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1301 rue de la piscine, BP 53 Domaine universitaire
38041 Grenoble Cedex 9, France

Summary

Karhunen-Loève expansion and snapshot POD are based on principal component analysis of series of data.
They provide basis vectors of the subspace spanned by the data. All the data must be taken into account to
find the basis vectors. These methods are not convenient for any improvement of the basis vectors when new
data are added into the data base. We consider the data as a state evolution and we propose an incremental
algorithm to build basis functions for the decomposition of this state evolution. The proposed algorithm
is based on the APHR method (A Priori Hyper-Reduction method). This is an adaptive strategy to build
reduced order model when the state evolution is implicitely defined by non-linear governing equations. In
case of known state evolutions the APHR method is an incremental Karhunen-Loève decomposition. This
approach is very convenient to expand the subspace spanned by the basis functions. In the first part of
the present paper the main concepts related to the “a priori” model reduction technique are revisited, as a
previous task to its application in the cases considered in the next sections.
Some engineering problems are defined in domains that evolve in time. When this evolution is large the
present and the reference configurations differ significantly. Thus, when the problem is formulated in the
total Lagrangian framework frequent remeshing is required to avoid too large distortions of the finite element
mesh. Other possibility for describing these models lies in the use of an updated formulation in which the
mesh is conformed to each intermediate configuration. When the finite element method is used, then frequent
remeshing must be carried out to perform an optimal meshing at each intermediate configuration. However,
when the natural element method, a novel meshless technique, is considered, whose accuracy does not
depend significantly on the relative position of the nodes, then large simulations can be performed without
any remeshing stage, being the nodal position at each intermediate configuration defined by the transport
of the nodes by the material velocity or the advection terms. Thus, we analyze the extension of the “a
priori” model reduction, based on the use in tandem of the Karhunen-Loève decomposition (that extracts
significant information) and an approximation basis enrichment based on the use of the Krylov’s subspaces,
previously proposed in the framework of fixed mesh simulation, to problems defined in domains evolving in
time.
Finally, for illustrating the technique capabilities, the “a priori” model reduction will be applied for solving
the kinetic theory model which governs the orientation of the fibers immersed in a Newtonian flow.

1 THE APHR METHOD: AN INCREMENTAL KARHUNEN-LOÈVE
EXPANSION

1.1 Introduction

This work focuses in the development of a method for the reduction of the number of state
variables of non-linear thermomechanical time dependent problems. This is the A Priori
Hyper-Reduction method (APHR) [14]. The main aim of this section is to explain how this
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method can be used as an incremental and adaptive version of the Karhunen-Loève expan-
sion. The Karhunen-Loève expansion, [8] [10] (KL expansion) and the Proper Orthogonal
Decomposition, [11, 7, 6] (POD) are two names for the same method. This method provides
basis functions for a simplified representation of state evolutions, or set of data. These basis
functions are eigenfunctions of the averaged autocorrelation of known state evolutions. It
can be shown that the KL expansion yields an optimal set of orthonormal basis functions in
the sense that the fewest number of functions of all possible bases are required for a given
level of accuracy in reconstructing the original set of data [2]. Those basis functions are
usually called the empirical eigenvectors. This method can be applied in the framework of
signal processing, experimental analysis or computational method in order to build reduced
order models. The empirical eigenvectors corresponding to the highest eigenvalues are the
functions that describe the main significant events involved in the state evolution. The size
of the eigenproblem is equal to the number of state variables. So, in case of large number of
state variables the eigenproblem becomes high time consuming. To overcome this difficulty
Sirovich proposed the snapshot POD [15]. Approximate empirical eigenvectors are obtained
by a linear combination of few selected states at different time instants: the snapshots. The
coefficients of this linear combination are obtained thanks to an eigenproblem as large as
the number of states selected to perform the decomposition. But, in case of transient state
evolutions the snapshot POD can not reproduce the events having a characteristic time
lower than the time step between snapshots. So it is difficult to choose this time step prop-
erly. The basis functions used for the decomposition of the state evolution depend on the
evolutions considered to perform the KL expansion or the snapshot POD. In the scientific
community of signal processing this approach is considered as an adaptive one while, for
example, the basis functions of the Discret Consin Transform do not depend on what the
state evolution could be. In this article we do not address this meaning of the adaptive
term. The main drawback of the KL expansion and snapshot POD is that no adaptation
of the empirical eigenvectors is possible when a new state evolution has to be considered in
order to improve the basis functions or in order to increase the number of basis functions
[9]. A full snapshot POD or KL expansion must be done.

The purpose of the adaptive method that we propose is to simplify the computation of
the new basis functions by taking into account a first set of basis functions and the new
state evolution. To do so we propose an incremental approach: the APHR method. This
method was developed for the decomposition of a state evolution implicitely defined by a
set of non-linear time dependant equations. This implicit case leads to a model reduction
method [14]. When the state evolution is known, the APHR method leads to an incremental
Karhunen-Loève transform. A simple example is introduced to illustrate the incremental
Karhunen-Loève transform.

1.2 The APHR Method

Let’s consider the evolution of a state field sref(M, t) defined at any time t of the time
interval [0, T ] and defined for any point M in a domain Ω. The purpose of the KL expansion
of s is to find a set of basis functions (Ψk(M))k=1...r defined in Ω and a set of reduced state
variables (υk(t))k=1...r defined in [0, T ] such that:

1. Preliminary stage: Ψk is defined by the stationarity of λ(Ψ)

λ(Ψ) =

∫ T
0

(∫
Ω sref (M, t) Ψ(M) dΩ

)2
dt∫

Ω Ψ2(M) dΩ
(1)

δλ(Ψk) = 0 (2)
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λ(Ψk) �= 0 (3)∫
Ω

Ψ2
k(M) dΩ = 1 (4)

2. Projection stage: (υk(t))k=1...r minimize η(υ1, ..., υr)

η(υ1, ..., υr) =
∫ T

0

∫
Ω

(
sref (M, t)−

k=r∑
k=1

Ψk(M) υk(t)

)2

dΩ dt (5)

Obviously, this method can be applied on numerical functions, if we choose numerical
integration scheme and shape functions (Ni)i=1,...,N (N being the number of nodes) such
that:

sref (M, t) =
i=N∑
i=1

Ni(M) qi(t) (6)

The adaptive method that we propose allows to avoid the preliminary construction of
basis functions before the incremental decomposition of the state evolution. Obviously, an
initial set of known basis functions can be used, but it is not necessary. During the decom-
position of the state evolution, approximate basis functions

(
φ

(m)
k

)
k=1...r(m)

are improved.
The superscript m indicates that the approximation basis has been updated m times until
now. We will prove later that the basis functions φ(m)

k are approximations of the empirical
eigenfunction Ψk. An approximate state evolution s

(m)
φ is given by:

s
(m)
φ (M, t) =

k=r(m)∑
k=1

φ
(m)
k (M) a(m)

k (t) (7)

The adaptive procedure includes extensions of the subspace spanned by the basis func-
tions and selections of the most significant basis functions in order to represent the state
evolution.

The basis functions being defined in Ω, any linear combination of these basis functions
will be defined everywhere in Ω. We expect that the linear combination enables to estimate
the state anywhere in the domain Ω. So the reduced state variables can be computed by
considering only a part of the whole domain: a reduced integration domain Ωhyp. It is
therefore possible to reduce the number of integration points used to compute the reduced
state variables. This strategy establishes a model hyperreduction.

Let’s consider a weak form of the equations defining the state evolution. The state
evolution we want to forecast is s. At any time instant, the field s belongs to a state space
S. We consider a test function s∗ in S to obtain the following governing equation:

s(M, 0) = sini(M) (8)

R(s∗, s,
∂s

∂t
, t) = 0 ∀ s∗ ∈ S (9)

R is the residual of the governing equations. Let sref be the exact solution of these governing

equations. The norm of the residual R(s∗, s(m)
φ ,

∂s
(m)
φ

∂t , t) provides an error estimator to
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check the quality of s(m)
φ . A function decomposition can be considered appropriate when

this estimator is lower than a given bound εR (small enough) for all time t in [0, T ]. When
sref is known R is defined by:

R(s∗, s(m)
φ , t) =

∫
Ω
s∗(M)

(
s

(m)
φ (M, t)− sref (M, t)

)
dΩ (10)

Different adaptive strategies can be developed with the APHR method. The common
items of such strategies are :

1. A set of basis functions always defined in the whole time interval;

2. An extension of the subspace spanned by the basis functions thanks to residuals of
the governing equations;

3. A selection of basis functions based on a Karhunen-Loève expansion of the evolution
of reduced state variables;

4. A formulation allowing compute the reduced state variables with a reduced integration
domain Ωhyp smaller than the whole domain Ω.

