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On the electro-sensing of weakly electric fish

Eric Bonnetier†, Faouzi Triki‡, and Chun-Hsiang Tsou§

Abstract. In this paper we are interested in electro-sensing inverse problems.
Our objective is to understand the electro-perception mechanism of weakly

electric fish. These species of fish have the ability to recognize the environ-
ment around them in complete darkness by generating a weak electrical field at

different frequencies, and perceiving the transdermal potential perturbation.

Assuming that the target has a known conductivity profile, the electro-sensing
inverse problem consists in recovering the shape and location of the target from

measurements of the electric potential over the skin. Using an original spectral

decomposition of the solution to the direct problem in terms of Poincaré vari-
ational eigenfunctions, we retrieve the Cauchy data of the electric potential

over the fish skin corresponding to the case where we substitute the target by

a perfect conductor with the same shape and position. We then identify the
target from the recovered Cauchy data. We derive uniqueness and stability

estimates to the considered electro-sensing inverse problem. The numerical

validation of our theoretical approach is realized by reconstructing different
targets using synthetic data in dimension two. The numerical experiments are

conducted using gradient descent optimization algorithms.
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1. Introduction

Some species of fish have the ability to recognize the environment around them
by generating a weak electrical field at different frequencies. Their sensorial organs
can generate electric fields, and their skins are sensitive to nearby electric fields.
Their central nervous systems can identify objects by the response perceived on
their skin to the electric impulses they generated. From the mathematical point
of view these electric waves can be described by the Maxwell equations in the
quasi-statistic regime, and understanding the behavior of the electrical fields in
the neighborhood of the fish leads to an inverse conductivity problem with a finite
number of excitations at different frequencies, and a finite number of boundary
measurements.

To identify its targets the weak electric fish solves an inverse problem that has
many similarities with the multifrequency electric impedance tomography. This
latter method is a recent imaging technique of biological tissues where one tries to
take advantage of the fact that most biological tissues exhibit frequency dependent
conductivities, when excited by electric waves with frequencies ranging roughly
around 10kHz [9, 6, 18]. Experiments indicate that electric fish produce time
harmonic electric waves at different frequencies, to gather information about their
environment. Assuming that the target is a different fish, our objective here is to
study how a weakly electric fish might identify it. The proposed inverse problem
has many potential bio-inspired applications in underwater robotics [16, 14].

In this paper we are interested in the case where the electric fish and the target
fish occupy respectively the bounded domains Ω ⊂ Rd, d = 2, 3, and D ⊂ Rd \ Ω.
We assume that the conductivity distribution around the electric fish, is given by

γ(x, ω) = 1 + (k(ω)− 1)χD(x),

where χD denotes the characteristic function of D. The conductivity of the back-
ground is normalized to be equal to one, k(ω) : R+ → C \ R− denotes the con-
ductivity of the target fish, and ω the frequency of the electric wave u produced
by the electric fish. Recently, shape recognition and classification methods have
been applied on small volume target fish [4, 5]. In the present work we adapt the
method developed in [9] to the weak electric fish inverse problems. We take advan-
tage of multifrequency measurements and combine unique continuation techniques
for meromorphic complex functions with a particular spectral representation of u
that involves the eigenfunctions of the Poincaré variational operator, to reconstruct
the conductivity map γ. The spectral decomposition can be written in the form

u(x, ω) = u0(x) + uf (x, k(ω)),

where the function u0 is independent of the frequency ω, and represents the limiting
solution when the contrast k(ω) tends to ∞. In fact u0 is exactly the electric
potential when we substitute the target fish by a perfect conductor with the same
shape and position. Thus, it is not surprising that one can uniquely identify D
from only one boundary measurement u0|∂Ω. The problem of determining D from
u0|∂Ω has been studied by several authors (see e.g.[13, 2]).

In this paper, we are concerned with the multifrequency inverse inclusion prob-
lem in unbounded domains. We first describe the mathematical model of elec-
troreception. After introducing the weighted Sobolev space W1,−1(Rd), which is
the natural space for solving the Laplace equation using variational techniques in
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unbounded domains, we prove the existence and uniqueness of solutions to the di-
rect problem. We then set up a spectral decomposition using a modified Poincaré
variational operator on W1,−1(Rd). Using the same techniques of reconstruction
as in [9], we derive the uniqueness of solutions to the inverse problem, and obtain
stability estimates. To validate our theoretical approach we reconstruct different
targets using synthetic data in dimension two.

