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Abstract—Pattern recognition is used to classify the input
data into different classes based on extracted key features.
Increasing the recognition rate of pattern recognition applications
is a challenging task. The spike neural networks inspired from
physiological brain architecture, is a neuromorphic hardware
implementation of network of neurons. A sample of neuromor-
phic architecture has two layers of neurons, input and output.
The number of input neurons is fixed based on the input data
patterns. While the number of outputs neurons can be different.
The goal of this paper is performance evaluation of neuromorphic
architecture in terms of recognition rates using different numbers
of output neurons. For this purpose a simulation environment of
N2S3 and MNIST handwritten digits are used. Our simulation
results show the recognition rate for various number of output
neurons, 20, 30, 50, 100, 200, and 300 is 70%, 74%, 79%, 85%,
89%, and 91%, respectively.

I. INTRODUCTION

One of the key factors for evaluating the performance of
Artificial Neural Network (ANN) is the ability of pattern
recognition known as recognition rate. Choosing the proper
number of neurons to reach optimum recognition rate, is
one of the major issues that researchers in ANN domain
are facing [1]. In machine learning approaches, not only an
efficient processing algorithm is necessary but also finding
a fast, parallel and power-efficient hardware architecture to
implement these algorithms is unavoidable [2]. Neuromorphic
architectures are cognitive computing platforms to process data
to classify into different classes based on extracted key features
from data [3], [4], [5]. Spiking Neural Network (SNN) is
a promising approach for designing an electronic hardware
neuromorphic model of biological brain. However, increasing
the classification rate of pattern recognition applications in
SNN neuromorphic platform is a challenging task.

There are several factors affect the recognition capability of
neural network such as different learning algorithms, activation
function of neuron, network connection topologies, training
samples, the number of layers in network and the number
of neurons. The random selection of number of neurons
might lead to either overfitting or underfitting problems [1].
The approximation of number of neurons in hidden layer to
achieve better performance is introduced in previous research
in artificial neural networks [1], [6], [7]. However in Spiking

Neural Network, there are few works that discussed this issue.
Tavanaei and Maida [8] presented the minimal number of
neurons in SNN for pattern classification of MNIST dataset of
handwritten digits using 100 Izhikevich [9] spiking neurons.
In [8] the number of neuron was fixed and recognition rate
with different iterations of presenting samples was explored.
Parameter exploration to improve the performance of SNN-
based neuromorphic architecture is presented in [10]. The
impact of number of neurons on network rate recognition is
explored in this research. However changing the number of
neurons is aligned with changing the other parameters such
as STDP window, neuron threshold and distribution of input
spikes.

The goal of this paper is to evaluate the recognition
performance of SNN-based architecture with increasing the
number of neurons in the output layer. We use a spiking
neural network hardware model, as a neuromorphic architec-
ture for classification of handwritten digits. For this purpose,
a SNN-based neuromorphic architecture with two layers of
neurons which are fully connected from first to second layer
is used. A threshold-based model of spiking neuron is used
known as Leaky-Integrate-and-Fire (LIF) neuron [11]. We
used spike-timing-dependent plasticity (STDP) unsupervised
learning method for adjusting the synaptic weights. In this
hardware simulation, we consider the model of memristor [12],
[13] as an artificial synapse. Unique properties in memristor,
such as scalability, flexibility because of their analog behavior,
manufacturability on top of CMOS technology and ability
to remember the last state make this nanodevice a proper
alternative to play the role of artificial synapse [14]. We
used Neural Network Scalable Spiking Simulator (N2S3)
[15], a simulation framework for architecture exploration of
neuromorphic platforms. Our simulation results on MNIST
handwritten data set show that using different number of
output neurons from 20 to 300 leads to different recognition
rate ranging from 70 to 91%. It means that increasing the
number of output neurons increases the recognition rate.

This paper is organized as follows. Neuromorphic and mem-
ristor concepts are discussed in Section 2. The architecture of
neural network and learning algorithm are presented in Section
3. Section 4 presents experimental results. Finally conclusions



are drawn in Section 5.