The adaptive strategy must precise: (i) when the reduced state variables should be
computed; (ii) when the quality of the approximate state should be checked and (iii) when
the basis functions should be adapted. The strategy we propose is an incremental approach
that proceeds as we describe in the next paragraphs. Let’s assume that the decomposition
was done properly over the time interval [0, tα[ thanks to reduced state variables a(m)

k as-
sociated to the basis functions φ(m)

k . The first step of the algorithm is to find the next time
instant tβ (tβ ≥ tα) such that the residual computed at tβ does not satisfy the quality crite-
ria. When tβ is known, an adaptation of the basis functions is performed until the quality
criteria is satisfy at tβ. When the decomposition at tβ is good enough, the incremental
computation-adaptation can be continued. If the initial basis functions φ(o)

k does not allow
a convenient decomposition of sini the first tβ is 0. Obviously, if no basis function is known,
we can choose φ(o)

1 collinear to sini.
For the case where sref is known, the adaptation is done in two steps to satisfy the

quality criteria:

1. The first step is the KL expansion of the reduced state variables over the time in-
terval [0, tβ]. We denote V (m)

j the eigenvectors of the matrix C(m) of the averaged
autocorrelations such that:

C
(m)
kp =

∫ tβ

0
a

(m)
k (t) a(m)

p (t) dt k, p ∈
{

1, ..., r(m)
}

(11)

Let μ(m)
j be the eigenvalue related to the eigenvector V (m)

j such that:

μ
(m)
1 ≥ μ(m)

2 ≥ ... ≥ μ(m)

r(m) (12)

with

V
(m) T
i V

(m)
j =

k=r(m)∑
k=1

V
(m)
k i V

(m)
k j = δi j (13)
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where Vk i refers the k−component of vector V i

The selection of the most significant basis functions is performed by taking the r̃(m+1)

eigenvectors related to the eigenvalues greater than μ
(m)

er(m+1) , with:

μ
(m)

er(m+1) ≥ εKL μ(m)
1 (14)

where εKL is a small enough parameter (usually we choose εKL = 10−8) . The selected
eigenvectors define the basis reduction matrix V (m):

V (m) =
[
V

(m)
1 , ..., V

(m)

er(m+1)

]
(15)

The basis reduction matrix provides new basis functions
(
φ

(m+1)
k

)
k=1...er(m+1)

such
that:

φ
(m+1)
k (M) = γk

p=r(m)∑
p=1

φ(m)
p (M) V (m)

p k k = 1, ..., r̃(m+1) (16)

where γk is computed in order to normalize the basis functions, i.e.:∫
Ω
φ

(m+1)
k (M) φ(m+1)

k (M) dΩ = 1 (17)

2. The second step of the adaptation is the extension of the subspace spanned by the
functions

(
φ

(m+1)
k

)
k=1...er(m+1)

by adding the function φ
(m+1)

r(m+1) (r(m+1) = r̃(m+1) + 1)
collinear to the residual at tβ:∫

Ω
s∗(M) φ(m+1)

r(m+1)(M) dΩ = γr(m+1) R(s∗, s(m)
φ , t) ∀s∗ ∈ S, t = tβ (18)

where γr(m+1) is chosen to verify:∫
Ω
φ

(m+1)

r(m+1)(M) φ(m+1)

r(m+1)(M) dΩ = 1 (19)

Because of the basis adaptation, the reduced state variables have to be updated over
[0, tβ [ according to:

a
(m+1)
k (t) =

1
γk

p=r(m)∑
p=1

a(m)
p (t) V (m)

p k ∀t < tβ, ∀k < r(m+1) (20)

and

a
(m+1)

r(m+1)(t) = 0 ∀t < tβ (21)
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Equation (20) can be derived easily from∫
Ω

⎧⎨⎩
k=er(m+1)∑
k=1

φ
(m+1)
l (M)

γl
φ

(m+1)
k (M) a(m+1)

k

⎫⎬⎭ dΩ =

=
∫

Ω

⎧⎨⎩
p=r(m)∑
p=1

φ
(m+1)
l (M)

γl
φ(m)
p (M) a(m)

p

⎫⎬⎭ dΩ; ∀l ∈ [1, · · · , r̃(m+1)] (22)

Now, using the matrix form of Eq.(16):

φ(m+1)T (M) = φ(m)T (M) V γ (23)

(with γ the diagonal matrix containing the γk coefficients), Eq.(22) can be written in
the following matrix form:∫

Ω

{
V T φ(m)(M) φ(m)T (M)V γ a(m+1)

}
dΩ =

=
∫

Ω

{
V T φ(m)(M) φ(m)T (M) a(m)

}
dΩ (24)

and taking into account the orthogonality of the approximation functions (proved in
the next theorem), that establishes∫

Ω
φ(m)(M) φ(m)T (M)dΩ = I (25)

with I the unit tensor, as well as the orthogonality of vectors V i, i.e. V TV = I, it
results:

a(m+1)(M) = γ−1 V T a(m) (26)

that is in fact the matrix form of Eq.(20) �.

For t ≥ tβ, the reduced state variables are computed thanks to a modified Galerkin
procedure by introducing a reduced integration domain Ωhyp such that:

s∗(M) =
k=r(m+1)∑
k=1

φ
(m+1)
k (M) a∗k ∀M ∈ Ωhyp (27)

s∗(M) = 0 ∀M ∈ Ω− Ωhyp (28)

R(s∗, s(m+1)
φ , t) = 0 ∀ s∗, t > tβ (29)

The construction of Ωhyp depends on each particular problem. In this work we just
show that it is possible to perform an hyperreduction. More details on the choice of
Ωhyp can be found in [14].
To get optimal basis functions, a last KL expansion of the reduced state variables can
be performed over [0, T ] at the end of the incremental computation.
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Theorem 1.1. In the case of sref known, if Ωhyp = Ω, then the basis functions are ortho-
gonal.

Proof. Let’s assume that
(
φ

(m)
k

)
k=1...r(m)

are the orthogonal basis functions verifying:∫
Ω
φ

(m)
i (M) φ(m)

j (M) dΩ = δi j (30)

Whatever the selection criteria, the KL expansion of the reduced state variables
(
a

(m)
k

)
k=1...r(m)

provides orthogonal basis functions
(
φ

(m+1)
k

)
k=1...er(m+1)

:∫
Ω
φ

(m+1)
i (M) φ(m+1)

j (M) dΩ =

=
k=r(m)∑
k=1

p=r(m)∑
p=1

γiγj V
(m)
k i V

(m)
p j

∫
Ω
φ

(m)
k (M) φ(m)

p (M) dΩ ∀i ≤ r̃(m+1) ∀j ≤ r̃(m+1) (31)

Taking into account Eq.(30):∫
Ω
φ

(m+1)
i (M) φ(m+1)

j (M) dΩ = γi γj

k=r(m)∑
k=1

V
(m)
k i V

(m)
k j =

= γi γj δi j ∀i ≤ r̃(m+1) ∀j ≤ r̃(m+1) (32)

Finally, for j = r(m+1), the basis function is collinear to the residual which is orthogonal
to the rest of the basis functions if a classical Galerkin procedure is used to compute the
reduced state variables when Ωhyp = Ω. So the adaptation of the basis functions provides
orthogonal functions.

Theorem 1.2. In the case of sref known, when a full integration is considered (Ωhyp = Ω),
the decomposition obtained at the end of the incremental computation is the KL decompo-
sition of the approximate state evolution s

(m)
φ . So, it is an approximate KL expansion of

sref according to the precision εR.

Proof. The empirical eigenfunction Ψ(M) of the KL expansion of s(m)
φ maximizes the pro-

jection λ(Ψ):

λ(Ψ) =

∫ T
0

(∫
Ω s

(m)
φ (M, t) Ψ(M) dΩ

)2
dt∫

Ω Ψ2(M) dΩ
(33)

Let Ψp be the pth empirical eigenvector and λp its related eignevalue. Since
(
φ

(m)
k

)
k=1...r(m)

is a basis of a subspace of S, we can find (bk p)k=1...r(m) and ξp such that:

Ψp(M) =
k=r(m)∑
k=1

φ
(m)
k (M) bk p + ξp(M) (34)∫

Ω
φ

(m)
k (M) ξp(M) dΩ = 0 ∀ k ∈

{
1, ..., r(m)

}
(35)
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Due to the orthogonality of the basis functions
(
φ

(m)
k

)
k=1...r(m)

, the eigenproblem de-

fined by the stationarity of λ(Ψp) results in the following two equations:

λp bi p =
j=r(m)∑
j=1

∫ T

0
ai(t) aj(t) dt bj p (36)

and
λp

∫
Ω
s∗(M) ξp(M) dΩ =

=
∫ T

0

∫
Ω

∫
Ω
s∗(M) s(m)

φ (M, t) s(m)
φ (M ′, t) ξp(M ′) dΩ dΩ′ dt ∀ s∗ ∈ S (37)

As

∫
Ω
s

(m)
φ (M ′, t) ξp(M ′) dΩ′ =

k=r(m)∑
k=1

ak(t)
∫

Ω
φ

(m)
k (M ′) ξ(M ′) dΩ′ = 0 ∀t (38)

Eq.(37) implies that ξp is equal to zero or it is an eigenfunction associated with λp = 0.
Moreover due to the last KL expansion of the reduced state variables:∫ T

0
a

(m)
i (t) a(m)

j (t) dt = μ
(m)
i δi j (39)

So, the basis functions
(
φ

(m)
k

)
k=1...r(m)

are the empirical eigenfunctions of the Karhunen-

Loève expansion of s(m)
φ , and the eigenvalue related to φ(m)

k is μ(m)
k .

