20), if for every function ϕ ∈C1,2([0,T ]×D),
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at each maximum (resp. minimum) point (t,x,y) of w−ϕ (resp. w−ϕ) the following
inequality holds

−∂tϕ +H(t,x,Dxϕ,D2
xϕ)≤ 0 [0,T )×D

ϕ ≤ 0 [0,T )×Γ1
min

(
−∂yϕ,−∂tϕ +H(t,x,Dxϕ,D2

xϕ)
)
≤ 0 [0,T )×Γ2

ϕ(T,x,y)≤ w0(x,y) D(
resp. 

−∂tϕ +H(t,x,Dxϕ,D2
xϕ)≥ 0 [0,T )×D

ϕ ≥ 0 [0,T )×Γ1
max

(
−∂yϕ,−∂tϕ +H(t,x,Dxϕ,D2

xϕ)
)
≥ 0 [0,T )×Γ2

ϕ(T,x,y)≥ w0(x,y) D.
)

A continuous function w on [0,T ]×D is a viscosity solution of (20) if it is both a
sub- and super-solution.

Theorem 1. Let assumption (H1) be satisfied. Then, wε is the unique bounded and
continuous viscosity solution of the HJB equation (20).

Proof. The Dirichlet and terminal conditions are ensured by the very definition
of wε and its continuity. In particular, the continuity allows the conditions to be
considered in the strong sense. The proof of sub- and supersolution properties in
[0,T )× (D∪Γ2) follows quite straightforward by the the arguments in [10, Theo-
rem 3.2] and [21, Theorem 4.1].
Uniqueness of the solution relies on comparison results for sub and super solution.
The proof can be found in [19, Appendix A]. We point out that the fact of consider-
ing Dirichlet conditions in a strong sense is an important requirement for the proof
of the comparison principle.

4 Numerical Approximation

In this section we discuss an approximation scheme for the unique continuous vis-
cosity solution wε to the equation

∂tw+H(t,x,Dxw,D2
xw) = 0 −φ

ε

K (x)< y < 0, t ∈ (0,T ] (22a)
w = 0 y = 0, t ∈ (0,T ] (22b)

−∂yw = 0 y =−φ
ε

K (x), t ∈ (0,T ] (22c)

with initial data

w(0,x,y) = wε
0(x,y) −φ ε

K (x)≤ y≤ 0 (22d)

(the convenient change of variable t→ T − t has been here applied).
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In [10, Section 4.1] a general convergence result for numerical schemes approxi-
mating HJB equations under oblique derivative boundary conditions as (22c) is pro-
vided. Those arguments can be easily modified in order to prove convergence also in
presence of the additional Dirichlet boundary condition (22b) (see also [21]). Fol-
lowing the ideas introduced in [10], we present here a semi-Lagrangian (SL) scheme
for the approximation of (22). The same scheme will be used in the numerical ex-
periments in Section 5.

Let N ≥ 1 be an integer (number of time steps), and let

h :=
T
N

and tn := nh

for n = 0, . . . ,N. Let ∆x = (∆x1, . . . ,∆xd) ∈ (R∗+)d and ∆y > 0, and let Gρ (where
ρ ≡ (∆x,∆y)) be the space grid

Gρ :=
{
(xi,y j) = (i∆x, j∆y), for (i, j) ∈ Zd×Z

}
.

The grid is considered uniform for simplicity of presentation. We also assume that
the discretization in the y coordinate is aligned with the boundary of the domain,
this allows us to get the Dirichlet condition exactly.

We look for a fully discrete scheme for the viscosity solution of (22) on the time-
space grid {t0, . . . , tN}× (Gρ ∩D). Following the ideas in [10, 21] the numerical
scheme is defined starting from a standard scheme for (22a), which is then mixed
with a step of “projection” on Γ2 and the use of the Dirichlet condition on Γ1. The
approximation of equation (22a) we consider is the SL scheme proposed by Camilli
and Falcone [13] and also used in [15]. We recall that first schemes of this type have
been introduced by Menaldi in [23].