This paper is organized as follows. In the next section, we present the mathe-
matical model of the weakly electric fish. In section 3, we study the well-posedness
of the partial differential system associated to the forward problem. In section 4,
we introduce the Poincaré variational operator, and study its spectrum. Next, we
derive the spectral decomposition of the unique solution to the forward problem
in section 5. We derive uniqueness and stability estimates to the inverse problem
in section 6. Section 7 is devoted to numerical illustrations of our theoretical re-
sults. A similar spectral decomposition is used to derive the frequency independent
part u0 in a bounded truncated numerical domain. We introduce an optimization
scheme to reconstruct the position and shape of the target fish and present some
numerical experiments.

2. The Mathematical Model

In this section we adapt the mathematical model of the weakly electric fish
introduced by Ammari and al. in [3]. Let Ω ⊂ Rd, d = 2, 3, be an open connected
and bounded region, which represents the electric fish. We suppose that ∂Ω is
of class C1,α for some α ∈ (0, 1]. We denote by Ωe the exterior of Ω, that is
Ωe := Rd \ Ω.

The target fish D is also assumed to be an open connected region in Ωe. We
assume that there exists δ > 0 such that dist(∂Ω, ∂D) > δ. We define a class of
inclusions on which we study the uniqueness and stability of the inverse problem.
We assume that the inclusion D contains the origin. Let b1 = dist(0, ∂Ω) and let
b0 < b1. For m > 2 and ς ∈ (0, 1], we define the class of inclusions

D :=

{
D := {x ∈ Rd : |x| < Υ(x̂), x̂ =

x

|x|
}; b0 < Υ(x̂) < b1 − δ; ‖Υ‖C2,ς ≤ m

}
.

We assume that the conductivity is equal to 1 everywhere in Ωe except in
the target D where the conductivity is equal to k(ω). We denote by γ(x, ω) :=
1 + (k(ω)− 1)χD, the conductivity distribution in Ωe. Let u be the electric voltage
produced by the electric fish, which satisfies the following system

4u = Js in Ω,
div[γ(x, ω)∇u] = 0 in Ωe,
∂νu|− = 0 on ∂Ω,
u|+ − u|− = ξ∂νu|+ on ∂Ω,
|u| = O( 1

|x|d−1 ) as |x| → ∞,

(2.1)

where the constant ξ > 0 is the effective fish skin thickness, where Js represents
the electric current source generated by the fish organs, and where ∂ν denotes the
derivative with respect to the outward normal vector ν. We assume that Js can be
written as the sum of Dirac masses

Js =

M∑
j=1

αjδx(j)
s
,(2.2)
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where x
(j)
s ∈ Ω and the electric charges αj ∈ R satisfy the neutrality condition

(2.3)

M∑
j=1

αj = 0.

Note that the equation (2.1) can also be rewritten as

(2.4)



4u = Js in Ω,
4u = 0 in Ωe \ ∂D,
∂νu|− = 0 on ∂Ω,
u|+ − u|− = ξ∂νu|+ on ∂Ω,
u|+ = u|− on ∂D,
∂νu|+ = k(ω)∂νu|− on ∂D,
|u| = O( 1

|x|d−1 ) as |x| → ∞.

Assuming that k(ω) is a given continuous function, the inverse problem of
weakly electric fish consists in recovering the shape and the position of the inclusion
D from measurements of the voltages u(x, ω) on the boundary ∂Ω for ω ∈ (ω, ω),
where ω, ω are fixed constants.

3. Well-posedness of the direct problem

In this section, we study the well-posedness of the direct problem (2.1). Firstly,
we introduce the Sobolev space W1,−1(Ωe). Secondly, we establish the existence
and uniqueness of the solution to (2.1) in W1,−1(Ωe).

3.1. Sobolev space W1,−1(Ωe). In this subsection, we establish using vari-
ational techniques the existence and uniqueness for the Laplace equations with a
Robin boundary condition in Ωe. To overcome the difficulties of integrating by
parts in the unbounded exterior domain Ωe, we introduce the following weighted
Sobolev spaces [19].

Definition 3.1.
(3.1)

W1,−1(Ωe) :=

{
u;

u(x)

(1 + |x|2)1/2 (log(2 + |x|2))
3−d ∈ L

2(Ωe), ∇u ∈ L2(Ωe)

}
.

Remark 3.1. We make the following observations.

- From the boundedness of the weighted functions, W1,−1(U) is identically
equal to the usual Sobolev space H1(U) on any open bounded domain U .

- The space of infinitely differentiable functions with compact support D(Ωe)

is dense in the subspace W1,−1
0 (Ωe) := {u ∈ W1,−1(Ωe); u|∂Ω = 0}.

- The functions v ∈ W1,−1(Ωe) satisfy the following decay behavior far from
Ω

v(x) = O(
1

|x|d−2
), |x| → +∞.(3.2)

In particular, the constant functions belong to W1,−1(Ωe) when d = 2.
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We introduce the space

L2
−1(Ωe) :=

{
u;

u(x)

(1 + |x|2)1/2 (log(2 + |x|2))
3−d ∈ L

2(Ωe)

}
.

