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Enriched Reproducing Kernel Approximation:
Reproducing Functions with Discontinuous

Derivatives

Pierre Joyot1�, Jean Trunzler1,2��, and Fransisco Chinesta2���

1 LIPSI-ESTIA, Technopole Izarbel, 64210 Bidart, France.
2 LMSP, 151 Bd. de l’Hôpital, 75013 Paris, France.

Abstract In this paper we propose a new approximation technique within the con-
text of meshless methods able to reproduce functions with discontinuous derivatives.
This approach involves some concepts of the reproducing kernel particle method
(RKPM), which have been extended in order to reproduce functions with discon-
tinuous derivatives. This strategy will be referred as Enriched Reproducing Kernel
Particle Approximation (E-RKPA). The accuracy of the proposed technique will be
compared with standard RKP approximations (which only reproduces polynomials).

1 Introduction

Meshless methods are an appealing choice to develop functional approxima-
tions (with different degrees of consistency and continuity) without a mesh
support. Thus, this kind of techniques seem to be specially appropriated for
treating 3D problems involving large displacements, due to the fact that the
approximation is constructed only from the cloud of nodes whose position
evolve during the material deformation. In this manner neither remeshing nor
fields projections are a priori required.

In order to adapt the approximation for introducing some known informa-
tion associated to the searched solution different possibilities exist. The first
one lies in the enrichment of standard approximations in the framework of
the partition of unity (PU), originally proposed by Babuška and Melenk [3],
and which is at the origin of the partition of unity finite elements (PUFEM)
[12]. Generalized finite elements (G-FEM) [15] or extended finite elements (X-
FEM) [13, 16, 17, 9] are two members of this family. In the extended finite
elements the approximation is locally enhanced by introducing appropriate
functions describing the known behavior of the problem solution.
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The second possibility lies in the introduction of some information related
to the problem solution within the approximation functional basis. For this
purpose, different reproduction conditions are enforced in the construction
of the approximation functions. This approach has been widely used in the
context of the moving least squares approximations used in the diffuse mesh-
less techniques [2] as well as in the element free Galerkin method [4]. Thus,
all the known information related to the problem solution can be introduced
in the functional approximation. Very accurate results were obtained for ex-
ample in fracture mechanics by introducing the crack tip behavior into the
approximation basis [6].

In this work we propose a numerical strategy, based on the reproducing
kernel particle techniques, able to construct approximation functions with
discontinuous derivatives on fixed or moving interfaces. This problem was
treated in the context of the partition of unity by Kronggauz et al. [10]. In
our approach the size of the discrete system of equations remains unchanged
because no additional degrees of freedom are introduced related to the en-
richment. However, the fact of enriching the approximation implies, as shown
later, a bigger moment matrix, with worse properties, but in some cases this
enrichment is only local, and in any case, the moment matrix has a low di-
mension.

The starting point of our development is the reproducing kernel particle
approximation (RKPA). The RKP approximation was introduced by Liu et
al. [11] for enforcing some degree of consistency to standard smooth particle
approximations, i.e. they proved that starting from a SPH (smooth particle
hydrodynamics) approximation [7] it is possible to enhance the kernel function
for reproducing a certain degree of polynomials. We have extended or gener-
alized this procedure in order to reproduce any function, and more concretely,
functions involving discontinuous derivatives.

Moreover, the strategy here described, can be easily coupled with a level set
description of the interface location [14] (recently introduced in the framework
of the extended finite elements [17]), which allows to capture its position when
it evolves in time. Thus, both the enrichment and the interface tracking are
made in a transparent way for the user.

This paper consists of 6 sections, in which we summarize the reproducing
kernel approximation (section 2) which allows to treat in section 3 the repro-
duction of a function with discontinuous derivatives. In sections 4 and 5 we
describe and illustrate the properties of the resulting approximation. Finally,
in section 6 we focus on a test problem which allows to conclude about the
accuracy and potentiality of the proposed strategy.
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2 Enriched Reproducing Kernel Particle Approximation

Let Ω be the domain where the problem is defined. The points within this
domain will be noted by x or s. For the sake of simplicity, from now on, we will
focus in the 1D case, but all the results have a direct 2D or 3D counterpart.