Let σu = σ(·, ·,u) and bu = b(·, ·,u), and let (σu
k )k=1,...,p denote the column vec-

tors of σu. We consider the following operator T :

T (ϕ)(t,x,y) := min
u∈U

1
2p

(
∑

k=1,...,2p

[
ϕ(t, .,y)

](
x+hbu(t,x)+

√
hσ̄

u
k (t,x)

))
(23)

with the following vector definition in Rd :

σ̄
u
2k− j :=

√
p (−1) j

σ
u
k (24)

for k = 1, . . . , p and j ∈ {0,1}. Now [·]≡ [·]x stands for a monotone, P1 interpolation
operator on the x-grid (xi), satisfying in particular:

(i) [ϕ](xi) = ϕ(xi), for any i ∈ Zd ,
(ii) |[ϕ](x)−ϕ(x)| ≤C|∆x|2‖D2

xϕ‖∞ for any ϕ ∈C2(Rd ,R),
(iii) for any functions ϕ,ψ : Rd → R, ϕ ≤ ψ ⇒ [ϕ]≤ [ψ].

(25)

We point out that (23), if considered without interpolation, is a discretization in
time of the Dynamic Programming Principle. In particular, such an approximation
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uses an Euler-Maruyama scheme (see [20] for instance) coupled with a finite state
discretization of the Gaussian discribution to approximate the dynamics Xu

t,x(·).
The numerical scheme is defined as follows:

Algorithm. Initialization step, for n = 0, for all i, j:

W 0
i, j = wε

0(xi,y j).

Then, for n = 0, . . . ,N−1:

Step 1 Compute W n+1
i, j = T (W )(tn,xi,y j), for all (xi,y j) ∈ Gρ ∩D;

Step 2 Assign W n+1
i, j =W n+1

i, jxi
, for all (xi,y j) : y j ≤−φ ε

K (xi);

W n+1
i, j = y j, for all (xi,y j) : y j ≥ 0;.

where for every x ∈ Rd , jx ∈ Z is defined by

jx := min
{

j ∈ Z : j∆y≥−φ
ε

K (x)
}

and we also used the following short notation

W n
i, j =W (tn,xi,y j).

Hereafter we will denote by W = (W n
i j)

n=1...N
(i, j)∈Zd+1 the solution of the numerical

scheme defined by the algorithm above on {t0, . . . , tN}×Gρ . We point out that the
necessity of defining W also at mesh points outside D comes from the fact that the
SL scheme involves values outside the domain. However, this is not a issue in virtue
of (18) (see Step 2 above).
We also denote by W ρ,h the continuous extension of W to [0,T ]×Rd×R obtained
by linear interpolation.

Remark 3. The numerical solution W ρ,h is Lipschitz continuous in y with Lipschitz
constant independent of ρ and h. This can be derived by the very definition of the
operator T in (23). Indeed, given W n L−Lipschitz continuous in y one can observe
that

|W n+1
i, j −W n+1

i, j′ |= |T (W )(tn,xi,y j ∨ y jxi
)−T (W )(tn,xi,y j′ ∨ y jxi

)|

≤ L|(y j ∨ y jxi
)− (y j′ ∨ y jxi

)| ≤ L|y j− y j′ |.

Hence, being W 0 Lipschitz continuous, the same property holds for W n for all n =
1 . . .N. Then, since the linear interpolation (used to pass from W to W ρ,h) preserve
Lipschitz constants, we can obtain the desired property.

Remark 4. The core of the scheme in Step 1 can be written as

S(t,x,y,W n+1
i, j ,W ) :=W n+1

i, j −T (W )(tn,xi,y j) = 0.
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It is immediate to verify that S is monotone in the sense of Barles and Souganidis [7],
i.e. for every h,ρ > 0, r ∈ R, for all function φ ,ψ such that φ ≥ ψ , inequality

S(t,x,y,r,φ)≤ S(t,x,y,r,ψ)

holds.
The choice of σ̄u

k in (24) leads to the following consistency estimate, for any
ϕ ∈C2,4((0,T )×Rd×R):∣∣∣∣1hS(t,x,y,ϕ(t,x,y),φ)−

(
∂tϕ +H(t,x,Dxϕ,D2

xϕ)

)∣∣∣∣
≤ C1

(
|bu(t,x)|2‖D2

xϕ‖∞ + |bu(t,x)||σu(t,x)|2‖D3
xϕ‖∞ + |σu(t,x)|4‖D4

xϕ‖∞

‖∂ 2
tt ϕ‖∞

)
h+ C2 ‖D2

xϕ‖∞

|∆x|2

h
.