We state now a useful compact embedding result involving these weighted
Sobolev spaces.

Lemma 3.1. The embedding W1,−1(Ωe)→ L2
−1(Ωe) is compact.

The proof follows the same approach used in [1].

Proof. If the embedding W1,−1(Rd) → L2
−1(Rd) is compact, then it is also

compact for any connected domain O ⊂ Rd. So, without loss of generality, we only
consider the case Rd, d = 2.

Let u ∈ D(R2), we have

(3.3) u(ρ, θ) = −
ˆ ∞
ρ

∂ru(r, θ)dr,

where (r, θ) are the polar coordinates.
Then,

(3.4)
|u(ρ, θ)|2

(1 + ρ2)(log(2 + ρ2)2)
≤ C 1

ρ2(log(ρ))2

ˆ ∞
ρ

|∂ru(r, θ)u(r, θ)|dr,

for ρ ≥ ρ0 > 0.
Denoting by BcR the exterior of the ball BR = B(0, R), we have,ˆ

Bc
R

|u(x)|2

(1 + |x|2) log(2 + |x|2)2
dx

≤ C
ˆ 2π

0

dθ

ˆ ∞
R

1

ρ(log(ρ))2

ˆ ∞
ρ

|∂ru(r, θ)u(r, θ)|drdρ

≤ C 1

log(R)
‖u‖2W1,−1(R2)(3.5)

By density, this inequality holds for any u ∈ W1,−1(R2). Let (ui)i∈N be a bounded
sequence in W1,−1(R2). To prove that this sequence is a precompact in L2

−1(R2),
it is sufficient to show

i) for ε > 0, there exists R such that ‖ui‖L2
−1(Bc

R) < ε for all i.

ii) for any bounded part O ⊂ R2, (ui|O)i∈N is a precompact.

The first point is a direct consequence of the previous inequality. The second point
can be obtained by applying the Rellich-Kondrachov Theorem. Thus, the result of
the lemma follows. �

3.2. Well-posedness. In this subsection we establish the existence and unique-
ness to (2.1) in W1,−1(Ωe).

Lemma 3.2. If d = 2, let α > 0. Then there exists β > 0 such that ∀u ∈
W1,−1(Ωe),

(3.6)

ˆ
Ωe

|∇u|2dx+ α

ˆ
∂Ω

u2dσ ≥ β‖u‖2L2
−1(Ωe).
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Proof. We suppose by a contradiction argument that (3.6) is not true. The
opposite of the statement of the lemma implies that there exists a sequence (um)m∈N
with um ∈ W1,−1(Ωe), ‖um‖W1,−1(Ωe) = 1, such that

(3.7)

ˆ
Ωe

|∇um|2dx+ α

ˆ
∂Ω

u2
mdσ <

1

m
‖um‖2L2

−1(Ωe).

From the previous compact imbedding result, there is a subsequence, still denoted
by (um)m∈N, which converges in L2

−1(Ωe). Moreover, (3.7) implies that (∇um)m∈N
converges to 0 in L2(Ωe). So, the sequence (um)m∈N converges to a constant in
W1,−1(Ωe). We deduce again from relation (3.7) that the trace of um converge to
0, thus the sequence (um)m∈N converges to 0, which is a contradiction with the
normalization assumption. �

Theorem 3.1. Let α > 0, let f be in the dual space (W1,−1(Ωe))
∗, and let g ∈

H−1/2(∂Ω). Then, the following Laplace equation with Robin boundary condition

(3.8)

{
−4u = f in Ωe,
u− α∂νu = g on ∂Ω.

admits a unique weak solution in W1,−1(Ωe).

Proof. A variational formulation to (3.8) is given by

∀v ∈ W1,−1(Ωe),ˆ
Ωe

∇u∇vdx+
1

α

ˆ
∂Ω

uvdσ =

ˆ
Ωe

fvdx+
1

α

ˆ
∂Ω

gvdσ(3.9)

It follows from the trace theorem that the left-hand side is a bounded bilinear form
and the right -hand side is a bounded linear form. We study separately the 2d and
3d cases for the coercivity of the bilinear form.
i) If d = 2, the coercivity is a direct consequence of lemma 3.2.
ii) If d = 3, we deduce from Theorem 2.5.13 in [19], that there exists a constant
c > 0 such that ∀u ∈ W1,−1(Ωe),

(3.10) ‖u‖W1,−1(Ωe) ≤ c‖∇u‖L2(Ωe)

Then, the left-hand side bilinear form in (3.9) is coercive.Thus, the result follows
from the Lax-Milgram Theorem. �

From the previous theorem, and without considering the asymptotic behavior
u(x) = O( 1

|x|d−1 ) as |x| → ∞, we next construct solutions to (2.1) up to a constant.