2 EXAMPLE OF AN INCREMENTAL KARHUNEN-LOÈVE EXPANSION:
A FORMAL DESCRIPTION

In this section we present a formal example of incremental Karhunen-Loève expansion of
a given state evolution. The incremental decomposition is started with one initial basis
function. Formal computations have been chosen in order to avoid any artefact related to
both the numerical integration and the numerical discretisation.

Let’s consider the function sref (x, t) = x
100 + sin(x) t + x2

(0.1+t) (Figure 1) defined in
Ω = [−100, 100], ∀t ∈ [0, T ] with T = 40. To show the capability of the hyperreduction, we
choose Ωhyp = [−1, 5] (Figure 1). A dichotomic search of tβ has been used in this example.
Another approach for finding tβ can be found in [14].

We also choose as a first basis function a constant field φ
(o)
1 (x) = 1√

200
(r(o) = 1).

Moreover we have considered the following algorithm parameters: εKL = 10−8, εR =
10−3 ‖sref‖Ω (with ‖sref‖2Ω =

∫
Ω s

2
ref dΩ). The different steps of the incremental Karhunen-

Loève decomposition of sref are :

• The first tβ is 0. We obtain: a(o)
1 (0) = 990.232

• First adaptation:

– Karhunen-Loève expansion of a(o)
1 in [0, 0]: φ(1)

1 = φ
(o)
1
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Figure 1. sref (x, t) over Ω× [0, T ] and a zoom over Ωhyp × [0, T ]

– Extension, r(1) = 2: φ(1)
2 (x) = 1.5829910−5 (−2.64563+x)(2.64663+x) (residual

at t = 0).

• Computation of the reduced state variables considering Ωhyp instead of Ω, for t ≥ 0:

a
(1)
1 (t) = 0.28284 + 0.60491 t+

98.995
0.1 + t

a
(1)
2 (t) =

−3839
0.1 + t

(−4.0245 + t)(4.0888 + t)

• The state evolution is not admissible for t > 0.1, because

‖R‖Ω = 0.000996 ‖sref‖Ω at t = 0.1

Thus, we set tβ = 0.1.

• Second adaptation:

– Karhunen-Loève expansion of a(1)
k in [0, 0.1], and selection of the unique signifi-

cant eigenvector:

V (1) =
{

0.0015682
0.99999

}
φ

(2)
1 (x) = 4.8363 10−8 + 1.5811 10−8 x+ 1.5811 10−5 x2

– Extension from the residual at t = 0.1, r(2) = 2:

φ
(2)
2 (x) = 1.5818 10−5 (−1.3187 + x) (2.3217 + x) + 3.17 10−4 sin(x)

– The reduced state variables are updated in [0, 0.1[

a
(2)
1 (t) = −3843.4 (−4.0246 + t) (4.0888 + t)

0.1 + 1.t

a
(2)
2 (t) = 0

9



• Computation of the reduced state variables considering Ωhyp instead of Ω, for t ≥ 0.1:

a
(2)
1 (t) = −3323.6(−4.3333 + t)(4.3906 + t)

0.1 + t

a
(2)
2 (t) =

3217.1(−0.011866 + t)(0.12253 + t)
0.1 + t

• The state evolution is not admissible for t > 4.9, because

‖R‖Ω = 0.00102 ‖sref‖Ω at t = 4.9

Thus, we set tβ = 4.9.

• Third adaptation:

– Karhunen-Loève expansion of a(2)
k in [0, 4.9] which results in two significant

eigenvectors:

V (2) =
{

0.999909 −0.0135255
0.0135255 0.999909

}

φ
(3)
1 (x) = 1.5812 10−5 (−0.18752 + x) (0.2019 + x) + 4.2305 10−6 sin(x)

φ
(3)
2 (x) = 1.5818 10−5 (−1.3253 + x) (2.342 + x) + 3.2133 10−4 sin(x)

– Extension from the residual at t = 4.9, r(3) = 3:

φ
(3)
3 (x) = 1.3507 10−5 (−40.556 + x) (−3.4517 + x)− 2.6478 10−4 sin(x)

– The reduced state variables are updated in [0, 4.9[, being a(3)
3 = 0.

• Computation of the reduced state variables considering Ωhyp instead of Ω for t ≥ 4.9.

• The state evolution is not convenient after t = 10.5

‖R‖Ω = 0.00102 ‖sref‖Ω at t = 10.5

• Fourth adaptation:

– Karhunen-Loève expansion of a(3)
k in [0, 10.5] which results in two significant

eigenvectors:

V (3) =

⎧⎨⎩ 0.997634 −0.0687428
−0.068728 −0.997298
−0.00147 −0.0259241

⎫⎬⎭
φ

(4)
1 (x) = 1.5811 10−5 (−0.01327 + x)(0.012948 + x)− 1.8838 10−5 sin(x)

φ
(4)
2 (x) = −1.2621 10−8 − 5.924 10−7 x− 1.5811 10−5 x2 − 2.8834 10−4‘ sin(x)

– Extension from the residual at t = 10.5, r(4) = 3 :

φ
(4)
3 (x) = 1.5796 10−5 (−3.5587 + x)(0.081079 + x) + 6.0791 10−5 sin(x)
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– The reduced state variables are updated over [0, 10.5[, being a(4)
3 = 0

• Computation of the reduced state variables considering Ωhyp instead of Ω for t ≥ 10.5.

• The state evolution is convenient until t = 40

We obtain a very accurate decomposition :√√√√∫ T0 ∫Ω(s(4)
φ − sref )2 dΩ dt∫ T

0

∫
Ω s

2
ref dΩ dt

= 2 · 10−5

As for the snapshot POD, different time instants are selected to expand the subspace
spanned by the basis functions. But in the proposed approach they are selected according to
the value of the residual due to the current basis functions. Moreover, since each extension
is obtained with the residual we are sure to improve the subspace spanned by the basis
functions.

A snapshot POD of s(4)
φ can be performed when the decomposition is done. We can

choose as snapshots the states corresponding to the time instants of the adaptations:
{0, 0.1, 4.9, 10.5}. The eigenvalues provided by the snapshot POD are:{

5.00195 1011, 13543.8, 25.741, 2.38875 10−5
}

The eigenvalues of the autocovariance matrix of the reduced state variables, for the
whole time interval are: {

4.55512 1011, 1.962379 1010, 249052
}

For both approaches there are only 3 significant basis functions for the same accuracy. The
snapshot POD provides eigenvectors that enable to reduce the contribution of the third
empirical eigenfunction. It also improves the contribution of the first basis function. If
we choose a full integration scheme (Ωhyp = Ω) during the incremental Karhunen-Loève
transform, the Karhunen Loève decomposition of the reduced state variables over [0, T ]
provides the following eigenvalues:{

5.00195 1011, 13538.9, 3.86629 10−5
}

This decomposition is better than the one obtained with the snapshot POD at the end of the
first incremental decomposition because it reduces the contribution of the third empirical
eigenfunction.

3 FIRST ATTEMPTS IN COUPLING MODEL REDUCTION AND
MESHLESS TECHNIQUES

3.1 The Problematic of Evolving Domains and Discretisations Involving a High
Number of Degrees of Freedom

Some engineering problems are defined in domains that evolve in time. The consideration of
a moving mesh strategy (as used for example in the Lagrangian finite element formulations)
allows to describe accurately the domain evolution, although one must be careful in the
boundary tracking due to the eventual contacts for example. Moreover, the advection
terms can be accurately integrated using the method of characteristics along the nodal
trajectories. However, as it is well known in the context of the Lagrangian finite element
method, the mesh becomes too distorted in few iterations to guarantee an accurate field
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interpolation in the mesh elements. In order to alleviate the remeshing constraint, some
meshless methods have been proposed. However, usual meshless techniques do not define a
nodal interpolation, and in consequence important difficulties are found in the imposition of
the essential boundary conditions. The Natural Element Method —NEM— [16], is a novel
meshless method, which has the property of nodal interpolation, and its accuracy does
not depend on the regularity of nodal distribution, i.e. there is not geometrical restriction
in the relative position of the nodes. Thus, if the NEM is used in the discretisation of
the variational formulation of the problem, then, the nodal position can be updated using
the material velocity or the advection field, at the same time that advection equations are
integrated using the method of characteristics. Even in the case of very irregular nodal
distributions, when the solution can be interpolated by using the approximation functional
basis, no remeshing is required. In any case, the introduction or the elimination of some
nodes is an easy task [12].