II. NEUROMORPHIC AND MEMRISTOR

The first neuromorphic term was coined by Carver Mead
[16] using Very Large Scale Integration (VLSI) technology
to propose an implementation of neural system hardware.
Merolla et al. [17] in an IBM research was sponsored by
DARPA, have demonstrated a computing hardware consist
of the compact modular core for large-scale neuromorphic
system architecture. The cores combine digital neurons with
the large synaptic array. This general purpose neuromorphic
processor was built using thousands of neurosynaptic cores
are involved one million neurons and 256 million of recon-
figurable synapses. SpiNNaker project [18] aims to deliver
a massively parallel million core architectures whose inter-
connections are inspired by the connectivity properties of
the mammalian brain. The hardware platform is suitable to
model the large-scale spiking neural networks in biological
real time. Neuromorphic and neuro-inspired computing is now
being adapted by an increasing number of academic and
industrial different research teams. In recent few years, there
have been many valuable publications explaining the use of
novel materials such as memristors which are able to emulate
some of the properties observed in biological synapses [19],
[20], [21], [22], [23].

Recently, emerging nano-scale devices such as memristors
have demonstrated novel properties for making new memories
and unconventional processing units. Memristor was hypo-
thetically presented by Leon Chua in 1971 [12] and after
few decades, HP was the first to announce the successful
fabrication of memristor [13]. The plasticity characteristic in
Memristor open the new windows toward researchers in neural
network and artificial intelligence domain to continue their
research studies with more confident. The unique properties in
memristor nano-devices such as, extreme scalability, flexibil-
ity, and ability to remember the last state make the memristor
a very promising candidate to be applied as a synapse in
Artificial Neural Network (ANN) [14]. Recent advances in
nanotechnology have provided neuromorphic computing archi-
tecture with novel memristive devices which have the capabil-
ity of mimicking synaptic plasticity, such as resistive switching
memory (RRAM) [24], [25], [26], phase change memory
(PCM) [27], [28], Conductive Bridge memory (CBRAM) [29],
[30], [31], and ferroelectric memory (FeRAM) [32], [33].

III. NEUROMORPHIC ARCHITECTURE AND LEARNING
ALGORITHM

In this section neuromorphic architecture, model of neuron
and learning algorithms are presented.

A. Neuromorphic Architecture

A sample of neuromorphic architecture is depicted in Figure
1 which depicted two layers of input and output neurons.
These layers are connected using artificial synapses which are
called memristors. Input neurons received spikes which are a
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Fig. 1. Each pixel is transfered to spikes based on its intensity, therefore we
have 784 pixel connected to the input neurons.

representative of the image pixel intensities. These spikes are
connected to the neuron units to fire toward the memristors.

In other words, neuron integrates the spike inputs from other
neurons that are connected to it. These input spikes change
the internal potential of the neuron, it is known as neuron’s
membrane potential or state variable. When this membrane
potential passes a threshold voltage due to integrated inputs,
the action potential occurs. The function of the neurons is
depicted in Equation 1 and 2.

τn
dv

dt
= −v(t) +RIsyn(t) (1)

Isyn(t) =
∑
j

gij
∑
n

α(t− t
(n)
j ) (2)

where v(t) represents the membrane potential at time t,
τn = RC is the membrane time constant and R is the
membrane resistance. Equation 1 describes a simple parallel
resistor-capacitor (RC) circuit where the leakage term is due
to the resistor and the integration of Isyn(t) is due to the
capacitor. Isyn(t) is generated by the activity of pre-synaptic
neurons. In fact, each pre-synaptic spike generates a post-
synaptic current pulse. The total input current to a neuron is
the sum over all current pulses which is calculated in Equation
2, t(n)j represents the time of the nth spike of post-synaptic
neuron j and gij is the conductance of synaptic efficacy
between neuron i and neuron j. α(t) = qδ(t), where q is
injected charge to the the artificial synapse and δ(t) is Dirac
pulse function. If Isyn(t) is big enough where action potential
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Fig. 2. a) A synapse connects two neurons. b) A simple electronic model
of a, which neurons are modeled using a capacitor and resistor and synapse
is modeled using a memristor. c) A simple physical model of a memristor.