In a second step in order to establish the uniqueness of the solution, we will give
necessary conditions on the trace of the interior and exterior solutions u|∂Ω− and
u|∂Ω+ respectively, such that the exterior solution satisfies the desired asymptotic
behavior.

In the first step we split the equation (2.1) into two parts: the interior part

(3.11)


4ui = Js in Ω,
∂ui

∂ν = 0 on ∂Ω,´
∂Ω
uidσ = 0,
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and the exterior part

(3.12)


div[(1 + (k(ω)− 1)χD)∇u] = 0 in Ωe,
u = ξ∂νu+ ui + cu on ∂Ω,
|u| = O( 1

|x|d−1 ) as |x| → ∞

where cu is a constant depending on u that has to be fixed. It is clear that there
exists a unique solution ui to (3.11). For a given constant cu theorem (3.1) guarantee
the existence and uniqueness of solution to (3.12) inW1,−1(Ωe). Next, we show that
the decay O( 1

|x|d−1 ) of the exterior solution as |x| → +∞ will uniquely determine

the constant cu.

Lemma 3.3. Assume that cu is given. Then, the decay O( 1
|x|d−1 ) at infinity

implies

1

|∂Ω|

ˆ
∂Ω

udσ = cu.(3.13)

Proof. Recall the variational formulation for (3.8) with f = 0 and g = ui+cu.

∀v ∈ W1,−1(Ωe),ˆ
Ωe

∇u∇vdx+
1

α

ˆ
∂Ω

(u− cu)vdσ =
1

α

ˆ
∂Ω

uivdσ.

We distinguish two different cases:

i) d = 2.

Since the constants belong to W1,−1(Ωe), by taking v = 1 in the
previous variational formulation we obtain the desired result.

ii) d = 3.

Let BR be a ball centered at 0 with radius R > 0, and assume that R
is large enough such that Ω ⊂ BR. Multiplying (3.12) by 1 and integrating
by parts lead to

1

α

ˆ
∂Ω

(u− cu)dσ = R2

ˆ
S2

∂νu(Rt)dt,

where S2 is the unit sphere in R3. Since u harmonic in BcR, and decays as
O( 1
|x|2 ) when |x| → +∞, by expanding it in the spherical harmonic basis

[19], we can easily obtain that ∂νu(Rt) = O( 1
R3 ) as R → +∞ uniformly

in t ∈ S2. Consequently, the right hand term in the previous inequality
tends to zero as R→ +∞, which achieves the proof of the lemma.

�

Regarding the results of lemma 3.3, we can rewrite the problem (2.1) as follows

(3.14)


div[(1 + (k(ω)− 1)χD)∇u] = 0 in Ωe,
u− 1

|∂Ω|
´
∂Ω
udσ − ξ∂νu = ui on ∂Ω,

|u| = O( 1
|x|d−1 ) as |x| → +∞,

where ui is the unique solution to the system (3.11).
Let

W1,−1
� (Ωe) =

{
u ∈ W1,−1(Ωe); |u| = O(

1

|x|d−1
) as |x| → +∞

}
.(3.15)
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We now state the main result of this subsection.

Theorem 3.2. The forward problem (2.1) has a unique solution in W1,−1
� (Ωe).

Proof. Multiplying the equation (3.14) by v inW1,−1
� (Ωe) and integrating by

parts we obtain the following variational formulation

∀v ∈ W1,−1(Ωe),ˆ
Ωe

∇u∇vdx+
1

α

ˆ
∂Ω

(u−
 
∂Ω

u)(v −
 
∂Ω

v)dσ =
1

α

ˆ
∂Ω

uivdσ,

where
ffl
∂Ω
udσ = 1

|∂Ω|
´
∂Ω
udσ.

We claim that the left-hand bilinear form is coercive. In fact, when d = 3 we
deduce from [19], that the term

´
Ωe
∇u∇vdx is coercive inW1,−1(Ωe). When d = 2

it is proved in [12] that the term
´

Ωe
∇u∇vdx is also coercive in W1,−1

� (Ωe).

Then, by Lax-Milgram Theorem we obtain the desired result.
�

We introduce the fundamental solution Γ to the Laplace operator in Rd.

Definition 3.2. Denoting by ωd the area of the unit sphere in Rd, the funda-
mental solution to the Laplace operator is given by

(3.16) Γ(x, y) =

{
1

2π log(|x− y|) d = 2,
− 1
ωd
|x− y|2−d d ≥ 3.

A direct consequence of theorem 3.1 is the following corollary.

Corollary 3.1. Let y ∈ Ωe be fixed. Then, there exists a unique solution to
the system

(3.17)


4G(x, y) = δy in Ωe,
G− ξ ∂G∂ν = Γ− ξ ∂Γ

∂ν on ∂Ω,
G− Γ ∈ W1,−1(Ωe).