Some 2D or 3D engineering problems remain today untreatable because of the extremely
large number of degrees of freedom -dof- involved. To alleviate this drawback, one possibility
lies in the use of a model reduction (based on the Karhunen-Loève decomposition —KLD—,
also known as proper orthogonal decomposition —POD—). Model reduction techniques
have been successfully applied in the finite element framework for modeling dynamic models
of distributed parameters [13]. However, in these applications several direct problems must
be solved to extract empirical functions that most efficiently represent the system. This
set of empirical eigenfunctions is used as functional basis of the Galerkin procedure to
lump the governing equation. Thus, for example, the resulting lumped parameter model
can be used to obtain the solution when the boundary conditions are changing randomly.
To avoid these preliminary costly calculations, Ryckelynck proposed in [14] to start the
resolution process from any reduced basis, using the Krylov subspaces generated by the
governing equation residual for enriching the approximation basis, at the same time that a
proper orthogonal decomposition extracts relevant information in order to maintain the low
order of the approximation basis. This procedure has been detailed in the previous section.
Moreover, there is an appropriate choice of a reduced number of weighting functions able
to solve the problem efficiently which leads to the “A priori hyper-reduction” approach
[14], but this approach, summarized previously, is not concerned in the present section.
Until now, the “a priori” model reduction techniques were proposed and applied in the
context of problems defined in a fixed mesh. In this section we analyze its application in
problems defined in domains evolving in time and two important aspects will be addressed:
(i) the effects of remeshing, with the related field projections; and (ii) the case of evolution
problems described with a set of nodes whose position evolves in time.

The plan of this part is the following: we start with a revision of the natural element
discretisation technique (the finite element one is assumed to be well known by the reader)
which as previously argued, allows to simulate large domains evolutions keeping the same
set of nodes. In section 3 we introduce the main ideas related to the Karhunen-Loève de-
composition as well as to the main ideas associated with the adaptive modeling allowing
an “a priori” model reduction using a discrete formalism instead the continuous and formal
description employed in the previous section. Finally, all the ideas will be illustrated con-
sidering some numerical examples involving coupled non-linear advection equations defined
in domains evolving in time.

3.2 The α-Natural Element Method

In the last decade considerable research efforts have been paid to the development of a series
of novel numerical tools that have been referred as meshless or meshfree methods. These
methods do not need explicit connectivity information, as required in standard FEM. The
geometrical information is generated in a process transparent to the user, alleviating the

12



pre-processing stage of the method. They also present outstanding advantages in modelling
complex phenomena, such as large deformation problems, forming processes, fluid flow, etc,
where traditional and more experienced techniques, like the FEM, fail due to the need of
excessive remeshing.

The Natural Element Method (NEM) is one of the latest meshless techniques applied in
the field of linear elastostatics. It has unique features among meshless Galerkin methods,
such as interpolant character of shape functions and exact application of essential boundary
conditions (see the review paper [5]). These capabilities and its inherent meshless character
make the NEM an appealing choice also for its application in the simulation of fluid flows.
The NEM is based on the natural neighbour interpolation scheme, which in turn relies
on the concepts of Voronoi diagrams and Delaunay triangulations (see Figure 2), to build
Galerkin trial and test functions. These are defined as the natural neighbour coordinates
(also known as Sibson’s coordinates) of the point under consideration, that is, with respect
to Figure 3, the value at point x of the shape function associated with the node 1, is defined
by:

N1(x) =
Area(abfe)
Area(abcd)

. (40)

These functions are used to build the discrete system of equations arising from the
application of the Galerkin method in the usual way. It has been proved, that the angles
of the Delaunay triangles are not influencing the quality of the results, in opposition to
the FEM. In addition, the NEM has interesting properties such as linear consistency and
smoothness of the shape functions (natural neighbour coordinates are C1 everywhere except
at the nodes, where they are C0). But perhaps the most interesting property of the Natural
Element Method is the Kronecker delta property, i.e. Ni(xj) = δij . In opposition to
the vast majority of meshless methods, the NEM shape functions are strictly interplant.
This property allows an exact reproduction of linear (even bilinear in some 3D cases)
displacement fields on the boundary of convex domains, since the influence of interior points
vanishes along convex boundaries. This is not true in non-convex boundaries, where some
specific treatment is required. The alpha-shape concept allows circumventing this difficulty
when it is used in the context of a natural neighbour interpolation [4].

Figure 2. Delaunay triangulation and Voronoi diagram of a cloud of points. On the right, an
example of a degenerate distribution of nodes, with the two possible triangulations
depicted. In this last case, four points lie in the same circumcircle and thus no
single triangulation exists

The application of the NEM for complex fluid flow simulations has been recently pro-
posed in [12]. The main advantage of using the NEM in the framework of an updated
Lagrangian formulation for simulating free or moving surface flows is the fact that the
nodal position can be updated from the flow kinematics, without remeshing requirements,
allowing the accurate description of large transformations and the history effects. In the
same way it can be applied to solve, with great accuracy, advection-diffusion problems in
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Figure 3. Definition of the Natural Neighbour coordinates of a point x

an operator splitting framework. Thus, the advection term governs the nodal position up-
dating, whereas the diffusion equation is solved in the just updated domain, as illustrated
later in this paper.

3.3 Reduced Order Modelling: A Discrete Approach
3.3.1 Introduction: the Karhunen-Loève decomposition

We assume that the evolution of a certain field u(x, t) is known (being its evolution governed
by a PDE). In practical applications, this field is expressed in a discrete form, that is, it is
known at the nodes of a spatial mesh and for some times u(xi, tn) ≡ uni . We can also write
introducing a time discretisation un(x) ≡ u(x, t = nΔt); ∀n ∈ [1, · · · , P ]. The main idea of
the Karhunen-Loève (KL) decomposition is how to obtain the most typical or characteristic
structure φ(x) among these un(x) ∀n. This is equivalent to obtaining a function φ(x) that
maximizes λ defined by

λ =

∑n=P
n=1

[∑i=N
i=1 φ(xi)u

n(xi)
]2

∑i=N
i=1 (φ(xi))2

(41)

The maximization (δλ = 0) leads to:

n=P∑
n=1

[( i=N∑
i=1

φ̃(xi)u
n(xi)

)( j=N∑
j=1

φ(xj)u
n(xj)

)]
= λ

i=N∑
i=1

φ̃(xi)φ(xi); ∀φ̃ (42)

which can be rewritten in the form
i=N∑
i=1

{
j=N∑
j=1

[ n=P∑
n=1

un(xi)u
n(xj)φ(xj)

]
φ̃(xi)

}
= λ

i=N∑
i=1

φ̃(xi)φ(xi); ∀φ̃ (43)

Defining the vector φ such that its i-component is φ(xi), Eq.(43) takes the following
matrix form

φ̃
T
k φ = λφ̃

T
φ; ∀φ̃⇒ k φ = λφ (44)

where the two points correlation matrix is given by

kij =
n=P∑
n=1

un(xi)u
n(xj)⇔ k =

n=P∑
n=1

un(un)T (45)
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which is symmetric and positive definite. If we define the matrix Q containing the discrete
field history:

Q =

⎛⎜⎜⎝
u1

1 u2
1 · · · un1

u1
2 u2

2 · · · un2
...

...
. . .

...
u1
N u2

N · · · unN

⎞⎟⎟⎠ (46)

is direct to verify that the matrix k in Eq. (44) results

k = Q QT (47)

where the diagonal components are given by

kii = (Q QT )ii =
j=P∑
j=1

(uji )
2 (48)

Thus, the functions defining the most characteristic structure of un(x) are the eigen-
functions φk(x) ≡ φ

k
associated with the highest eigenvalues.

3.3.2 A posteriori reduced modelling

If some direct simulations have been carried out, we can determine u(xi, t
n) ≡ uni , ∀i ∈

[1, · · · , N ] ∀n ∈ [1, · · · , P ], and from these the r eigenvectors related to the r-highest
eigenvalues φ

k
= φk(xi), ∀i ∈ [1, · · · , N ], ∀k ∈ [1, · · · , r] (with r � N). Now, we can try

to use these r eigenfunctions for approximating the solution of a problem slightly different to
the one that has served to define u(xi, tn). For this purpose we need to define the matrix A

A =

⎛⎜⎜⎝
φ1(x1) φ2(x1) · · · φr(x1)
φ1(x2) φ2(x2) · · · φr(x2)

...
...

. . .
...

φ1(xN ) φ2(xN ) · · · φr(xN )

⎞⎟⎟⎠ (49)

Now, we consider the linear system of equations resulting from the discretisation of a
partial differential equation (PDE) in the form

H U = F (50)

Obviously, in the case of evolution problems F contains the contribution of the solution at
the previous time step.

Then, assuming that the unknown vector contains the nodal degrees of freedom, it can
be expressed as

U =
i=r∑
i=1

aiφi = A a (51)

it results
H U = F ⇒ H A a = F (52)

and multiplying both terms by AT it results

ATH A a = ATF (53)

which proves that the final system of equations is of low order, i.e. the dimensions of ATH A

are r × r, with r� N , and the dimensions of both a and ATF are r × 1.
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Remark 3.1. Eq.(53) can be also derived introducing the approximation (51) into the PDE
Galerkin form.

Remark 3.2. Ryckelynck proposed in [14] another reduction in the number of weighting
functions required to evaluate accurately equation (53). He called this new technique an
“a priori” hyper-reduction strategy. Even if this strategy could be easily applied in the
examples that we present later, we prefer, for the sake of simplicity, avoid its introduction
in those examples because it has been discussed deeply in the first part of this work.