can pass the threshold voltage, neuron fires. It means there
are enough input spikes in a short time window. When there
is no or few spikes in a time window the neuron is in leaky
phase and state variable decreases exponentially. This spiking
model of neuron is known as Leaky-Integrate-and-Fire (LIF)
model [11]. The duration of this time window is depend on
τn = RC. The equation is analytically solvable however we
apply the final solution answer of equation in large networks
with presenting input spike. It improves the delay time and
network performance as we do not consist extra time for
solving the equation numerically. The fabricated model with
recent CMOS technology is available for LIF neuron [34],
[35]. Two biological neuron with a simple synaptic connection
between neurons are shown in Figure 2.a. The first electrical
model of neuron is known as Hodgkin-Huxley neuron model
[36] which is depicted in Figure 2.b. In fact, LIF model of
neuron is derived from the Hodgkin-Huxley neuron model.

Memristor adjusts the weight between two input and output
neurons. By changing the doped-undoped regions of device,
the conductance will be changed. Bigger doped region leads to
more conductivity. Therefore by controlling of this boundary
between two regions, the conductivity is controlled which
is depicted in Figure 2.c. In this work, we used memristive
synapse box as a connection between two neurons. More
details about memristive synapse box can be found in [37],
[38].

The output neurons of the neuromorphic architecture in
Figure 1, receive spikes from memristors and process them to
make a decision for firing or not. After unsupervised training,
the output of these neurons are labeled to different classes for
testing phase. Finally, the evaluation of impacts of increasing
different number of output neurons on recognition rate are
performed.

B. Learning Algorithm

We used a fully connected network architecture which
means each neuron in input layer is connected to the all output
neurons. It is widely believed that plasticity is the key for
learning in the biological brain [39]. With the latest proposals
to use memristive nano-devices as synapses, we implement
efficient unsupervised learning rules known as Spike Timing
Dependent Plasticity (STDP) [40]. By using unsupervised
learning inspired from biological neural network, we apply
STDP learning method for adjusting the synaptic weights [40],
[41]. If there is an output spike in pre-synaptic neuron and
shortly after in post-synaptic neuron, the conductance of the
memristor between two neurons increases. On the other hand,
if the post-synaptic neuron spikes and shortly after the pre-
synaptic neuron spikes, the conductance of memristor between
two neurons decreases. Additionally, inspiring from biologic
behavior of brain computing, we apply lateral inhibition to
reduce the activity of neighbor neurons of the winner. This
method is known as winner-takes-all strategy [42]. The neuron
which reaches the threshold first, sends an inhibitory signal
to all other neurons in the same layer to reset their states
during inhibition time. This neuron called winner in the firing
competition.

IV. EXPERIMENTAL RESULTS

In this section, our data set, simulation environment and
results are presented.

A. Datasets

To train and test the neural network, the MNIST dataset of
handwritten digits [43] is used for experimental evaluations.
MNIST set consists of 60000 digits between 0 to 9. Each
handwritten number image is 28 × 28 =784 pixels. In this
simulation, we present full dataset (60000) and full image (28
× 28) to the input of neural network. Each pixel is connected
to one input buffer neuron to receive the intensity of pixel
as spikes (see Figure 1). To transfer dataset of handwritten
digit pixel intensity to spikes train, we tried several spike
distributions such as Poission, Uniform, and Gaussian. Pixel
intensity is ranging from 0 to 255 that are transfered to
0 to 22 Hertz of spiking rate frequency. The duration of
presenting a sample input to neural network is 350 ms. Based
on previous similar work [44], 150 ms is considered as an
interval time between presenting two sample inputs. Therefore,
the membrane potentials of the neurons have enough time to
be reseted to initial value. For training phase unsupervised
learning has been used. The network connection weights
are between zero and one. For weight initialization, random
weights are applied using Gaussian distribution. Among 60000
samples, 50000 samples are used for training phase and 10000
samples are used for testing phase. In order to validate testing
results simulation is executed ten times and the median results
are presented.