2.1 Reproduction Conditions

The approximation fa(x) of f(x) is built from the integral convolution integral

fa(x) =

∫
Ω

Φ(x − s, h)f(s)dΩ, (2.1)

where Φ(x − s, h) is the kernel function and h a parameter defining the size
of the approximation support.
The main aim of this work is to enforce the reproduction of a general function
that we can write in the form of a polynomial plus another function noted by
fe(x):

fa(x) = a0 + a1x + . . . + anx
n + fe(x). (2.2)

In the following paragraphs we analyze the required properties of the kernel
function Φ(x − s, h) for reproducing a function expressed by (2.2).
From Eq. (2.1), the reproduction of a constant function a0 is given by∫

Ω

Φ(x − s, h)a0dΩ = a0, (2.3)

which implies ∫
Ω

Φ(x − s, h)dΩ = 1, (2.4)

which constitutes the partition of unity property.
Now, the required condition to reproduce a linear function f a(x) = a0 + a1x
is ∫

Ω

Φ(x − s, h)(a0 + a1s)dΩ = a0 + a1x. (2.5)

By using the partition of unity (2.4), Eq. (2.5) can be rewritten as{ ∫
Ω

Φ(x − s, h)dΩ = 1∫
Ω Φ(x − s, h)sdΩ = x

, (2.6)

which implies the linear consistency of the approximation. Repeating this
reasoning, we can write the n-order consistency as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∫
Ω Φ(x − s, h)dΩ = 1∫
Ω

Φ(x − s, h)sdΩ = x
...∫

Ω Φ(x − s, h)sndΩ = xn

(2.7)

and consequently, the reproduction of the function given by (2.2) implies∫
Ω

Φ(x − s, h)(a0 + a1s + . . . + ans
n + fe(s))dΩ =
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= a0 + a1x + . . . + anx
n + fe(x), (2.8)

from which it results⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Ω Φ(x − s, h)dΩ = 1∫
Ω Φ(x − s, h)sdΩ = x

...∫
Ω

Φ(x − s, h)sndΩ = xn∫
Ω Φ(x − s, h)f e(s)dΩ = f e(x)

. (2.9)

Chen et al. [5] applied the procedure proposed by Liu et al. [11] for en-
forcing n-order consistency, however their procedure does not allow to enforce
directly the reproduction condition associated with f e(x).

2.2 The Moment Matrix

We will note by f r(x) the approximation function verifying the conditions
(2.9). Usually a cubic spline is considered as kernel function, and consequently
the conditions given by Eq. (2.9) are not satisfied. Liu et al. [11] propose the
introduction of a correction function C(x, x−s) for satisfying the reproduction
conditions. In our case we consider the more general form C(x, s, x−s) whose
pertinence will be discussed later. Thus f r(x) will be expressed by

f r(x) =

∫
Ω

C(x, s, x − s)Φ(x − s, h)f(s)dΩ, (2.10)

where C(x, s, x − s) is assumed to have the following form
C(x, s, x − s) = HT (x, s, x − s)b(x), (2.11)

where HT (x, s, x−s) represents the vector containing the functions considered
in the approximation basis, and b(x) is a vector containing unknown functions
that will be determined for satisfying the reproduction conditions. Thus, Eq.
(2.9) can be rewritten as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫
Ω

HT (x, s, x − s)b(x)Φ(x − s, h)dΩ = 1∫
Ω

HT (x, s, x − s)b(x)Φ(x − s, h)sdΩ = x
...∫

Ω
HT (x, s, x − s)b(x)Φ(x − s, h)sndΩ = xn∫

Ω
HT (x, s, x − s)b(x)Φ(x − s, h)f e(s)dΩ = f e(x)

. (2.12)

Remark: Usual RKP approximations consider HT (x − s), but we retain the
more general form HT (x, s, x−s) in order to reproduce more general functions.