3.3.3 Adaptivity via an a priori model reduction: discrete approach

In order to compute reduced model solutions without an a priori knowledge, Ryckelynck
proposed in [14] to start with a low order approximation basis, using some simple functions
(e.g. the initial condition in transient problems) or using the eigenvectors of a similar
problem previously solved. Now, we compute S iterations of the evolution problem using
the reduced model (53) without changing the approximation basis A(0) (the superscript
indicates that this is the first approximation basis used). For a more general description
we consider that the approximation basis has been updated m times until now, that is, the
approximation basis at the present time is A(m). Now, we compute S steps of the reduced
model without changing the approximation basis. After each S iterations, the complete
discrete system (52) is constructed, and the residual R evaluated:

R = H U − F = H A(m)a(m) − F (54)

If the norm of the residual verifies ‖R‖ < ε, with ε a threshold value small enough,
we can continue for other S iterations using the same approximation basis A(m). On the
contrary, if the residual norm is too large, ‖R‖ > ε, we put S = S/2 and recompute.
When the residual becomes small enough, i.e. ‖R‖ < ε the reduced approximation basis
is enriched using some Krylov’s subspaces {R,H R,H2R, · · · }. At this time the reduced

solution a
(m)
n is stocked (n represents the corresponding time step).

Now, we compute the most representative information extracted from the reduced so-
lutions a(m)

n previously stocked. The superscript (m) indicates that these reduced order
solutions are expressed in the basis A(m). Now, applying the Karhunen-Loève decomposi-

tion to the solution evolution represented for these vectors a(m)
n (∀n) we obtain the most

representative eigenvectors defining the matrix V .
Then the evolution process can continue for other S time steps, using the enriched basis

defined by: A(m+1) = {A(m)V ,R,H R,H2R} (in our simulation we consider only the first
three Krylov’s subspaces).

After each reduced basis modification, the previous reduced solutions that have been
stocked a

(m)
n must be projected into the new basis. Thus, we can write:

a(m+1)
n =

[
(A(m+1))TA(m+1)

]−1 (
A(m+1)

)T
A(m)a(m)

n , ∀n (55)

Remark 3.3. Eq.(55) is formally equivalent to Eq.(20).

Remark 3.4. The application of the Karhunen-Loève decomposition to the reduced order
solutions instead to the nodal description has two advantages: (i) the eigenvalue problem
has a lower dimension, and (ii) as the functions in A verify the problem boundary conditions,
then any low order solution a determines a nodal solution A a verifying these boundary
conditions.
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Remark 3.5. In the numerical examples that follow, we will consider only one time interval
divided in S steps. Thus, with respect to the procedure just described, we will consider only
the approximation basis enrichment, to conclude about the convergence of this technique
in the framework of non-linear coupled advection-diffusion equations.

3.4 Numerical Examples

We consider in this section the initial square domain Ω0 = Ω(t = 0), Ω0 = [−L0, L0] ×
[−H0,H0] = [−π, π]× [−π, π], which evolves in time according to the following incompress-
ible velocity field:

v =
(
u(x, y)
v(x, y)

)
=
(
γ̇x
−γ̇y

)
(56)

being its length and width at time t, 2Lt = 2(L0e
γ̇t) and 2Ht = 2(H0e

−γ̇t) respectively,
being Ωt = [−Lt, Lt]× [−Ht,Ht]. Thus it results |Ωt| = |Ω0|.

We consider the following non-linear and coupled advection-diffusion problem defined
in this domain: {

dT
dt = αΔT − βγ(T )C
dC
dt = DΔC − γ(T )C

(57)

Remark 3.6. This problem can be viewed as modeling the heat transfer in presence of an
exothermic reaction whose kinetics depends itself on the concentration and on the temper-
ature in a non-linear way.

Now, we can proceed to discretize the problem defined by Eq. (57) using an splitting
operator technique as well as an implicit Galerkin finite or natural element technique (the
problematic related to the mesh distortion will be discussed later) for solving the result-
ing diffusion problems in the updated geometry. Firstly, we will consider a fixed point
linearization. Thus, Eq.(57) can be solved in two steps:

• In the pure advection explicit step the position of the nodes xi is updated according
to the nodal velocity, without change in the nodal values:⎧⎪⎪⎨⎪⎪⎩

xn+1
i = xni + vni Δt

T
n+ 1

2
i (xn+1

i ) = T ni (xni )

C
n+ 1

2
i (xn+1

i ) = Cni (xni )

(58)

• In the diffusive step, we solve with an implicit schema the pure diffusion problem in
the just updated domain, according to

(
T ∗T C∗T

)(M 0
0 M

)(
T n+1

Cn+1

)
=
(
T ∗T C∗T

)(M 0
0 M

)(
T n+ 1

2

Cn+ 1
2

)
−

−Δt
(
T ∗T C∗T

)(αK 0
0 DK

)(
T n+1

Cn+1

)
−Δt

(
T ∗T C∗T

)(0 βG
0 G

)(
T n+1

Cn+1

)
(59)

where the particular form of matrix G depends on the linearisation of the non linear term
γ(T ).
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3.4.1 Uncoupled model analysis

We start our analysis considering the uncoupled model resulting when in Eq.(59) one as-
sumes γ(T ) = 0. Now, we consider the evolution of the temperature field in Ωt when a null
heat flux is prescribed on the domain boundary ∂Ωt, i.e. ∇T ·n|x∈∂Ωt = 0 (being n the unit
outwards vector defined on the domain boundary), and the following initial temperature is
considered in Ω0:

T (x, y, t = 0) = T0(1 + cos(x)) (60)

The numerical simulation is carried out with the choice of parameters grouped in Table 1.

N tmax L = 0 T0 Δt γ̇ α β D γ C0

101× 10 5 π 2 0.1 0.1 0.5 1 1 0 2

Table 1. Simulation parameters considered in the numerical examples

Remark 3.7. The number of nodes assumed in the y-direction is irrelevant due to the
unidirectional heat transfer resulting from the initial temperature field (60). This fact
facilitates the model validation as well as the solution representation.

Figure 4 depicts the temperature profiles each five-time steps, where we can notice how
the diffusion introduce a smoothing effect at the same time that the domain is growing in
the x-direction. We have verified that for a time large enough the temperature becomes
uniform, reaching the mean value of the initial temperature given by Eq.(60), i.e. T (x, y, t→
∞) ≈ T0, proving the conservative behavior of the discretisation schema. Finally, we can
also notice the null slope of the temperature at both boundaries, a direct consequence of
the boundary condition prescribed.

If we denote by T 5Δt, · · · , T 50Δt the vectors containing the nodal temperatures at the
times t = 5Δt, · · · , t = 50Δt respectively, we can define the matrix Q:

Q =

⎛⎜⎜⎜⎝
T 5Δt

1 T 10Δt
1 · · · T 50Δt

1

T 5Δt
2 T 10Δt

2 · · · T 50Δt
2

...
...

. . .
...

T 5Δt
N T 10Δt

N · · · T 50Δt
N

⎞⎟⎟⎟⎠ (61)

It is very important to notice that these vectors are associated with different nodal distri-
butions. Now, we solve the eigenvalue problem (44)

(Q QT )φ = λφ (62)

from which N eigenvalues result, each one related to one eigenvector. As previously
described, we select only the eigenvectors related to eigenvalues in the interval defined
by the highest eigenvalue and 10−8 times this value, i.e. {φ

1
, · · · , φ

r
} such that λk ∈

[10−8λ1, λ1], ∀k ∈ [1, · · · , r], being λ1 the highest eigenvalue. In the problem just simu-
lated there are only two eigenvalues in this interval, and in consequence the whole time
evolution could be represented, very accurately, as a linear combination of the two associ-
ated eigenvectors that we denote by φ

1
and φ

2
. We emphasize the fact that both vectors

are associated to the nodes but not to a particular nodal distribution. Moreover, in order
to represent the initial condition we propose to add to both eigenvectors, the vector form
of the initial condition that we denote by φ

0
= T 0. Thus the low order approximation basis
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Figure 4. Initial temperature distribution (stars) and temperature profiles (along
the x-axis) at times 5Δt, 10Δt, ..., 50Δt

which consist of the three functions {φ
0
, φ

1
, φ

2
} are no more orthogonal. Figure 5 depicts

these functions after normalization that we represent on the final geometry. Now, we are
going to prove that these three approximation functions are enough to represent accurately
the whole temperature evolution. For this purpose we write:

T =
i=2∑
i=0

ai(t)φi = A a =

⎛⎝φ0(x1) φ1(x1) φ2(x1)
...

...
...

φ0(xN ) φ1(xN ) φ2(xN )

⎞⎠⎛⎝a0

a1

a2

⎞⎠ (63)

that we introduce in the first relation of Eq.(59), which involves the temperature field, to
perform the following reduced order linear system:

T ∗T [M + αΔtK]T n+1 = T ∗TM T n ⇒ a∗TAT [M + αΔtK]A an+1 = a∗TATM A an (64)

after which the reduced order solution an+1 can be computed from the previous one ac-
cording to

an+1 =
[
AT [M + αΔtK]A

]−1
ATM A an (65)

where the initial condition is expressed in the reduced basis approximation by

(a0)T =
(
1 0 0

)
(66)

In Figure 6 we depict the computed solution using the reduced approximation basis
versus the one computed using the natural element method. As we can notice the evolution
of the solution is perfectly described despite of the few number of functions involved in the
reduced order approximation.

