
HAL Id: hal-01633392
https://hal.science/hal-01633392

Submitted on 12 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Treating Moving Interfaces in Thermal Models with the
C-NEM

Julien Yvonnet, David Ryckelynck, Philippe Lorong, Francisco Chinesta

To cite this version:
Julien Yvonnet, David Ryckelynck, Philippe Lorong, Francisco Chinesta. Treating Moving Interfaces
in Thermal Models with the C-NEM. Meshfree Methods for Partial Differential Equations II. Lecture
Notes in Computational Science and Engineering, 43, pp.255-269, 2005, �10.1007/3-540-27099-X_14�.
�hal-01633392�

https://hal.science/hal-01633392
https://hal.archives-ouvertes.fr


Treating Moving Interfaces in Thermal Models
with the C-NEM

Julien Yvonnet�, David Ryckelynck, Philippe Lorong, and Francisco
Chinesta

Laboratoire de Mécanique des Systèmes et des Procédés, UMR 8106 CNRS
ENSAM-ESEM, 151 boulevard de l’Hôpital, F-75013 Paris, France.

Abstract This paper deals with the description of a new numerical simulation tech-
nique based in the constrained natural element method, a novel meshless method,
able to compute multiphase thermal problems with moving interfaces without requir-
ing the frequent mesh updating characteristics of interfaces tracking finite element
techniques. This strategy combines some of the ideas of the natural element method
with a particular treatment of the moving boundaries and interfaces involving dis-
continuities of some fields.

1 Introduction

Phase boundaries represent material interfaces across several fields which may
exhibit sharp gradients, and even discontinuities. A wide range of numeri-
cal methods have been developed for treating these problems according to
the pertinent physics and assumptions about the interface [LER00]. When a
sharp interface is considered, its motion is governed by the jump in the tem-
perature gradient normal to the phase boundary and is accompanied by the
latent heat effects (Stefan condition). In order to satisfy these conditions the
most common approach lies in tracking explicitly the interface motion. Within
the interface tracking approach two main alternatives exist: the moving mesh
methods and the mixed Eulerian-Lagrangian methods. Moving finite element
mesh methods conform element boundaries to the interfaces as it evolves.
Although these methods are very accurate, they are limited by the severe
mesh distortion. Thus, frequent remeshing is needed, with the associated field
projections between successive meshes. Moreover, remeshing is, even today,
a delicate task in the 3D case. To alleviate remeshing efforts a number of
Eulerian-Lagrangian methods have been developed recently that track the in-
terface while solving the equations on a fixed grid [UMS99]. Many of these
methods effectively smear the discontinuity over a few grid cells, and are there-
fore not capable of representing the true discontinuity across the interface.
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A new approach for representing localized behaviours has recently emerged
in the field of the finite element method, known as the partition of unity
method [MBA96]. The main idea is to extend the classical approximation
considering the product of the standard shape functions and local enrichment
functions. The extended finite element method (X-FEM) is a variation on this
framework. Recently, the X-FEM has been coupled to the Level Set Method
[SSO94] to represent interface topologies [SCM01]. In this way, the discon-
tinuity evolution can be properly represented on a fixed background mesh,
just by adding an appropriate enrichment in the functional approximation in
the elements concerned by the moving discontinuity [JCD02]. However, when
the material in which the interface is moving, is subjected to large displace-
ments, an updated Lagrangian description could be a better choice. When the
background mesh evolves, remeshing will be required also to avoid too high
background mesh distortions.

To alleviate dependance to the mesh and to provide smoother shape func-
tions, the use of the meshfree or meshless methods is investigated. The mesh-
less methods discretize a continuum body by a finite number of particles (or
nodes) and the field of interest is interpolated under these nodes without the
aid of an explicit mesh. Many meshless methods have been proposed, includ-
ing the smooth particle hydrodynamics (SPH) [LUC77], the diffuse element
method (DEM) [NTV92], the element free Galerkin (EFG) [BLG94], the re-
producing kernel particle method (RKPM) [LJZ95], the HP clouds DOD96
and the partition of unity method (PUM) [MBA96].