The singular function G(x, y) is the Green function of the Laplace operator in Ωe
with the Robin boundary condition.

4. The Poincaré Variational Problem

In this section, we introduce the Poincaré variational problem by following
the approach in [9],[12]. We denote by W1,−1

� (Ωe), the subspace of functions v ∈
W1,−1(Ωe) satisfying |v(x)| = O( 1

|x|d−1 ) as |x| → ∞. It follows from [19], [12] that

the space W1,−1
� (Ωe) endowed with the scalar product

〈u, v〉W1,−1
� (Ωe) :=

ˆ
Ωe

∇u∇vdx

is a Hilbert space. Thus, the following bilinear form defines also an equivalent scalar
product on W1,−1

� (Ωe),

a(u, v) :=

ˆ
Ωe

∇u∇vdx+
1

ξ

ˆ
∂Ω

ūv̄dσ,

where ū := u− 1
|∂Ω|

´
∂Ω
udσ.
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For u ∈ W1,−1
� (Ωe), we infer from the Riesz Theorem that there exist a unique

Tu ∈ W1,−1
� (Ωe) such that for all v ∈ W1,−1

� (Ωe),

(4.1)

ˆ
Ωe

∇Tu∇vdx+
1

ξ

ˆ
∂Ω

Tuv̄dσ =

ˆ
D

∇u∇vdx.

It is easy to check that the operator T : W1,−1
� (Ωe) → W1,−1

� (Ωe) is self-adjoint

and bounded. The spectral problem for T reads as: Find (w, λ) ∈ W1,−1
� (Ωe)× R,

w 6= 0, such that ∀v ∈ W1,−1
� (Ωe),

(4.2) λ

ˆ
Ωe

∇w∇vdx+
λ

ξ

ˆ
∂Ω

w̄v̄dσ =

ˆ
D

∇w∇vdx.

Integrating by parts, we obtain that an eigenfunction w is harmonic in D and in
D′ := Ωe \D. We have the transmission and boundary conditions on ∂D
(4.3)

w|+∂D = w|−∂D, ∂νw|+∂D = (1− 1

λ
)∂νw|−∂D, w|∂Ω − ξ∂νw|∂Ω =

1

|∂Ω|

ˆ
∂Ω

wdσ,

where w|±∂D(x) = limt→0 w(x+ t±ν(x)) for x ∈ ∂D. In other words, w is a solution
to (2.1) for k = 1− 1

λ < 0, and Js = 0.
We define the space H� as the space of harmonic functions in D and in D′

which are continuous across ∂D, satisfy a Robin boundary condition ū = ξ∂νu on
∂Ω and the asymptotic behavior |u| = O( 1

|x|d−1 ) as |x| → ∞, and with a finite

energy semi-norm

(4.4) ‖u‖2H� :=

ˆ
Ωe

|∇u|2dx+
1

ξ

ˆ
∂Ω

|ū|2dx.

We remark that TH� ⊂ H�, thus T defines a bounded operator from H� into H�.
We define now, the single layer potential SD : H−1/2(∂D) → H� and the

Neumann-Poincaré operator K∗D : H−1/2(∂D)→ H−1/2(∂D) by

Definition 4.1. Let φ ∈ H−1/2(∂D), we define, for x ∈ Ωe

(4.5) SD[φ](x) =

ˆ
∂D

G(x, y)φ(y)dσ(y),

and, for x ∈ ∂D,

(4.6) K∗D[φ](x) =

ˆ
∂D

∂

∂νx
G(x, y)φ(y)dσ(y).

Since D is smooth K∗D is compact on H−1/2(∂D) (see lemma 2.13 in [8]). Since
the function G and the Newtonian potential Γ have equivalent weak singularities
as x→ y (see Lemma 2.14 in [7] for a sketch of the proof and section 2.5.5 in [19]
for the regularity), the single layer potential SD satisfies the Plemjel jump relations
across the boundary ∂D, that is,

(4.7) ∂νSD[φ]±(x) = (±1

2
I +K∗D)[φ](x).

We next characterize the spectrum of T .