19



−6 −4 −2 0 2 4 6
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure 5. Normalized approximation functions: the continuous line represents the
initial condition, and the dashed and dotted curves the two problem
eigenvectors

Now, we will try to compute a reduced order solution using an adaptive procedure,
avoiding any “a priori” knowledge. For this purpose we start with a tentative approximation
basis that contains a single function corresponding to the initial condition, i.e.:

T = φ
0
(x)a(t) =

⎛⎝φ0(x1)
...

φ0(xN )

⎞⎠ a(t) = A(0)a (67)

Introducing the expression of the approximation basis A(0) given by Eq.(67) in the
equation governing the evolution of the reduced order solution (Eq.(65)), and taking into
account that the verification of the initial condition implies that a(t = 0) = 1, we can
compute its evolution, i.e. a(t), and from this the evolution of T (x, t) (T (x, t) = A(0)a).
Figure 7 compares the reduced order solutions computed at different times (stars curves)
with the reference ones depicted in Figure 4 (continuous curves).

Now, from the final reduced order solution at time 50Δt (Figure 7(d), stars curve),
which we denote by T (0)(t = 50Δt), we can compute the residual that allows us to enrich the
approximation basis using the Krylov’s subspaces. Thus, the residual derives automatically
from Eq.(59)

R = [M + αΔtK]T (0)(t = 50Δt)−M T (0)(t = 49Δt) (68)

which allows to compute the successive Krylov’s subspaces. Thus, if we define the matrix
H by:

H = M−1[M + αΔtK] (69)
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Figure 6. Reduced order solutions at different times —5Δt, 10Δt, · · · , 50Δt—
computed using the reduced order approximation basis (cross symbol)
versus the reference ones computed using an approximation based on
the whole set of nodes

then, the different Krylov’s subspaces KRk can be written as

KRk = HkR, ∀k ≥ 0 (70)

The residual in our problem (which defines the first Krylov’s subspace) is depicted in
Figure 8 (in fact the successive Krylov’s subspaces are very close to the first one). Despite
the fact that the residual has been represented in the final configuration (final domain) it
will be assumed related to the nodes, and consequently it becomes well defined at each time
(that is, in each domain).

As the residual norm is higher than a small enough value ε (ε = 10−6) we must re-
computed the whole evolution using the enriched basis. Thus, we consider the reduced
approximation enriched basis A(1), which is obtained, adding the residual just computed to
A(0). Thus the new approximation results:

T =

⎛⎝φ0(x1) R(x1)
...

...
φ0(xN ) R(xN )

⎞⎠(a0

a1

)
= A1a (71)

that introduced as previously in Eq.(65) allows to recompute the evolution of the solution
in [0, tmax = 50Δt] (with aT (t = 0) = (1 0)), and the new residual at the last time
step according to Eq.(68) substituting T (0)(t = 50Δt) by the current T (1)(t = 50Δt). In
our case the evolution obtained is very close to the one depicted in Figure 6, and the
norm of the new residual is ‖R‖ = 10−10 which proves that with only two approximation
functions the evolution can be represented with very high accuracy. Moreover we have
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Figure 7. Reduced order solutions computed using the approximation basis con-
sisting on the initial condition (stars) versus de reference ones (continu-
ous curve), at times 5Δt, 20Δt, 35Δt, 50Δt (up-left, up-right, down-left
and down-right respectively)

proved that the enrichment technique based on the Krylov’s subspaces, originally proposed
in the Ryckelynck works, is able to adapt also the approximation basis in few iterations in
problems involving large domain transformations.

3.4.2 Projection induced by remeshing

When one proceeds in the framework of the natural element discretisation, large domain
transformations can be accounted without any remeshing requirement, instead the frequent
remeshing required when one proceeds using a finite element strategy. However, even in the
natural element case, some times we need to add new nodes during the problem resolution,
according to a suitable error estimator or indicator, to improve the solution representation,
and consequently the computed solution accuracy. In the same way, some times, one could
wish reduce de number of nodes, because even if there is not a direct incidence in the
size of the linear problem when a model reduction is applied, they imply an integration
necessity in the discretisation of the variational formulation. One possibility for alleviating
this arduous task lies in the use of a selective integration as proposed in Ryckelynck [14]
and summarized in the first part of this paper. In any case we will analyze in this section
the incidence of a remeshing in the low order approximation basis, and we prove that if a
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Figure 8. Computed residual at the last time step related to the low order basis A(0)

basis projection follows the remeshing operation, the results quality remains unchanged.
To illustrate this procedure, we consider that the evolution is started at time t = 0

using the previous reduced approximation basis A(1), from the initial condition aT (t = 0) =
(1 0). At time t = 25Δt the nodes are repositioned according to the expression (72) (other
possibilities have been also tested):

x∗i = xi + (Lt − xi) |xi|2Lt
, ∀i ∈ [1, · · · , N ] (72)

without changes in the y-coordinate.
In fact, if despite of the remeshing operation the approximation basis is not updated,

the approximation functions expressed from the new mesh result significantly different to
the initial ones (Figure 9(a)), and consequently, large deviations appear in the final solution
with respect to the reference one, as noticed in Figure 9(b).

To avoid the deviations noticed in Figure 9(b), we propose to apply a projection of
the approximation functions between the old and new meshes. Several possibilities exist
to perform this projection, but here we consider the simplest one, that is defined by the
following relation:⎛⎜⎜⎜⎝

φ∗j (x
∗
1)

φ∗j (x
∗
2)

...
φ∗j (x

∗
N )

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎝
N1(x∗1) N2(x∗1) · · · NN (x∗1)
N1(x∗2) N2(x∗2) · · · NN (x∗2)

...
...

. . .
...

N1(x∗N ) N2(x∗N ) · · · NN (x∗N )

⎞⎟⎟⎠
⎛⎜⎜⎝
φj(x1)
φj(x2)

...
φj(xN )

⎞⎟⎟⎠ ; j = 1, 2 (73)

where Nk are the shape functions related to the old nodal distribution. The previous system
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Figure 9. (a) Representation of the normalized approximation functions before
(continuous) and after the nodes repositioning (dashed); (b) final com-
puted field at t = 50Δt when a remeshing is applied at timet = 25Δt
without changes in the reduced approximation basis: computed solu-
tion (dashed) compared to the reference one (continuous line)

can be expressed in the compact form:

J φ
j

= φ∗
j
; j = 1, 2. (74)

Thus, after each remeshing the change of basis matrix J must be computed, and the
approximation basis projected in the new one according to:

A∗ = J A (75)

that replaces the expression of A in Eq.(65) up to the remeshing step, until the new remesh-
ing which involves a new projection.

If we proceed in this form, then we obtain the results shown in Figure 10 instead the
previously obtained (without the projection) depicted in Figure 9.

3.5 An Example of Non-Linear Coupled Models

In this section we consider the coupled formulation given by Eq. (59) when the parameter
δ(T ) is no more null, and a fixed-point linearization is assumed for γ(T ) = γT . Thus, for
the simulation we consider the parameters grouped in Table 1 with γ = 1. Moreover, the
initial concentration field is assumed in the form

C(x, y, t = 0) = C0(1 + cos(x)) (76)

We assume a reduced coupled approximation basis such that[
T n+1

Cn+1

]
= Â â (77)

which introduced in Eq.(59) allows the coupled solution updating:

ân+1 =
[
Â
T

[M̂ + ΔtK̂ + ΔtĜ
n
]Â
]−1

Â
T
M̂ Âân (78)
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Figure 10. (a) Representation of the non-normalized approximation functions be-
fore (stars) and after the nodes repositioning (continuous); (b) final
computed field at t = 50Δt when a remeshing is applied at time
t = 25Δt and then the associated projection of the reduced approx-
imation basis: computed solution (stars) compared to the reference
one (continuous)

where

M̂ =
(
M 0
0 M

)
(79)

K̂ =
(
αK 0
0 DK

)
(80)

Ĝ
n

=
(

0 βGn

0 Gn

)
(81)

Remark 3.8. In the case of γ(T ) = γ = 1 the problem becomes linear and the matrix Gn is
reduced to the mass matrix, i.e. Gn ≡M .

Now, we start the evolution process with the following reduced coupled approximation
basis Â

(0)
and reduced order coupled initial condition â(t = 0):

Â
(0)

=
(
T 0 0
0 C0

)
(82)

where T 0 and C0 are the vector representation of both nodal temperatures and concentra-
tions. Thus, the natural election of â(t = 0) results

â(t = 0) =
(

1
1

)
(83)

The temperature and concentration reduced order solution are depicted in Figure 11 at
times 5Δt, 20Δt, 35Δt and 50Δt.