In fact, the reproduction conditions must be enforced in a discrete form.
For this purpose we consider NP points (also refereed as nodes) which allow
to compute the discrete form of Eq. (2.12), i.e.
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Enriched Reproducing Kernel Particle Approximation⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑NP
I=1 HT (x, xI , x − xI)b(x)Φ(x − xI , h)ΔxI = 1∑NP

I=1 HT (x, xI , x − xI)b(x)Φ(x − xI , h)xIΔxI = x
...∑NP

I=1 HT (x, xI , x − xI)b(x)Φ(x − xI , h)xnIΔxI = xn∑NP
I=1 HT (x, xI , x − xI)b(x)Φ(x − xI , h)fe(xI)ΔxI = fe(x)

, (2.13)

that in a matrix form results[
NP∑
I=1

R(xI)H
T (x, xI , x − xI)Φ(x − xI , h)ΔxI

]
b(x) = R(x), (2.14)

where R(x) is the reproduction vector
RT (x) = [1, x, . . . , xn, fe(x)] . (2.15)

Eq. (2.14) allows the computation of vector b(x),
b(x) = M(x)−1R(x), (2.16)

where the moment matrix M(x) is defined by

M (x) =

NP∑
I=1

R(xI)H
T (x, xI , x − xI)Φ(x − xI , h)ΔxI . (2.17)

This moment matrix differs of the usual moment matrix proposed in [11],
and in fact it becomes non symmetric.

2.3 Discrete Form of the Approximation Function

The discrete form f r(x) of fa(x) derives from Eqs. (2.10), (2.11) and (2.16)

f r(x) ∼=∑NP
I=1 HT (x, xI , x − xI)M (x)−1R(x)Φ(x − xI , h)f(xI)ΔxI

=

NP∑
I=1

ψI(x)fI ,
(2.18)

where ψI is the enriched RKP approximation shape function
ψI(x) = HT (x, xI , x − xI)M(x)−1R(x)Φ(x − xI , h)ΔxI . (2.19)

As in the classical RKPM we take ΔxI = 1. Different quadrature rules
exist and they have been tested in [1] without a significant incidence on the
reproducing condition accuracy.

3 The Case of a Function with Discontinuous Derivatives

Let Ω be the domain where the problem is defined and Γd a point, curve or
surface (in 1D, 2D and 3D respectively) where the normal function derivative
becomes discontinuous. We assume that this discontinuity curve splits the
domain in two subdomains Ω0 and Ω1 (see Figure 3.1)

Enriched Reproducing Kernel Particle Approximation
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Ω0

Ω1

Γd

Figure 3.1. Problem domain containing an interface with a discontinuous normal
derivative.

Ω0 ∪ Ω1 ∪ Γd = Ω,
Ω0 ∩ Ω1 = ∅,

where Γd represents the curve along which the normal derivative of some
approximation functions become discontinuous.

The enrichment function f e(x) which will be introduced in the reproduc-
tion vector R(x) must satisfy the following conditions

fe(x) ∈ C0(x ∈ Ω),
fe(x) ∈ C1(x ∈ Ω0),
fe(x) ∈ C1(x ∈ Ω1),

Grad f e(x) · n ∈ C−1(x ∈ Γd),

(3.1)

where n denotes the unit outward vector defined on the curve Γd.
To locate the discontinuity curve Γd we have use of a level set function

Θ(x) defined as the signed distance from x to the interface Γd. Thus

Θ(x) =

⎧⎨
⎩

Θ(x) < 0 if x ∈ Ω0

Θ(x) > 0 if x ∈ Ω1

Θ(x) = 0 if x ∈ Γd

. (3.2)

Thus, for satisfying the conditions (3.1) the enrichment function f e(x) could
be assumed in the form

fe(x) = H0(Θ(x))Θ(x), (3.3)

where H0(x) represents the usual Heaviside function{
H0(Θ(x)) = 1 if Θ(x) ≥ 0
H0(Θ(x)) = 0 if Θ(x) < 0

. (3.4)

4 Properties of the Moment Matrix

If the moment matrix is computed as described in section 2 everywhere, it
can become singular, as we will prove later. We can define two boundaries in
the discontinuity curve neighborhood Γ0 and Γ1 (as illustrated in figure 4.2)
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Ωc0

Ωc1

Γd

Γ0

Γ1

Ωe0

Ωe1

Figure 4.2. Enriched and non-enriched domains.

such that now the domain Ω consists of four subdomains Ωc0, Ωe0, Ωc1 and
Ωe1, where classical and enriched reproducing kernel approximation will be
defined with continuity along Γ0 and Γ1 as proved later. Thus, we start from
the relations

Ω0 = Ωc0 ∪ Ωe0 ∪ Γ0,

Ω1 = Ωc1 ∪ Ωe1 ∪ Γ1.