Output labels for digit classification based on number of firing for each neuron (n=20) 

0 1 2 3 4 5 6 7 8 9 Total
N0:0 0 1 0 2 51 18 0 37 2 187 187
N0:1 1 0 2 2 0 0 0 395 0 1 395
N0:2 0 333 0 0 2 1 2 11 1 2 333
N0:3 0 0 0 0 133 4 0 0 0 2 133
N0:4 22 0 3 12 1 150 8 0 6 1 150
N0:5 0 7 1 2 2 7 0 4 96 1 96
N0:6 0 1 473 5 0 0 0 6 4 0 473
N0:7 5 1 27 51 2 15 0 11 396 6 396
N0:8 160 0 6 0 0 0 0 0 0 2 160
N0:9 0 0 164 2 0 0 0 4 0 0 164

N0:10 11 2 10 0 5 4 499 1 1 2 499
N0:11 6 0 1 0 4 1 223 0 0 0 223
N0:12 0 0 0 154 0 0 0 0 0 0 154
N0:13 0 0 0 0 1 0 0 157 1 12 157
N0:14 3 0 39 2 264 19 20 39 4 112 264
N0:15 0 724 16 26 8 23 17 40 21 15 724
N0:16 33 0 0 9 0 154 6 0 10 0 154
N0:17 21 0 12 414 0 157 3 1 75 4 414
N0:18 0 2 2 20 262 41 1 92 13 447 447
N0:19 519 0 2 5 0 6 9 1 0 0 519
Total 781 1071 758 706 735 600 788 799 630 794

Fig. 3. Each neuron has been labeled a class from zero to nine based on the
maximum firing rate in configuration with 20 output neurons.

B. Simulation Environment

In order to simulate the spiking neural network, we used a
Neural Network Scalable Spiking Simulator (N2S3), a simu-
lation framework for architecture exploration of neuromorphic
architecture (https://sourcesup.renater.fr/projects/n2s3) [15].
This simulation platform is event-driven, concurrent, scal-
able, and adaptable to model different synapses, neurons, and
topologies.

The main reason for using N2S3 simulator in this work,
is that other popular neural network simulators such as Neu-
ron [45], Brian [46] or NEST [47] are not fit our purposes
for this implementation appropriately . They are clock-driven
and the model of memristor as a synapse is not considered.
Xnet [48] is an event-driven simulator but it is not available
to use publicly as well as its capabilities do not address some
of our requirements such as scalability and concurrency. The
hardware platform is an Intel cores i7-3687U CPU (2.10GHz
× 4).

C. Simulation Results

The number of input neurons is fixed to 784, while the
number of output neurons is varying from 20, 30, 50, 100,
200, to 300.

First, the number of output neurons was set to 20. Labeling
results of twenty neurons is depicted in Figure 3. Obviously
in this figure, there are 20 rows for output neurons and
ten columns for different classes. A suitable class should
be assigned to each neuron. For this purpose, most frequent
firing rate of each row is labeled to the column numbers. For
instance, the most frequent firing rate for the neuron number
six (N0:6) is 473, that assigned to label two. Each label is
assigned to two neurons. The average of recognition rate is
70%.