These are classical properties of SL schemes, see [15] for instance. In particular,
the error term in |∆x|2/h comes the interpolation error estimate (ii) (observe that
we do not need to interpolate with respect to y) and the term in h from classical
Taylor expansions. Then, in order to ensure consistency of the scheme, ∆x and h
have to be chosen so that |∆x|2/h→ 0 as ∆x,h→ 0. This usually leads to the choice
∆x∼ h in numerical simulations.

Moreover, it is easy to verify that the scheme admits a bounded solution in
{t0, . . . , tN}× (Gρ ∩D), so that the scheme is also stable.

We recall that monotonicity, consistency and stability are the fundamental prop-
erties necessary for proving convergence of numerical schemes in the framework of
viscosity solutions, see [7].

Theorem 2. Let assumption (H1) be satisfied. Let W ρ,h be the solution of the scheme
defined by Algorithm 1, where T is the SL scheme (23)-(24). Then, if

|∆x|2
h → 0 as ∆x,h→ 0 (26)

W ρ,h converges to wε in [0,T ]×D as ρ,h→ 0.

Proof. The proof follows the strategy in [7] and [10]. Let us define for (t,x,y) ∈
[0,T ]×D

W (t,x,y) := limsup
[0,T ]×D3(s,ξ ,γ)→(t,x,y)

ρ,h→0

W ρ,h(s,ξ ,γ),

W (t,x,y) := liminf
[0,T ]×D3(s,ξ ,γ)→(t,x,y)

ρ,h→0

W ρ,h(s,ξ ,γ).
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One clearly has W (t,x,y) ≤W (t,x,y) for any (t,x,y) ∈ [0,T ]×D. Convergence
follows by the comparison principle once shown that W and W are respectively a
sub- and supersolution of the HJB equation in the sense of Definition 1.

We sketch the proof of the subsolution property, the supersolution part can be
proved in a similar way. Given a smooth test function ϕ , let (t̄, x̄, ȳ) be a maxi-
mum point for (W −ϕ), with (W −ϕ)(t̄, x̄, ȳ) = 0, and let (ρk,hk, tk,xk,yk) be such
that (tk,xk,yk) ∈ [0,T ]×D, ρk,hk → 0, (tk,xk,yk) → (t̄, x̄, ȳ), W ρk,hk(tk,xk,yk) →
W (t̄, x̄, ȳ) and

(W ρk,hk −ϕ)(tk,xk,yk) = max(W ρk,hk −ϕ) = δk→ 0

(the existence of such a sequence follows by classical arguments in viscosity the-
ory).

If (x̄, ȳ) ∈ D the result follows as in [7] using the prperties of monotonicity and
consistency of the scheme in a sufficiently small neighborhood of (x̄, ȳ) still con-
tained in D.

If (x̄, ȳ) ∈ Γ2 one can work under the condition −∂yϕ(t̄, x̄, ȳ) > 0, otherwise the
subsolution property is automatically satisfied. In this case the result follows ob-
serving that, by the very definition of the scheme (see Step 2 of the algorithm) and
its monotonicity, one can derive

ϕ(tk,xk,yk)+δk ≤T (ϕ)(tk,xk,yk ∨ y jxk
)≤T (ϕ)(tk,xk,yk)

so that the subsolution property follows again by the consistency of the scheme.
It remains to prove that W satisfies the Dirichlet condition pointwise on Γ1. For this
purpose it is worth to observe that W ρ,h is Lipschitz continuous in y (see Remark 3),
i.e. there exists some constant L > 0 (independent of ρ,h, t,x) such that

|W ρ,h(t,x,y)−W ρ,h(t,x,y′)| ≤ L|y− y′|

for any t ∈ [0,T ],x ∈ Rd ,y,y′ ∈ R. Therefore one has

|W ρ,h(s,ξ ,γ)− (−1)|= |W ρ,h(s,ξ ,γ)−W ρ,h(s,ξ ,0)| ≤ L|γ|

so that on Γ1 (i.e for ȳ = 0)

liminf
[0,T ]×D3(s,ξ ,γ)→(t̄,x̄,ȳ)

ρ,h→0

W ρ,h(s,ξ ,γ) =−1.