In Figure 12 we depict the first Krylov’s subspace (residuals) for both the temperature
(dashed curve) and the concentration (continuous curve).
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Figure 11. Reduced order temperatures (continuous) and concentrations (dashed)
computed using the approximation basis consisting only the initial con-
ditions, at times 5Δt, 20Δt, 35Δt and 50Δt (up-left, up-right, down-left
and down-right respectively)

The basis enrichment is performed by adding to Â
(0)

the residual just computed to

generate the next approximation basis Â
(1)

, which will be used to recompute the whole
evolution process. The other Krylov’s subspaces are not introduced because they result
very close to the first one. This adaptive procedure, in which at the end of the evolution
process the approximation basis is updated using the Krylov’s subspaces continues until the
convergence, that is, until obtaining a small enough residual norm. Figure 13 illustrates the
evolution solution after reaching convergence in the adaptive procedure (this convergence
is achieved in some - two or three - iterations despite the use of a fixed-point linearization
of the non-linear term). This solution is very accurate with respect to the reference one
computed by solving the problem using the finite or the natural element representation. We
can notice in Figure 13 the non-linear coupling effect which implies higher reaction rates as
the temperature increases. Thus, in the zones with higher temperature, we observe a faster
evolution of the concentration, which reaches its lowest values.

Other possibility for treating the non-linearity lies in the use of a Newton technique. In
this case at each time step the solution is searched from the one computed at the previous
iteration using the iteration algorithm proposed in the next paragraphs.
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Â
(0)

for both temperatures (dashed) and concentrations (continuous)

We start from Eq.(59) that we write in a compact form[
M̂ + ΔtK̂ + ΔtĜ(TCn+1)

]
TCn+1 − M̂ TCn = 0 (84)

where the TC is the vector containing the nodal temperatures and concentrations.
Now assuming that TCn and TCn+1 will be expressed using the reduced approximation

basis, we can also consider that if we are looking for the value of TCn+1 starting from
an estimation (that could consist in the solution at the previous time step) by adding the
pertinent corrections, then that correction can be expressed using the same reduced order
approximation basis. Thus, finally, we can write:[

Â
T [
M̂ + ΔtK̂ + ΔtĜ

n+1(s)

T

]
Â
]
Δân+1(s) =

= −
[
Â
T [
M̂ + ΔtK̂ + ΔtĜ

n+1(s)]
Â
]
ân+1(s) + Â

T
M̂ Â ân (85)

with
ân+1(s+1) = ân+1(s) + Δân+1(s) (86)

and being Ĝ
n+1(s)

T
the tangent matrix related to the linearization of the non-linear term

(see Eq. (57)), whose variational expression results:

γ

∫
C∗TC ⇒ γ

∫
C∗ΔTC + γ

∫
C∗TΔC (87)
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Figure 13. Reduced order temperatures (dashed) and concentrations (continuous)
computed using the approximation basis obtained after the convergence
of the adaptive enrichment procedure, at times 5Δt, 20Δt, 35Δt and
50Δt (up-left, up-right, down-left and down-right respectively)

We have noticed that the non-linear algorithm, that must be solved at each time step
due to the full-implicit character of the scheme, converges in two or three iterations.

4 APPLICATION OF MODEL REDUCTION IN THE SIMULATION OF
KINETIC THEORY MODELS

4.1 Mechanical Modelling of Short Fiber Suspensions

Numerical modelling of non-Newtonian flows usually involves the coupling between equa-
tions of motion, which define an elliptic problem, and the fluid constitutive equation, which
introduces an advection problem related to the fluid history. In short fiber suspensions
(SFS) models, the extra-stress tensor depends on the fiber orientation whose evolution
can be modelled from a transport problem. In all cases the flow kinematics and the fiber
orientation are coupled: the kinematics of the flow governs the fiber orientation, and the
presence and orientation of the fibers modify the flow kinematics.

If one uses SFS flows in material forming processes, the final fiber orientation state
depends on the process and exhibits flow-induced anisotropy. Thus, we need to compute
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the fiber orientation in order to predict the final mechanical properties of the composite
parts, which depends strongly on the fiber orientation. Moreover, the numerical simulation
of such flows becomes interesting if one want to identify their rheological parameters using
some rheometric devices and an appropriate inverse technique.

This section focuses in the determination of fiber orientation assuming a known kine-
matics. For this purpose an accurate approach deal with a microscopic simulation using
an orientation distribution function related to each material point. That formalism, called
Fokker-Planck formalism, is a commonly used description of kinetic theory problems, for
describing the evolution of the configuration distribution function. This function represents
the probability of finding the microstructural element in a particular configuration.

In the case of a short fiber suspension, the configuration distribution function (also
known as orientation distribution function) gives the probability of finding the fiber in
a given direction. Obviously, this function depends on the physical coordinates (space
and time) as well as on the configuration coordinates, that taking into account the rigid
character of the fibers, are defined on the surface of the unit sphere. Thus, we can write
Ψ(x, t, p), where x defines the position of the fiber center of mass, t the time and p the unit
vector defining the fiber orientation. The evolution of the distribution function is given by
the Fokker-Planck equation

dΨ
dt

= − ∂

∂p
(Ψṗ) +

∂

∂p

(
Dr

∂Ψ
∂p

)
(88)

where d/dt represents the material derivative, Dr is a diffusion coefficient and ṗ is the fiber
rotation velocity. The orientation distribution function must verify the normality condition:∮

Ψ(p)dp = 1 (89)

When the fibers are assumed ellipsoidal and when the suspension is dilute enough, the
rotation velocity can be obtained from the Jeffery’s equation

ṗ = Ω p + k D p − k(pT D p) p (90)

where Ω and D are the vorticity and the strain rate tensors respectively, associated with
the fluid flow undisturbed by the presence of the fiber, and k is a scalar which depends on
the fiber aspect ratio λ (ratio between the fiber length and the fiber diameter)

k =
λ2 − 1
λ2 + 1

(91)

In a former paper [3] the discretisation of the advection dominated Fokker-Planck equation,
governing the fiber orientation in short fiber suspension flows, was carried out using a
particle technique, where the diffusion term was modelled from random motions. It was
pointed out that the number of fibers required in this stochastic simulation to describe
the fiber distribution increases significantly with the diffusion coefficient Dr. Thus, it was
argued that for practical applications the use of the particle method in the framework of
a stochastic simulation, is restricted to very slight diffusion effects. When the diffusion
becomes dominant, continuous approximations using a fixed mesh seem to be suitable, but
in this case accurate stabilizations are required for dealing with small diffusion effects, and
a lack of accuracy is noticed in the treatment of the advection dominated case.

In order to reduce degrees-of-freedom (DOF) needed for computing the orientation
distribution, another particle approach [1] was used in order to solve the Fokker-Planck
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equation using smooth particles. The main idea of this deterministic approach lies in
the introduction of the Fokker-Planck diffusion term into the advection one, which allows
to proceed in a Lagrangian deterministic manner without a mesh support requirement.
However, the Fokker-Planck equation is defined in a multidimensional space involving the
physical and the conformation coordinates. This fact induced the necessity of using a
extremely large number of particles, whit an unfavorable incidence in the method efficiency.

In this section an “a priori” model reduction technique will be introduced for reducing
the number of degrees of freedom involved in the simulation.

4.2 Spatial Discretisation

An illustration of the technique will be presented in the 2D case where pT = (cosϕ, sinϕ).
Thus the Fokker-Planck equation writes:

dΨ
dt

= − ∂

∂ϕ
(Ψϕ̇) +

∂

∂ϕ

(
Dr

∂Ψ
∂ϕ

)
(92)

where ϕ is the orientation angle, Ψ and ϕ̇ are functions of (x, t, ϕ), and the diffusion factor
Dr is assumed constant. For the seek of simplicity, time will be considered as an implicit
variable and material position x will be omitted knowing that a distribution function will
be associated to each material point. Obviously, in homogeneous field, only one distribution
function will be computed. Equation (92) can be written as

dΨ
dt

+ E0(ϕ).Ψ + E1(ϕ).
∂Ψ
∂ϕ

+ E2(ϕ).
∂2Ψ
∂ϕ2

= 0 (93)

The velocity vector has two components vT = (u, v) and (x, y) are the space coordinates.
Functions E0 , E1 and E2 can be deduced from the velocity gradient

Gradv =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
(94)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
E0(ϕ) = −k

(
(
∂u

∂x
− ∂v

∂y
) cos(2ϕ) + (

∂u

∂y
+
∂v

∂x
) sin(2ϕ)

)
E1(ϕ) =

1
2

(
∂v

∂x
− ∂u

∂y
+ k

[
(
∂u

∂y
+
∂v

∂x
) cos(2ϕ) + (

∂v

∂y
− ∂u

∂x
) sin(2ϕ)

])
E2(ϕ) = E2 = −Dr

(95)

Firstly, the problem is formulated in the Finite Element framework using a weighting func-
tion Ψ∗. ∫ π

−π

dΨ
dt
.Ψ∗ dϕ +

∫ π

−π
E0(ϕ).Ψ.Ψ∗ dϕ +

∫ π

−π
E1(ϕ).