Theorem 4.1. The Poincaré variational operator T has the following decom-
position

(4.8) T =
1

2
I +K,
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where K is a compact, self-adjoint operator. Let w±n , n ≥ 1 be the eigenfunctions of
T associated to the eigenvalues (λ±n )n≥1, we have the following min-max principle

λ−1 = min
06=w∈H�

´
D
|∇w(x)|2dx´

Ωe
|∇w(x)|2dx+ 1

ξ

´
∂Ω
|w̄|2dx

λ−n = min
06=w∈H�,w⊥w−1 ,··· ,w

−
n−1

´
D
|∇w(x)|2dx´

Ωe
|∇w(x)|2dx+ 1

ξ

´
∂Ω
|w̄|2dx

= min
Fn⊂H�,dim(Fn)=n

max
w∈Fn

´
D
|∇w(x)|2dx´

Ωe
|∇w(x)|2dx+ 1

ξ

´
∂Ω
|w̄|2dx

,(4.9)

and similarly

λ+
1 = max

0 6=w∈H�

´
D
|∇w(x)|2dx´

Ωe
|∇w(x)|2dx+ 1

ξ

´
∂Ω
|w̄|2dσ

λ+
n = max

0 6=w∈H�,w⊥w+
1 ,··· ,w

+
n−1

´
D
|∇w(x)|2dx´

Ωe
|∇w(x)|2dx+ 1

ξ

´
∂Ω
|w̄|2dx

= max
Fn⊂H�,dim(Fn)=n

min
w∈Fn

´
D
|∇w(x)|2dx´

Ωe
|∇w(x)|2dx+ 1

ξ

´
∂Ω
|w̄|2dx

.(4.10)

Proof. We define the operator R : H� → H�, for all v ∈ H�,
(4.11)

2(

ˆ
Ωe

∇Ru∇vdx+
1

ξ

ˆ
∂Ω

Ruv̄dσ) =

ˆ
D

∇u∇vdx−
ˆ
D′
∇u∇vdx− 1

ξ

ˆ
∂Ω

ūv̄dσ.

We observe that K is bounded and self-adjoint. A direct calculation shows that

(4.12) T =
1

2
I +R.

It is shown in [8] that the single layer potential SD : H−1/2(∂D) → H1/2(∂D) is
invertible in dimension three, and we can modify slightly SD to show the invert-
ibility in dimension two.

Integrating by parts the right-hand side of (4.11), and using the jump relation
(4.7), we findˆ

Ωe

∇Ru∇vdx+
1

ξ

ˆ
∂Ω

Ruv̄dσ =

ˆ
∂D

K∗D[S−1
D [u|∂D]]vdσ.

Since K∗D is compact the operator R is compact.

From Fredholm’s alternative, T is a Fredholm operator of index 0, and the
spectral decomposition (4.9), (4.10) follows the min-max principle. �

Corollary 4.1. Let u ∈ H�, then u has the spectral decomposition.

(4.13) u(x) =

∞∑
n=1

u±nw
±
n (x),

where

(4.14) u±n =

ˆ
Ωe

∇u∇w±n dx+
1

ξ

ˆ
∂Ω

ūw̄±n dx.
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5. Spectral decomposition of the solution u(x, ω)

Theorem 5.1. Let u(x, ω) be the unique solution to the system (2.1). Then,
the following decomposition holds:

u(x, ω) = u0(x) + uf (x, k(ω))

= u0(x) +
1

ξ

∞∑
n=1

´
∂Ω
uiw

±
n dσ

1 + λ±n (k(ω)− 1)
w±n (x), x ∈ Ωe,(5.1)

where u0 ∈ W1,−1
� (Ωe) is the unique solution to the system:

(5.2)


4v = 0 in Ωe \ D̄,
∇v = 0 in D,
v −

ffl
∂Ω
vdσ = ξ∂νv + ui on ∂Ω,

|v| = O( 1
|x|d−1 ) as |x| → ∞,

and ui ∈ L2(Ω) is the unique solution to the equation:

(5.3)

 4v = Js in Ω,
∂νv = 0 on ∂Ω,´
∂Ω
vdσ = 0.

Proof. Let u? be the unique solution to

(5.4)



4v = Js in Ω,
∂νv|− = 0 on ∂Ω,´
∂Ω
v|−dσ = 0,

4v = 0 in Ωe,
v|+ −

ffl
∂Ω
v|+dσ − v|− = ξ∂νv|+ on ∂Ω,

|v| = O( 1
|x|d−1 ) as |x| → ∞.

Denote u := u − u?, u is therefore harmonic in D and in Ωe \ D̄. Moreover, it
satisfies

u|+ −
 
∂Ω

u|+dσ = ξ∂νu|+ on ∂Ω.

Then u ∈ H�, and admits the following spectral decomposition:

(5.5) u(x) =

∞∑
n=1

u±nw
±
n (x),

where

(5.6) u±n =

ˆ
Ωe

∇u∇w±n dx+
1

ξ

ˆ
∂Ω

uw̄±n dσ.

By definition, u is the unique solution to

(5.7)


−div(γ(x, ω)∇u) = div(γ(x, ω)∇u?) in Ωe,
u− ξ∂νu = 1

|∂Ω|
´
∂Ω

udσ on ∂Ω,

|u| = O( 1
|x|d−1 ) as |x| → ∞.