The introduction of moving discontinuities in these meshless methods can
present difficulties for the following reasons: (i) The quality of the approxi-
mation as well as the conditioning of the global system is pathologically de-
pendant from the size of the support of the shape functions; (ii) Imposition
of essential boundary conditions needs particular treatments; (iii) Integration
is not accurately defined, and (iv) The physical discontinuity across the in-
terfaces must be introduced accurately. In order to overcome these different
problems, we propose the use of the constrained natural element method (C-
NEM) [YRa03] [YRb03] for treating thermal models involving moving inter-
faces. This approach is an extension of the natural element method [SMB98] in
which both trial and test functions are constructed on the basis of the Voronoi
based interpolants [SIB80] [HSU02], verifying the Kronecker delta property
and whose support is defined by the union of the Delaunay spheres passing
through the visible nodes. In the C-NEM, the introduction of a visibility cri-
terion and its related constrained Voronoi diagram preserves the appealing
properties of the NEM in any geometry (convex or not) and allows easily
the introduction of material discontinuities. In a former paper the C-NEM
has been sucessfully applied in some problems involving non convex domains,
discontinuities and cracks [YRb03].

The structure of this work is as follow: in section 2, we introduce a sim-
ple mathematical model of a thermal problem involving a moving interface.
Actually, it turns out that it results the standard Stefan problem [VUI93]. In
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section 3, the C-NEM is summarized, and it will be applied in section 4 to
discretize the weak formulation of the non-linear Stefan problem. A numerical
benchmark is presented in section 5, which allows us to conclude about the
accuracy of the proposed technique by comparing the numerical results with
the exact solution of the problem.

2 Problem Formulation

Let Ω ⊂ �2 be a bounded domain and T the temperature field. On the domain
boundary Γ ≡ ∂Ω the temperature or the thermal flux are prescribed. We
will denote by Γ1 the domain boundary where the temperature is known
T (x ∈ Γ1, t) = T (x, t) and by Γ2 the domain boundary where the heat flux q
is imposed. The thermal model is defined in the time interval [0, tmax]. The
initial temperature T (x, t = 0) = T0, where T0 is assumed to be higher than
the material melting temperature Tm. At time, t = 0, a part of the domain
boundary Γ1 is suddenly submitted to a temperature T1 < Tm. A moving
solidification front ΓI is then generated, whose position evolves in time, i.e.
ΓI(t), dividing the domain Ω in two regions Ω1(t) (containing the solid phase
at time t) and Ω2(t) (which contains the liquid phase) as shown in Figure 2.1.
For a sake of simplicity we will consider, from now on, a homogeneous and
isotropic thermal model in both phases.

Ω1
Ω2

Γ1

ΓΓΙ

Figure 2.1. Two phases problem.

The heat transfer model is defined in each phase, neglecting volumetric
source terms, by: {

c1
∂T (x,t)
∂t = ∇ · (k1∇T ) in Ω1(t)

c2
∂T (x,t)
∂t = ∇ · (k2∇T ) in Ω2(t)

(2.1)

where c1 and c2 are the volumetric heat capacities of both phases, being
k1 and k2 their thermal conductivities. The associated initial and boundary
conditions are:
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⎧⎨
⎩

T (x, t = 0) = T0 ∀x ∈ Ω
T (x, t) = T (x, t) ∀x ∈ Γ1, ∀t ∈ [0, tmax]
−k∇T (x, t) · n = q̄(x, t) ∀x ∈ Γ2, ∀t ∈ [0, tmax]

(2.2)

The evolution of the interface ΓI(t) is described by a Stefan condition:

V(x ∈ ΓI(t)) =
|[q]|
L

nI(x) (2.3)

where V is the interface velocity, L is the volumetric latent heat of fusion,
nI(x) is the normal vector to the interface at point x which is assumed to
point into the liquid phase, and [[q]] the thermal flux jump across the interface
ΓI(t), i.e.

|[q]| =
(
k1∇T |Γ−

I
(t) − k2∇T |Γ+

I
(t)

)
nI (2.4)

The additional constraint prescribed on the interface ΓI(t) is:

T (x, t) = Tm; ∀x ∈ ΓI(t) (2.5)

where Tm is the melting temperature.