Obviously, Γ0 and Γ1 define the points, curves or surfaces (1D, 2D and 3D
respectively) in Ω0 and Ω1 respectively, through which the determinant of the
moment matrix changes from zero to a non-null value.

We define RT
c (x) = [1, x, . . . , xn], RT (x) =

[
RT
c (x), H0(Θ(x))Θ(x)

]
, and

in a similar manner HT
c (x−xI) = [1, x − xI , . . . , (x − xI)

n
], and HT (x, xI , x−

xI) =
[
HT

c (x − xI), H0(Θ(xI))Θ(xI )
]
.

The following properties of the moment matrix can be deduced:

Property 1: The inverse of the moment matrix exists in the domains Ωe0 and
Ωe1, i.e. in the subdomains whose boundary involves the discontinuity curve
Γd. Then, the moment matrix results

M(x) =
NP∑
I=1

[
Rc(xI)HT

c (x−xI) Rc(xI)H0(Θ(xI))Θ(xI)

H0(Θ(xI))Θ(xI)HT
c (x−xI) H0(Θ(xI ))2Θ(xI)2

]
Φ(x−xI ,h)ΔxI .

Property 2: In the domain Ωc0, H0(Θ(xI )) = 0, ∀I. Thus, the moment matrix
becomes singular

M (x) =

NP∑
I=1

[
Rc(xI)H

T
c (x − xI) 0
0 0

]
Φ(x − xI , h)ΔxI .

In this case we propose to replace this moment matrix for the one derived
from a standard (non-enriched) approximation
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M c(x) =
NP∑
I=1

Rc(x)HT
c (x − xI)Φ(x − xI , h)ΔxI . (4.1)

Property 3: Within the domain Ωc1, H0(Θ(xI )) = 1, ∀I. Thus, M (x) results

M(x) =

NP∑
I=1

[
Rc(xI)H

T
c (x − xI) Rc(xI)Θ(xI)

Θ(xI )H
T
c (x − xI) Θ(xI)

2

]
Φ(x − xI , h)ΔxI .

The moment matrix is singular in 1D (as will be illustrated in section 5.1) as
well as in some 2D and 3D cases. In this case we replace again the enriched
moment matrix for the non-enriched one. Effectively, if the enriched moment
matrix is not singular everywhere in Ωc1, then Γ1 does not exist, i.e. Ωc1 = ∅
et Ωe1 = Ω1.

Property 4: When we approach the curve Γ0 the shape functions computed
from both the enriched and the non-enriched approximations are connected
with continuity, i.e.

lim
x∈Ωc0→Γ0

ψI(x) = lim
x∈Ωe0→Γ0

ψI(x), ∀I.

And in a similar way when we approach the curve Γ1 (when it exists)

lim
x∈Ωc1→Γ1

ψI(x) = lim
x∈Ωe1→Γ1

ψI(x), ∀I.

This property has important consequences because due to the continuity
of the shape functions within the whole domain, the numerical integration of
variational formulations does not require a specific treatment.

Property 5: Let ζI be the boundary of the support related to the node xI .
The following results can be stated:

The curves Γ0 and Γ1 belong to the union of the support boundary ζI of
some nodes. In the 1D case Γ0 and Γ1 reduce to two points (as illustrated in
section 5). In higher dimensions, both boundaries are composed by a series
of arcs of circle (sphere in 3D) (when the support of the kernel function is
assumed circular -spherical in 3D-).

Property 6: The boundary ζI associated with the node xI ∈ Ω1 (respectively
xI ∈ Ω0) closest to the discontinuity interface Γd defines the boundary Γ0

(respectively Γ1).

5 About the Resulting Shape Function and its
Derivatives

In this section we focus in a one-dimensional problem in order to illustrate
some of the previous properties. The signed distance is used for defining the
level set function

8



Θ(x) = x − xd, (5.1)

where xd represents the coordinate of the point where the discontinuity in the
function derivative takes place.