Multiplying the first equation in (5.7) by w±n , and integrating by parts over Ωe, we
have

(5.8) u±n =

´
Ωe

div(γ(x, ω)∇u?)w±n dx
1 + λ±n (k(ω)− 1)

.
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The term
´

Ωe
div(γ(x, ω)∇u?)w±n dx can be understood as a dual product be-

tween div(γ(x, ω)∇u?) ∈ (W1,−1(Ωe))
∗ and w±n ∈ W1,−1(Ωe). It can be simplified

by means of integration by parts:ˆ
Ωe

div(γ(x, ω)∇u?)w±n dx

= −
ˆ

Ωe

γ(x, ω)∇u?∇w±n dx−
ˆ
∂Ω

∂νu?w
±
n dσ

= −
ˆ

Ωe

∇u?∇w±n dx− (k(ω)− 1)

ˆ
D

∇u?∇w±n dx−
1

ξ

ˆ
∂Ω

(u?|+ − u?|−)w±n dσ

= −
ˆ

Ωe

∇u?∇w±n dx− (k(ω)− 1)

ˆ
D

∇u?∇w±n dx−
1

ξ

ˆ
∂Ω

(u?|+ − u?|−)w̄±n dσ

= −[
1

λ±n
+ (k(ω)− 1)]

ˆ
D

∇u?∇w±n dx+
1

ξ

ˆ
∂Ω

u?|−w±n dσ,

(5.9)

where u?|− is exactly the unique solution to (7.5), it means, u?|− = ui.
Thus, it follows that

(5.10) u±n = −
´
D
∇u?∇w±n dx
λ±n

+

´
∂Ω
uiw

±
n dσ

ξ[1 + λ±n (k(ω)− 1)]
.

Let ũ0 ∈ H� be the unique solution to the system

(5.11)


4ũ0 = 0 in Ωe \ D̄,
∇ũ0 = ∇u? in D,

ũ0 − ξ ∂ũ0

∂ν = 1
|∂Ω|

´
∂Ω
ũ0dσ on ∂Ω,

|ũ0| = O( 1
|x|d−1 ) as |x| → ∞.

Since w±n is an eigenfunction of T and ũ0 ∈ H�, we have

(5.12)

ˆ
D

∇u?∇w±n dx = λ±n [

ˆ
Ωe

∇ũ0∇w±n dx+
1

ξ

ˆ
∂Ω

ũ0w̄
±
n dσ],

which gives

(5.13) u±n = −[

ˆ
Ωe

∇ũ0∇w±n dx+
1

ξ

ˆ
∂Ω

ũ0w̄
±
n dσ] +

´
∂Ω
uiw

±
n dσ

ξ[1 + λ±n (k(ω)− 1)]
.

On the other hand a simple calculations yields

(5.14) u? − ũ0 = u0.

Combining (5.13) amd (5.14), the decomposition (5.1) follows. �

Corollary 5.1. Let x ∈ ∂Ω, the function k 7→ uf (x, k) is meromorphic in C.
The poles of uf (x, k) are the real solutions to the equations

(5.15) 1 + λ±n (k − 1) = 0, n ≥ 1

where λ±n are the eigenvalues of the Poincaré variational operator T .

The poles of uf (x, k) in the previous corollary are given by k±n = (1− 1
λ±n

) ∈ R−,
and they can be ordered as follows:

(5.16) k−1 ≤ k
−
2 ≤ · · · < −1 < · · · ≤ k+

2 ≤ k
+
1 < 0
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We remark that −1 is the only accumulation point of the sequence of poles, it
means k±n tends to −1 as n→∞.

6. Uniqueness and stability estimates

By modifying slightly the proofs in sections 3 and 4 of [9], we establish the
uniqueness of the inverse weakly electric fish, and the following stability estimate

Theorem 6.1. Let D and D̃ be two inclusions in D. Denote by u and ũ

respectively the solution of (2.1) with the inclusion D (resp. D̃). Let

ε = sup
x∈∂Ω,ω∈[ω,ω]

|u− ũ|.

Then, there exist constants C and τ ∈ (0, 1), such that the following estimate holds:

(6.1) |D4D̃| ≤ C
(

1

ln(ε−1)

)τ
.

Here, 4 denotes the symmetric difference and the constants C and τ depend only
on Js,Ω,D and Σ = {k(ω);ω ∈ (ω, ω)}.

Moreover, if the boundaries are analytic, we have a Hölder-type stability esti-
mate.

Theorem 6.2. Assume that d = 2, and let D and D̃ be two analytic inclusions
in D. Denote by u and ũ respectively the solution of (2.1) with the inclusion D

(resp. D̃). Let
ε = sup

x∈∂Ω,ω∈[ω,ω]

|u− ũ|.