5 Numerical tests

In this section we present some numerical tests for probabilistic reachability prob-
lems in presence of state constraints. To solve the HJB equation (22), we use the
fully discrete SL scheme introduced in Section 4 implemented on the ROC-HJ
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solver available at the link https://uma.ensta-paristech.fr/soft/ROC-HJ/.
The minimum in (23) is performed on a subset of control values {u1, ...,uNu} that
represents a discretization of U with a mesh size ∆u. In all the simulations the reg-
ularization parameter will be chosen to be ε = 1.E−08.

5.1 Example 1

We consider the following controlled stochastic system:

dX(s) =
((
−1 −4
4 −1

)
X(s)+u(s)

)
ds+

(
0.7 0
0 0.7

)(
dB1(s)
dB2(s)

)
(27)

where u(s) =
(

u1(s)
u2(s)

)
, ui(s) ∈ [−0.1,0.1], for i = 1,2 and B1,B2 are two indepen-

dent Brownian motions.
The linear system (27) has been used in [6] to validate the HJB approach in the char-
acterization of an approximated probabilistic reachable set without state constraints
and in [5] to illustrate an appoximation of the probability of reaching a target by
using enclosing hulls of probability density functions.

We set T = 1.75 and define the target C := (0.5,1.5)× (−0.5,0.5) (green square
in Figure 2). The constraint is given by the presence of an obstacle, represented in
Figure 2 (right) by the red rectangle, i.e. K :=R2 \([−6,−2]× [2,4]). We compute
the set Ω

ρ

t (blue region) for t = 0.75 and ρ = 0.4 in presence (Figure 2, right)
or not (Figure 2, left) of the obstacle. To approximate the auxiliary function wε

solution to (22), the numerical simulation is performed on a computational domain
[−8,8]2× [−1,0]. The corresponding values of ϑ ε are then obtained using relation
(16).
Figure 3 (top) shows the set Ω

ρ

t for ρ = 0.4 at different time t ∈ {0.25;0} in pres-
ence of the obstacle. Then, in Figure 3 (bottom) we simulate different optimal paths
starting from a given point of the backward reachable set using the algorithm de-
scribed below.

Algorithm (trajectory reconstruction) Initialization: Set X0 = x̄.

For k = 0 to N−1:

Step 1 Compute optimal control at t = tk:

uk = argminu∈{u1,...,uNu}E[W (tk+1,Xu
k+1,−1)]

where for ui ∈ {u1, . . . ,uNu}

Xk+1 := Xk +b(tk,Xk,ui)h+σ(tk,Xk,ui)
√

hξ ,
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Fig. 2 (Example 1) Backward reachable sets at t = 0.75 for a time horizon T = 1.75 and ρ = 0.4
without (left) and with (right) obstacle. The target set, the obstacle and the backward reachable set
Ω 0.4

0.75 are represented respectively by the green square, the red rectangle and the blue region.

here ξ := (ξ1,ξ2) with ξi (i = 1,2) random variables following a N(0,1) distri-
bution.

Step 2 Compute the point of the optimal trajectory:

Xk+1 := Xk +b(tk,Xk,uk)h+σ(tk,Xk,uk)
√

hξ

where again ξi ∼ N(0,1) for i = 1,2.

In order to validate our approach, we compare the value of the scheme in a
given point with the percentage of trajectories reaching the target without hit-
ting the obstacle. We consider the case t = 0.25 and two different starting points
x̄1 := (4.0,1.0)T and x̄2 := (3.0,0.0)T . The approximation of the level-set func-
tion obtained by numerically solving the corresponding HJB equation on the grid
∆x1 = ∆x2 = 0.0125,∆y = 0.1,h = 0.025 at points x̄1 and x̄2 is respectively
−W (t, x̄1,−1)' 0.459±0.004 and −W (t, x̄2,−1)' 0.404±0.009.

The results of Monte Carlo simulations are reported in Table 1. One can conlcude
that the approximated value of the level set function belongs in each case to the
confidence interval.