3 The Constrained Natural Element Method (C-NEM)

In this section, the utility of the C-NEM to describe moving interfaces and
discontinuities in a fixed cloud of nodes is discussed. After a brief review of
the Voronoi-based interpolants, we introduce the constrained Voronoi diagram
which is used for computing the shape functions in any domain.

3.1 Natural Neighbor Interpolation

We briefly touch upon the foundation of Sibson’s natural neighbor coordinates
(shape functions) that are used in the natural element method. For a more
in-depth discussion on the Sibson interpolant and its application for solving
second-order partial differential equations, the interested reader can refer to
Braun and Sambridge [SBM95], and Sukmar et al. [SMB98]. The NEM in-
terpolant is constructed on the underlying Voronoi diagram. The Delaunay
tesselation is the topological dual of the Voronoi diagram.

Consider a set of nodes S = {n1, n2, . . . , nN} in �2. The Voronoi diagram
is the subdivision of �2 into regions Ti (Voronoi cells) defined by:

Ti = {x ∈ �2 : d(x,xi) < d(x,xj), ∀j �= i}, ∀ i (3.1)

The Sibson coordinates of x with respect to a natural neighbor ni (see
Figure 3.2) is defined as the ratio of the overlap area (volume in 3D) of their
Voronoi cells to the total area (volume in 3D) of the Voronoi cell related to
point x:
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Γ

Figure 3.2. Construction of the Sibson shape functions.

φi(x) =
Area(afghe)

Area(abcde)
(3.2)

If the point x coincides with the node ni, i.e. (x = xi), φi(xi) = 1, and all
other shape functions are zero, i.e. φj(xi) = δij (δij being the Kroenecker’s
delta). The properties of positivity, interpolation, and partition of unity are
then verified [SMB98]: ⎧⎨

⎩
0 ≤ φi(x) ≤ 1
φi(xj) = δij∑n

i=1 φi(x) = 1
(3.3)

The natural neighbor shape functions also satisfy the local coordinate
property [SIB80], namely:

x =

n∑
i=1

φi(x)xi (3.4)

which combined with Eq. (3.3), implies that the natural neighbor inter-
polant spans the space of linear polynomials (linear completeness).

Natural neighbor shape functions are C∞ at any point except at the nodes,
where they are only C0, and on the boundary of the Delaunay circles (spheres
in 3D) where they are only C1, because of the discontinuity in the neighbors
nodes across these boundaries.

Another important property of this interpolant is the ability to reproduce
linear functions over the boundary of convex domains. The proof can be found
in Sukumar et al. [SMB98]. An illustration is depicted in Figure 3.2 (b): as the
areas associated to points on the boundary become infinite, the contribution
of internal points vanish in the limit when the point approaches the convex
boundary, and the shape functions associated with nodes n1 and n2 become
linear on the segment (n1 − n2). This is not true in the case of non convex
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boundaries, and the next section focuses in an approach to circumvert this
difficulty.

Consider an interpolation scheme for a scalar function T (x) : Ω ⊂ �2 →
�2, in the form:

T h(x) =

n∑
i=1

φi(x) Ti (3.5)

where Ti are the nodal temperatures at the n natural neighbor nodes, and
φi(x) are the shape functions associated with each neighbor node. It is noted
that Eq. (3.5) defines a local interpolation scheme. Thus, the trial and test
functions used in the discretization of the variational formulation describing
the thermal problem treated in this paper take the form of Eq. (3.5).

3.2 The Constrained Natural Element Method

Constrained Voronoi Diagram. It was proved in [YRb03] [SMB98] and
[CCC02] that spurious influences between ”non-visible” nodes and lost of lin-
earity in the interpolation along boundaries of non convex domains appear
in the framework of the NEM. In order to avoid this drawback and to re-
cover all properties of the method for any geometry (including non convex
domains containing cracks or involving field discontinuities), a visibility crite-
rion is introduced in order to restrict influent nodes among natural neighbors.
The computation of the shape functions is done on the basis of the so-called
constrained (or extended) Voronoi diagram (CVD), introduced by Seidel in
[SEI88]. The constrained Voronoi cells are defined formally by:

TCi = {x ∈ �n : d(x,xi) < d(x,xj),

∀j �= i, Sx→ni
∩ Γ = ∅, Sx→nj

∩ Γ = ∅} (3.6)

where Γ is the domain boundary, composed with segments li ∈ L, L being
a set of segment in the plane, and Sa→b denotes the segment between the
points a and b.