∂Ψ
∂ϕ

.Ψ∗ dϕ

+
∫ π

−π
E2(ϕ).

∂2Ψ
∂ϕ2

.Ψ∗ dϕ = 0
(96)

Using a linear interpolation in each 2-nodes 1D-element, we can write:

Ψe∗(ϕ) =
2∑
i=1

Ψ∗i (ϕ) =
2∑
i=1

Ni(ϕ)Ψe
i
∗ (97)
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Where Ψe
i and Ψe

i
∗ are the values at node i of Ψ and Ψ∗ respectively, and Ni(ϕ) is the

associated linear shape function which takes a unit value at the node i vanishing at the
other nodal positions.
Assuming the solution periodicity Eq.(96) can be rewritten after integration by parts, as:∫ π

−π

dΨ
dt
.Ψ∗ dϕ +

∫ π

−π
E0(ϕ).Ψ.Ψ∗ dϕ +

∫ π

−π
E1(ϕ).

∂Ψ
∂ϕ

.Ψ∗ dϕ

−
∫ π

−π
E2(ϕ).

∂Ψ
∂ϕ

.
∂Ψ∗

∂ϕ
dϕ = 0

(98)

Eq.(98) exhibits an advection-diffusion character. The Finite Element Method needs a
special treatment to avoid numerical instabilities induced by the convection term. A non-
consistent upwinding formulation is considered here, which modifies the weighting function
related to the advection term Ψ̄∗ as described later. Thus, the stabilized variational formu-
lation results:∫ π

−π

dΨ
dt
.Ψ∗ dϕ +

∫ π

−π
E0(ϕ).Ψ.Ψ∗ dϕ +

∫ π

−π
E1(ϕ).

∂Ψ
∂ϕ

.Ψ̄∗ dϕ

−
∫ π

−π
E2(ϕ).

∂Ψ
∂ϕ

.
∂Ψ∗

∂ϕ
dϕ = 0

(99)

where in each element
Ψ̄e∗(ϕ) =

2∑
i=1

Ψ̄∗i (ϕ) (100)

with
Ψ̄∗i (ϕ) = Ni(ϕ) +

βh

2
∂Ni(ϕ)
∂ϕ

(101)

where h is the element size and β is the upwinding parameter whose optimal value results:

β = coth(Pe)− 1
Pe

(102)

where the Peclet number Pe is given by

Pe =
E1(ϕ) · h
2 · E2(ϕ)

(103)

Integration of equation (99) in ]− π, π] leads to the ordinary differential equations system

Ψ∗TM Ψ̇ + Ψ∗TG
0
Ψ + Ψ∗TG

1
Ψ + Ψ∗TG

2
Ψ = 0 (104)

Eq.(104) can be rewritten introducing the matrix G, with G = G
0

+G
1

+G
2
, as

M Ψ̇ + G Ψ = 0 (105)

The system defined by the last equation under the normality condition, can be solved in
an usual manner. The model reduction technique described in the previous sections can be
applied for solving this ODE system using a very reduced number of degrees of freedom.
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4.3 Results and Discussion

An homogenous shear test has been considered to illustrate the model reduction capabilities.
An isotropic orientation distribution is assumed as initial orientation state. The velocity
gradient is given by

Gradv =
(

0 γ̇
0 0

)
(106)

with γ̇ = 1. Orientation space ϕ ∈] − π, π] has been divided in 72 finite elements. Basis
enrichment operates when the norm of the residual related to the reduced model solution
exceeds 0.001. Each enrichment is performed using the two first Krylov-subspaces. More-
over, a Karhunen-Loève decomposition allows to select the most significant basis functions.
We consider all the eigenvectors associated with eigenvalues λi > 10−8λ1 (λ1 being the
highest eigenvalue).
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Figure 14. Time-evolution of the distribution function in the start-up shearing
test: k = 0.9, Dr = 0.1, γ̇ = 1

The first case treated deal with a start-up shearing test during 10s where the steady
state is almost reached. The factor k is set to 0.9 and the diffusion coefficient Dr is set to
0.1. Figure 14 shows the time evolution of the computed solution using the reduced model
that consists of the 8 functions depicted in Figure 15. The evolution of the coefficients
related to each function involved in the reduced model is depicted in Figure 16. The same
problem has been solved using the finite element method involving 72 degrees of freedom.
The error between the finite element and the reduced model solutions is shown in Figure 17.
It can be clearly noticed the high accuracy provided by the reduced model solution despite
the reduced number of degrees of freedom involved (8 instead of 72).

A second test is conducted with the same material and simulation parameters with the
exception of the shear rate which is now time dependant. The shear rate is prescribed
according to: ⎧⎪⎨⎪⎩

γ̇ = +1 for time in [0, 5[
γ̇ = −1 for time in [5, 10[
γ̇ = +1 for time in [10, 15[
γ̇ = −1 for time in [15, 20]

(107)

Figure 18 shows the reduced model solutions at times t=0, 0.5, 1, 2, 3, 5, 5.5 , 6, 7, 8,
10, 10.5, 11,12, 13, 15, 15.5, 16, 17, 18 and 20. The size of the reduced basis was found equal
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Figure 15. Reduced basis functions used for computing the solution depicted in
Figure 14: k = 0.9, Dr = 0.1, γ̇ = 1
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Figure 16. Evolution of the reduced model coefficients in the shear test: k =
0.9, Dr = 0.1, γ̇ = 1

to 11 at the end of simulation (without any basis reduction). The approximation basis was
reduced using the Karhunen-Loève decomposition for obtaining the 4 functions depicted
in figure 19. The evolution of the coefficients related to the reduced approximation basis
functions is shown in the Figure 20. For this calculation the basis enrichment has been
performed only in the time interval [0, 10]. For all times greater than t = 10, calculation
has been done without basis enrichment. Thus we can conclude that once reduced basis was
built with a specific solicitation, the basis functions can reproduce accurately the solution
for the same kind of solicitations.

In the third and last example the same kind of cyclic solicitation has been applied by
changing the fiber parameter k which is now set to 0.5. Figure 21 shows the reduced model
solutions at different times, computed by using the approximation functions depicted in
Figure 22. Finally, in Figure 23 the evolution of the different reduced basis coefficients is
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Figure 17. Comparison between the finite element and the reduced model solutions
in the shear test: k = 0.9, Dr = 0.1, γ̇ = 1
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Figure 18. Time-evolution of the distribution function: k = 0.9, Dr = 0.1, γ̇ =
+1/− 1/+ 1/− 1

shown. In this case only 5 approximation functions are required in the simulation due to
the regularity of the searched solution related to k = 0.5. However, the FEM needs the
same number of shape functions in both cases. Thus, we can conclude that the number of
approximation functions involved in the reduced modelling depends only on the regularity
of the problem solution.

5 CONCLUSIONS

In this work we describe an algorithm which builds basis functions for function decomposi-
tion, thanks to an incremental method. This method involves a Karhunen-Loève expansion
of reduced state variables. This leads to an optimal number of basis functions. The pro-
posed algorithm is based on the APHR method. This is an adaptive strategy to build
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Figure 19. The four most significant functions of the reduced basis involved in the
reduced model: k = 0.9, Dr = 0.1, γ̇ = +1/− 1/+ 1/− 1
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Figure 20. Evolution of the reduced model coefficients: k = 0.9, Dr = 0.1, γ̇ =
+1/− 1/+ 1/− 1

reduced order model when the state evolution is implicitly defined by linear or non-linear
governing equations. In case of known state evolutions the APHR method is an incre-
mental Karhunen-Loève decomposition. A detailed formal example is given to illustrate a
reduction of the number of basis functions. A reduced integration domain is proposed to
illustrate the capability of the hyperreduction (reduction of the number of basis functions
and reduction of the integration domain).

In the second part of this work we have analyzed the application of model reduction in
transient problems defined in domains evolving in time. For this purpose we have solved
some examples of uncoupled/coupled, linear/non-linear advection-diffusion equations, in-
volving or not nodal redistributions (remeshing in the finite element context). We have
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Figure 21. Time-evolution of the distribution function in the start-up shearing
test: k = 0.5, Dr = 0.1, γ̇ = 1
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Figure 22. Reduced model functions involved in the start-up shearing test: k =
0.5, Dr = 0.1, γ̇ = 1

proved that the use of an “a priori” model reduction strategy in combination with a nodal
updating according to the advection field and consequently with the domain evolution,
avoids the necessity of field projections and stabilization for accounting advection effects.
Obviously, a nodal updating without nodal redistribution requirements is only possible
when one proceeds in the framework of meshless techniques, which are more flexible than
the finite element method with respect to the relative position of nodes. Among the vast
family of meshless techniques, we propose the use of the natural element method which, as
previously described, is the only where the imposition of essential boundary conditions is
as simple as in finite elements.

Finally a kinetic theory model has been solved to illustrate the capabilities of the pro-
posed technique for simulating complex flows involving fluids with microstructure (polymer
solutions, polymer melts or suspensions, among many others).
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Figure 23. Evolution of the reduced model coefficients: k = 0.5, Dr = 0.1, γ̇ = 1
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