5.2 Example 2.

We now test our method on the same example used in [10, Section 6]. Let us con-
sider the following dynamics:
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Fig. 3 (Example 1). Top: backward reachable set (blue region) at times t ∈ {0.25, 0} for a final
time horizon T = 1.75 in presence of the obstacle (red rectangle). Bottom: reconstruction of some
optimal paths starting from point x̄ = (4,1) (bottom, left) and x̄ = (3,−4) (bottom, right).

M p C.I. MC-error
6000 0.4630 (0.4504, 0.4756) 0.0126

12000 0.4624 (0.4535, 0.4713) 0.0089
x̄1 25000 0.4603 (0.4541, 0.4664) 0.0062

50000 0.4618 (0.4574, 0.4661) 0.0045
100000 0.4628 (0.4597, 0.4659) 0.0031

6000 0.3915 (0.3593, 0.4037) 0.0122
12000 0.3991 (0.3705, 0.4078) 0.0087

x̄2 25000 0.4026 (0.3966, 0.4087) 0.0061
50000 0.4016 (0.3996, 0.4081) 0.0043

100000 0.4015 (0.3985, 0.4045) 0.0030

Table 1 (Example 1) Percentage p of M simulated trajectories that reach the target set without hit-
ting the obstacle, with a corresponding confidence interval (C.I.), and a Monte Carlo error estimate
(MC-error)
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dX(s) = u(s)
(

1
0

)
ds+u(s)σ(X(s))dB(s), s≥ t,

where B is a one-dimensional Brownian motion, U = [0,1] ⊂ R and the volatility
σ(x) is given by

σ(x) := 5dΘ (x)
(

0
1

)
where dΘ denotes the distance function to the set

Θ :=
{
(x1,x2), |x2| ≥ 0.3

}
.

The target set is C = (0,0.4)× (−0.5,0.5) (green rectangle in Figure 4) and the
state constraint is K = R2 \ ([−0.4,0.2]× [−0.1,0.1]) (i.e. the entire space except
the red square obstacle in Figure 4). We fix T = 0.5 and consider the computational
domain [−1,1]2× [−1,0].

The strong degeneracy of the diffusion term in this example allowed in [10] to
obtain the “almost sure” backward reachable set, corresponding here to the case
ρ = 1. Figure 4 shows the approximation of Ω

ρ

t for t = 0 and different levels ρ ∈
[0,1,0.9]. The black region corresponds to the exact backward reachable set for
ρ = 1. Indeed, due to the simple dynamics considered it is possible for this example
to infer the exact set Ω 1

0 , i.e. the set of points from where the target is reached and
the constraint satisfied with probability one, see [10] for a further discussion. One
can observe that as ρ approaches the value 1, we recover the results obtained in [10].
A loss of precision appears at corners. This was already noticed in [10] and it is due
to the smoothing effects of the diffusion term (see [10, Figure 2, Section 6]) which
can be reduced with the refinement of the mesh.

Fig. 4 (Example 2) approximation of Ω
ρ

t at t = 0 for different levels ρ ∈ [0,1,0.9] computed with
∆x1 = ∆x2 = 0.005,∆y = 0.1,h = 0.01 (same mesh parameters used in [10]).
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6 Conclusions

In this paper we have used the HJB theory for characterising the probabilistic back-
ward reachable set for a system of controlled diffusions in presence of state con-
straints. We have shown that such a set is a level set of the value function associated
to a suitable optimal control problem. To deal with the discontinuity of the cost
functional associated to this problem, arising from the use of indicator functions for
representing probabilities, we have defined a regularised problem. Precise estimates
of the error introduced by this regularisation are still object of ongoing research.

Following the approach in [10, 19, 21], for the regularised problem we have ob-
tained a characterization by a HJB equation with mixed Dirichlet-derivative bound-
ary conditions. We have defined a fully discrete SL approximation scheme and we
have proved its convergence to the unique viscosity solution of the equation. Then,
we have used such a scheme in order to validate our approach on some numerical
tests. We focused on the examples studied in [6] and [10], adding state constraints
to the first one and variable levels of probability to the second one. More complex
tests on concrete models are a promising future direction of work.

Acknowledgements The authors are sincerely grateful to Olivier Bokanowski and Hasnaa Zidani
for their guidance at the early stage of this paper.
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