A generalization of the constrained Delaunay triangulation to 3D doesn’t
exist without adding new nodes, as shown in [SCH28]. Nevertheless, some
techniques for constructing 3D constrained Delaunay tesselations are available
and provided in [SMB98],[SHE00] by addition of Steiner points.

The Constrained Natural Element Approximation. In order to
solve partial differential equations defined in non convex domains, or to repro-
duce some functional discontinuities, we consider the following approximation
of both the trial and the test functions:

T h(x) =

V∑
i=1

φCi (x)Ti (3.7)
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where V is the number of natural neighors visible from point x and φCi is
the constrained natural neighbor shape function related to the i-th node at
point x. The computation of the C-n-n (constrained natural neighbor) shape
functions is similar to the natural neighbor shape function, when one proceed
using the constrained Voronoi diagram introduced previously. It was shown in
[YRa03] and [YRb03] that the use of the constrained Voronoi diagram does
not affect the properties of the NEM interpolation, allowing the extension of
the linearity of the shape functions on the convex domains boundaries, to any
geometry, convex or not.

The ability of the C-NEM for treating problems involving cracks has been
illustrated in [YRb03]. In the present paper, we focus on its application in
the context of a moving interface defining two domains with different thermal
properties. Thus, defining at time t two CVD (constrained Voronoi diagrams)
of Ω1(t) and Ω2(t), both with respect to the interface ΓI(t), it can be proved
that the interpolated temperature field is C1 everywhere, except at the nodes
and on the interface ΓI(t) where it is only C0. Thus, this interpolation seems
to be appropriate to simulate the Stefan problem considered in this paper.

To illustrate this behavior, we consider the situation depicted in Figure
3.3, where the point x moves from Ω1 to Ω2. If x is in Ω1, the interpolated
field is constructed from Eq. (3.7) using the neighbor visible nodes from point
x (ΓI is assumed opaque). If x is on ΓI , according to the previous discussion,
the interpolated field is strictly linear because it only depends on the two
neighbor nodes located on ΓI . Finally, when x is in Ω2, the interpolated field
is defined using the visible neighbor and visible nodes from point x (ΓI being
opaque). The continuity of the interpolated field is then guaranteed, but a
discontinuity appears in the field derivatives, because of a sudden change in the
neighbor nodes across the interface. We can then reproduce the temperature
field continuity, as well as the expected flux discontinuity on the interface.

Ω1 ΓΙ
Ω2

Ω1 ΓΙ
Ω2

Ω1 ΓΙ
Ω2

(a) (b) (c)

Figure 3.3. Reproducing discontinuous derivatives using the constrained Voronoi
diagram.
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4 C-NEM Discretization

Assuming that in our example Γ2 ≡ ΓI , the weak formulation associated with
Eq. (2.1) results:

Find T ∈ H1(Ω) verifying T = T̄ on Γ1 such that:

∫
Ω

c
∂T

∂t
δTdΩ = −

∫
Ω

k∇T · ∇δTdΩ +

∫
ΓI (t)

|[q]|δTdΓ, ∀ δT ∈ H1
0 (Ω)

(4.1)
Where H1(Ω) and H1

0 (Ω) are the usual Sobolev functional spaces. Substi-
tuting the trial and test functions (both approximated in the C-NEM frame-
work) in the above equation and using the arbitrariness of the field δT , the
following system of equations is obtained:

CṪ + KT = F (4.2)

where T is the vector containg the unknown nodal temperatures. For time
discretization, we consider the solution on the time interval [0, tmax], parti-
tioned into steps as [tn, tn+1] and the generalized trapezoidal time stepping
algorithm characterized by the parameter α:

∂T n+1

∂t
=

T n+1 − T n − (1 − α)Δt∂T
n

∂t

αΔt
(4.3)

where ∂T 0

∂t is initialized by setting:∫
Ω

c
∂T 0

∂t
δTdΩ = −

∫
Ω

k∇T 0 · ∇δTdΩ ∀ δT ∈ H1
0 (Ω) (4.4)

which leads, after applying the discretization scheme described in Eq. (3.5),
to:

C
∂T0

∂t
= −KT0 (4.5)

The stabilized conforming nodal integration proposed by Chen et al. in
[CWY01] is employed for the numerical integration of K (see our former
work [YRb03] for more details). This technique, based on the assumed strain
method, has been used to reduce significantly the integration errors, and al-
lows to satisfy the patch test exactly in the context of the natural neighbor
interpolation, which is not the case if a standard Gauss quadrature scheme
is used [CCC02]. In the context of the C-NEM, the representative domains
related to each node used in such techniques to define the assumed gradient,
are the constrained Voronoi cells depicted in figure 3.3, which are accurately
defined everywhere, and especially in the interface neighborhood.

A lumped mass matrix C̃ is computed making use of the constrained
Voronoi cells areas as nodal weights.
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The iteration procedure is defined as:
Knowing Tn and |[q]|n at time tn, the non-linear problem associated with

Eq. (4.1) results in finding Tn+1 and |[q]|n+1 such that Eqs. (2.5) and (4.1)
are satisfied. For this purpose we proceed as follows:

1. Compute the interface velocity Vn(x) using Eq. (2.3) and update the
interface position at time tn+1 using the forward Euler formula:

xn+1
J = xnJ + ΔtVn(xnJ ) (4.6)

where xJ are the nodes defining the interface.
2. Update locally the constrained Voronoi diagram and the shape functions

associated with integration points in the interface neighborhood. Then, we
compute C̃n+1 and Kn+1.

3. Solve Eq. (4.1) using a Newton-Raphson procedure where the tangent
matrix is computed numerically.

4. Repeat while tn+1 < tmax.

An alternative scheme using the Latin method [LAD98] in the extended
finite element framework can be found in Merle and Dolbow [MED02].

5 Numerical Example

In this section, we illustrate the potentiality of the proposed technique simulat-
ing a two-phases Stefan problem. The problem is essentially one-dimensional,
but we solve it here in two dimensions to underline the outstanding features
of the method.

The Stefan problem models the one-dimensional freezing of a semi-infinite
domain (x ≥ 0). The initial temperature T0 is assumed constant in the whole
domain, being higher than the melting temperature Tm. At time t = 0 the
temperature at the left boundary x = 0 is suddenly prescribed to a value T1

lower than the melting point, originating a solidification front that progresses
from the boundary x = 0 in the x direction. The exact flow front position
xf (t) is given by:

xf (t) = 2λ
√

βst (5.1)

where βs = ks/cs is the thermal diffusivity of the solid phase, and the
constant λ satisfies the following relationship:

e−λ
2

erf(λ)
=

kl
√

η(T0 − Tm)e−ηλ
2

ks(Tm − T1)erfc(λ
√

η)
+

λL
√

π

cs(Tm − T1)
(5.2)

with η = βs/βl being the ratio of the thermal diffusivities and where kl
represents the liquid phase conductivity. The temperature field in the solid
phase 0 ≤ x ≤ xf (t) is then:
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T (x, t) = T1 +
Tm − T1

erf(λ)
erf

(
x

2
√

βst

)
(5.3)

and in the liquid phase x ≥ xf (t):

T (x, t) = T0 − T0 − Tm
erfc(λ

√
η)

erfc

(
x

2
√

βlt

)
(5.4)

In the present investigation, we use the water-satured sand thermal prop-
erties provided in [LYO81] and listed in Table I. T1 and T0 were set to -10
and 4.0 0C respectively (λ = 0.3073). We simulate the evolution of the tem-
perature field in Ω = [0, 1] × [0, 0.5] cm. In order to use the inifinite domain
solution as reference solution, the temperature at x = 1 is prescibed to its
expected value according to Eq. (5.4)

Table 5.1. Thermal properties of the water saturated sand.