Second, the number of output neurons was set to thirty. The
output of testing phases is depicted in Figure 4. Each output
neuron should be labeled to a class. The class assignment is
the same as Figure 3 while the assignment is not symmetric.
For example four neurons, N0:13, 18, 26, and 27 are labeled

Output labels for digit classification based on number of firing for each neuron (n=30)

0 1 2 3 4 5 6 7 8 9 Total
N0:0 0 0 2 5 170 12 1 80 9 263 263
N0:1 0 0 3 2 0 0 0 202 2 21 202
N0:2 2 0 20 0 234 14 6 22 9 112 234
N0:3 1 0 1 1 0 2 0 228 2 2 228
N0:4 0 0 149 2 0 0 0 1 2 0 149
N0:5 1 1 2 1 1 1 0 1 99 0 99
N0:6 1 0 0 7 0 242 5 0 11 8 242
N0:7 8 0 13 145 3 137 5 2 151 5 151
N0:8 5 2 4 0 8 1 390 1 2 2 390
N0:9 2 1 1 0 4 1 249 0 4 0 249

N0:10 0 0 0 0 130 0 0 0 1 65 130
N0:11 0 263 1 0 2 0 1 7 1 2 263
N0:12 0 0 0 0 164 3 0 1 0 27 164
N0:13 164 0 6 0 0 0 2 0 0 1 164
N0:14 0 1 0 263 0 6 0 2 28 3 263
N0:15 2 0 0 0 17 4 202 0 4 0 202
N0:16 0 2 388 7 4 1 0 16 3 1 388
N0:17 0 0 0 10 0 203 2 0 15 1 203
N0:18 383 0 24 6 1 5 23 2 13 8 383
N0:19 2 0 12 23 0 10 2 5 479 9 479
N0:20 0 1 312 9 0 1 1 4 11 0 312
N0:21 0 0 1 115 0 0 0 0 3 0 115
N0:22 0 0 0 1 27 0 0 3 2 143 143
N0:23 0 0 0 1 0 1 0 283 1 10 283
N0:24 0 285 1 1 3 0 0 10 0 1 285
N0:25 1 0 0 8 140 18 2 37 15 238 238
N0:26 67 0 5 22 1 34 7 0 9 0 67
N0:27 325 0 3 2 0 5 12 0 3 0 325
N0:28 0 425 2 7 5 5 1 8 5 7 425
N0:29 1 0 3 298 0 55 1 0 10 1 298
Total 965 981 953 936 914 761 912 915 894 930

Fig. 4. Each neuron has been labeled a class from zero to nine based on the
maximum firing rate in configuration with 30 output neurons.
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Fig. 5. The recognition rate of different output neurons from 20 to 300. For
each number the simulation is run ten times.

to class zero. The reason is the frequent firing rate for those
neurons in column zero is higher than other columns. Class
five has two neurons, N0:6, 17, while other classes has three
neurons. The average of recognition rate is 74%. Compare
to the Figure 3, recognition rate is increased. It means that
increasing the number of output neurons leads to increasing
the recognition rate.

Finally , the number of neurons in the output layer of the
spiking neural network architecture has also been set to 50,
100, 200, and 300. Recognition rate of different output neurons
is depicted in Figure 5.

As this figure shows, the recognition rate is increased by the
increasing of the number of output neurons. This recognition



Fig. 6. Recognized classes by spiking neural network with different output
neurons, 20, 30, 50 and 100.

rate is ranging from 70% to 91% for 20 and 300 neurons,
respectively. Increasing the recognition rate from 20 to 100
neurons is much higher than 100 to 300 neurons. It means
that there is a limitation on increasing the number of output
neurons due to the overfitting issue. Figure 6 depicts the
assigned classes to different numbers of output neurons from
20 to 100.

V. CONCLUSIONS

Recently hardware architectures based on neural networks
are used for pattern recognition applications. One of these
architecture is Spiking neuromorphic platform. A sample of
neuromorphic architecture has two layers of neurons. These
layers are connected using memristor synapse box. Memristor
conductance adjusts the weights between the neurons using
spikes. Recognition rate of neuromorphic architecture was
evaluated using different number of output neurons. Our
simulation results using MNIST handwritten data set show that
increasing the number output neurons increases the recognition
rate. In addition, results show that increasing recognition rate
from 20 to 100 in much higher than 100 to 300 neurons.
Increasing the number of output neurons more than 300, the
architecture is overfitted.
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