5.1 Moment Matrix

For the sake of clarity, from now on, we restrict the consistency requirement
to a first order. Thus, the moment matrix results

M(x) =

NP∑
I=1

M̃ I(x)Φ(x − xI , h)

with

M̃ I(x) =

⎡
⎣ 1 x−xI H0(xI−xd)(xI−xd)

xI xI(x−xI) xIH0(xI−xd)(xI−xd)

H0(xI−xd)(xI−xd) H0(xI−xd)(xI−xd)(x−xI) (H0(xI−xd)(xI−xd))2

⎤
⎦ .

For illustrating the third property, we consider x ∈ Ωc1, which leads to the
following expression of the moment matrix

M(x) =

NP∑
I=1

⎡
⎣ 1 x−xI (xI−xd)

xI xI(x−xI) xI(xI−xd)

(xI−xd) (xI−xd)(x−xI) (xI−xd)2

⎤
⎦ Φ(x−xI ,h).

We can notice that the third row is a linear combination of the two first.
Thus, the determinant vanishes and the moment matrix becomes singular.
This result does not depend on the degree of consistency assumed.

Now we are going to illustrate the position of the boundaries Γ0 and Γ1

through which the approximation changes from enriched to non-enriched.
In Figure 5.3 the vertical line indicates the position where the function

derivative is expected to be discontinuous, and the horizontal one represents
the enrichment domain Ωe1∪Ωe0. The distance between two consecutive nodes
(assumed regularly spaced) is h = 1 and the support radius is taken in the
form R = a × h (where the value of a is indicated in each subfigure).

It is well known that for a standard RKP approximation (without any
enrichment), the linear consistency implies that each point must be contained
by more than one nodal support (in other case the moment matrix becomes
singular) [8]. In our case we need to add to this constraint the properties listed
in the previous section.

From Figure 5.3(b) we can notice:

• Point A is in the domain Ωc0, i.e. A ∈ Ωc0 because any node whose support
contains the point A is not in Ω1 (Property 2 ).

• D ∈ Ωc1 because any node whose support contains the point D is not in
Ω0 (Property 3 ).
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a = 1.40

(a) Node not located at the discon-
tinuity: discontinuous Ωe0 ∪ Ωe1.

a = 1.60

−0.95 1.25

A B C D

(b) Node not located at the discon-
tinuity: continuous Ωe0 ∪ Ωe1.

a = 1.20

−0.20 0.20

(c) Node located at the discontinu-
ity.

Figure 5.3. Enriched and non-enriched domains in a one-dimensional test problem.

• B ∈ Ωe0 and C ∈ Ωe1 (Property 1 ).
• The position of Γ1 (respectively Γ0) is defined by the support of the node

within Ω0 (respectively Ω1) closest to the discontinuity interface Γd (Prop-
erties 5–6 ).

If a < 1.5 there are points, candidates to belong to Ωe0 ∪Ωe1, such that they
belong only to the support of two nodes. In this way the approximation is
only defined if a > 1.5 (Figure 5.3(a)).

When there is a node located at the discontinuity point this problem is
avoided as depicted in Figure 5.3(c). Thus, the approximation is defined only
if a > 1, like in the standard (non-enriched) RKP approximation.

5.2 Related Shape Functions

Figure 5.4 depicts the shape functions related to each node considered in the
interval Ω = [−1, 1] with xd = 0 and NP = 10 (h = 2/9). The support
radius a×h is defined by the value of the parameter a, that has been fixed to
a = 2. Thus, the boundaries defining the transition between the enriched and
non-enriched domain are located at x0 = −1.5 × h = − 1

3 and x1 = 1.5 × h =
1
3 . Figure 5.5 shows the associated derivatives, whereas Figure 5.6 depicts
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−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

−1 −0.5  0  0.5  1
x

ψI(x)

Ωc0 Ωc1

Γd

Γ0 Γ1

Ωe0 Ωe1

Figure 5.4. Shape functions for a discontinuous derivative located at xd = 0.

−30

−20

−10

 0

 10

 20

 30

−1 −0.5  0  0.5  1

x

ψI

dx
(x)

Figure 5.5. Shape function derivatives for a discontinuous derivative located at
xd =0.

similar results when NP = 9 and consequently a node is placed just at the
discontinuity point.