Properties Solid Liquid

Volumetric heat capacity (cal.0C−1cm−3) 0.49 0.62
Thermal conductivity (cal.cm−1s−1.0C−1) 9.6.10−3 6.9.10−3

Melting temperature ( 0C) 0.0
Volumetric latent heat of fusion (cal.cm−3) 19.2

In a first test, we consider in the domain Ω a 20× 10 uniform grid and Δt
= 2s. Figure 5.4 compares the computed interface position and the exact one.
An excellent accuracy can be noticed, as depicted in figure 5.5, where the error
in the front position is represented. Figure 5.6 shows the temperature profile
at different times. We can point out that the discontinuity in the temperature
gradient is accurately obtained, being in excellent agreement with the exact
solution. The external boundary conditions are given by: T (t) = T1 on (x = 0),
T (t) = Tex given by Eq. (5.4) on (x = 1) and −k∇T · n = 0 on (y=0) and
(y=0.5). The initial condition is given by T (t = 0) = T0 in Ω.

In a second test, we consider the domain Ω containing 200 nodes dis-
tributed at random. The purpose of the present test is to investigate the
meshless feature of the technique, in which due to its meshless character no
geometrical restrictions concerning the relative nodal positions are involved.
Thus, neither the background nodal distribution nor the relatinve position of
the nodes defining the moving interface with respect to the background nodes,
induce a lack of accuracy when high distortions in the Delaunay mesh, used
to compute the Voronoi diagram, takes place. This is the main difference be-
tween the proposed strategy and the standard finite element method whose
accuracy depends significantly on the geometrical quality of the mesh. More-
over, this test approaches the situations encountered when the material is also
moving, inducing highly irregular nodal densities and high background mesh
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Figure 5.4. Computed C-NEM front
position versus the exact solution using
a 20 × 10 regular grid.
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Figure 5.5. Error in the front position.
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Figure 5.6. Temperature profiles along the line y=0.25 using a regular grid.

distortions. Figure 5.7 depicts the cloud of nodes and the interface position as
well as the associated constrained Voronoi cells. Remarkably, despite of the
very irregular nodal distribution and density, we can notice that the interface
is not distorted as it moves through the domain. From Figs. 5.5 and 5.8 we
can conclude that the accuracy is not affected significantly by the resgularity
on the nodal distribution. In Figure 5.9 some temperature profiles along the
line y = 0.25 are depicted, from which an excellent accuracy can be noticed.

6 Conclusion

In this paper, the salient features of the C-NEM meshless method are used
for treating thermal problems involving moving interfaces. The use of the
constrained Voronoi diagram allows to introduce the desired discontinuities
in the gradient of the solution without any enrichment. In the C-NEM frame-
work, essential boundary conditions can be imposed directly, due to the strict
linearity of the shape functions over the boundaries (convex or not) and the
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t = 8 s

t = 20 s

t = 64 s

t = 100 s

Figure 5.7. Computed interface position using an irregular cloud of nodes: (a)
Cloud of nodes and interface position; (b) Constrained Voronoi cells.

respect of the Kronecker delta property. No user-defined parameter is involved
in the shape functions support size, the support being defined like the union of
the Delaunay spheres passing through a node and its neighbor visible nodes.
A stabilized conforming nodal integration is computed over the constrained
Voronoi cells to enhance accuracy. The most outstanding quality of this tech-
nique is the ability for introducing discontinuities located on a line (surface
in 3D) defined by another set of nodes that move through a fixed (or also
moving) cloud of nodes which constitutes a background scattered of nodes.
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Figure 5.9. Temperature profiles along
the line y = 0.25 using an irregular grid.

The meshless character of this technique allows to proceed without remesh-
ing (in a finite element sense), even for highly irregular nodal distributions.
The method is relatively simple and delivers similar level of accuracy than
r-adaptative or the partition of unity finite element schemes. The technique
seems promising for the simulation of arbitrary and moving discontinuities
over an unstructred fixed or also moving set of nodes.
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