Remarks:

• We have noticed that the shape functions are perfectly continuous through
the interfaces between the enriched and non-enriched domains (Property
4 ). Moreover the shape function derivatives become discontinuous only
along the interface xd = 0.

• The shape functions are quite different when a node is or not located at
the discontinuity point. In the first case (node located at xd) the shape
functions are very close to those obtained by Krongauz et al. [10] using a
PU enrichment.
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−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

−1 −0.5  0  0.5  1
x

ψI(x)

Figure 5.6. Shape functions for a discontinuous derivative located at xd = 0 when
a node is placed just at the discontinuity point.

6 Numerical Example

In this section we consider a simple numerical test: the steady heat conduction
problem (with a constant source term g = 2) defined in the interval ]−1, 1[
which involves two homogeneous materials with different thermal conductivi-
ties

d

dx

(
k(x)

dT

dx

)
= g, (6.1)

where T is the temperature field and k the thermal conductivity defined as
follows

k(x) = k0 = 1 if x ∈ Ω0 = ]−1, 0[ ,
k(x) = k1 = 10 if x ∈ Ω1 = ]0, 1[ .

(6.2)

The boundary conditions are defined by{
T (x = −1) = 0
T (x = 1) = 1

. (6.3)

The problem is solved using the weak-form of Eq. (6.1), where the integrals
were computed using a background mesh. Four integration cells are placed
between two consecutive nodes, with 5 gauss integration points in each cell.

Computed temperatures with and without approximation enrichment as
well as the exact temperature field are depicted in figure 6.7. In both cases
(enriched and non-enriched) a first order consistency has been enforced, been
the support radius R = 2×h. The related derivatives are shown in Figure 6.8.
From both figures we can conclude about the better accuracy of the solution
computed by using an enriched approximation, mainly in the temperature
derivative in the discontinuity neighbourhood.
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 0.2

 0.4

 0.6

 0.8

 1

−1 −0.5  0  0.5  1

Analytic
RKPA
E−RKPA

x

T

k1

k2

Figure 6.7. Exact and numerical temperature fields computed with and without
approximation enrichment.

−0.4
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 0.4
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 1.4

 1.6

 1.8

−1 −0.5  0  0.5  1

Analytic
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x

dT
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k1

k2

Figure 6.8. Exact and computed temperature derivatives.

6.1 Convergence Analysis

In this section we compare the convergence of both enriched and non-enriched
approximations, in the test problem just described. Two norms are considered,
the L2 and the H1 norms. Moreover, the analysis has been performed for three
different conductivity ratios k01 = k1

k0
= 10, 100, 1000. Figure 6.9 illustrates

these results.
In the case of non-enriched approximations (standard RKPA) we can no-

tice from figure 6.9 that the order of the method is 1 and 0.5 (using the L2

and H1 norms respectively). Moreover, the error increases as the conductivity
ratio increases.
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On the contrary, when an enriched approximation is considered the method
results of order 2.4 and 1.5 (using the L2 and H1 norms respectively). More-
over, the error is independent of the conductivity ratio.

In conclusion, both the order of convergence and the solution error ob-
tained by using an enriched approximation are significantly better that the
ones obtained by using the standard non-enriched formulation.
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Figure 6.9. Convergence analysis using the L2 and the H1 norms.

7 Conclusion

In this work we have proposed a new strategy to enrich reproducing kernel
particle approximations in order to reproduce functions involving discontin-
uous derivatives through some interfaces. The computed results seems to be
very accurate (from the point of view of the order of convergence as well as
from the associated level of error) and it is very easy to implement.

In some cases the moment matrix becomes singular far from the discontinu-
ity location (in the order of the support size), and consequently the enrichment
becomes local in space. In any case, the size of the global discrete system is
not affected by the enrichment process, in contrast with the vast majority of
enrichment methods making use of the partition of unity.

The case of moving interfaces involving field discontinuities can be easily
treated coupling the technique described in this work with a level set descrip-
tion of the interface movement.

The extension to higher dimension problems involving complex disconti-
nuity geometries is a work in progress.
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