Then, there exist constants C and τ ′ ∈ (0, 1), such that the following estimate holds:

(6.2) |D4D̃| ≤ Cετ
′
.

Here, 4 denotes the symmetric difference and the constants C and τ depend only
on Js,Ω,D and Σ.

These results show that the reconstruction of D is improving according to the
regularity of its boundary. Precisely, the stability estimates vary from logarithmic
to Hölder. They can also be extended to a larger class of as non-star shaped and
non-connected domains. In this paper for the sake of simplicity we do not handle
such general cases.

The proofs of Theorems 6.1 and 6.2 follow exactly the arguments presented in
sections 3-4 of [9], and we do not reproduce them here. They fundamentally rely
on the spectral decompositions of u and ũ. Thus, concerning stability estimates,
one of the main contributions of our paper is to show that such spectral decompo-
sitions also hold for the solutions to exterior problems, and therefore yield similar
estimates. In the proof, the electric potential on the electric fish skin is split into
two parts u(x, ω) = u0(x) + uf (x, k(ω)), and separates between k-dependent and
k-independent parts. In fact u0 corresponds to the response of the same inclusion
filled with a perfect conductor, that is u0 is the limit of u when k tends to infinity.
Since k → u is meromorphic and its poles are simple, uf (x, k)|∂Ω can be recovered
using unique continuation for meromorphic functions. (u0, ∂νu0)|∂Ω can in turn
be retrieved from u(., ω)|∂Ω, ω ∈ (ω, ω). The problem of determining D from the
Cauchy data of u0 has been studied by several authors (see for instance [13, 2] and
references therein).
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7. Numerical identification of the target fish

In this section, we develop a numerical scheme to determine the position and
shape of the target fish. Regarding the decay of the solution of (2.1) as |x| → +∞,
we first reduce the computational domain by taking a Dirichlet boundary condition
on a large disk B containing the fish Ω and the inclusion D. In fact we will show
that a spectral decomposition similar to (5.1) holds in the truncated problem. Using
this spectral decomposition, our numerical algorithm splits into two main steps. In
the first step we retrieve the frequency depend part uf , and in the second step we
reconstruct the inclusion from the Cauchy data of u0 on ∂Ω obtained in the first
step. Precisely, we recover the fish target by using an optimization scheme that
minimizes a given energy functional on the boundary ∂Ω with respect to the shape
of the inclusion.

7.1. The mathematical model in a truncated domain. In order to im-
plement the numerical identification method, we need to reduce the system (2.1)
to a bounded domain. Let B be a centered disk large enough such that it contains
the electric fish Ω and the target fish D. We substitute (2.1) by the system



4ũ = Js in Ω,
div[γ(x, ω)∇ũ] = 0 in B \ Ω,
∂ν ũ|− = 0 on ∂Ω,
ũ|+ − ũ|− = ξ∂ν ũ|+ on ∂Ω,
ũ = 0 on ∂B,´
∂B

∂ν ũdσ = 0.

(7.1)

The standard theory of elliptic partial differential equations shows that (7.1)
admits a unique solution in

W0 :=

{
u ∈ H1(B \ Ω) ∪H1(Ω), u = 0 on ∂B,

ˆ
∂B

∂ν ũdσ = 0

}
.

We introduce the equivalent scalar product on W0 and the associated Poincaré
variational operator T̃ .

ã(u, v) :=

ˆ
B\Ω
∇u∇vdx+

1

ξ

ˆ
∂Ω

ūv̄dσ.

For u ∈ H, by the Riez theorem, there exists aunique T̃ u ∈ W0 such that for all
v ∈W0,

(7.2)

ˆ
B\Ω
∇T̃ u∇vdx+

1

ξ

ˆ
∂Ω

T̃ uvdσ =

ˆ
D

∇u∇vdx.

We introduce also the space H� ⊂W0 of the functions which are harmonic in D and
in B \ (Ω ∪D), and which satisfy the zero Robin boundary condition u− ξ∂νu = 0
on ∂Ω.

Then, T̃ has similar spectral elements denoted (w±n , λ̃
±
n ) as T . We follow the

analysis in the unbounded case to derive a similar spectral decomposition for ũ.
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Theorem 7.1. Let ũ(x, ω) be the unique solution to the system (7.1).
Then the following decomposition holds, for x ∈ B \ Ω,

ũ(x, ω) = ũ0(x) + uf (x, k(ω))

= ũ0(x) +
1

ξ

∞∑
n=1

´
∂Ω
ũiw̃

±
n dσ

1 + λ̃±n (k(ω)− 1)
w̃±n (x),(7.3)

where u0 ∈W0 is the unique solution to the system:

(7.4)


4v = 0 in B \ (Ω ∪D),
∇v = 0 in D,
v −

ffl
∂Ω
vdσ = ξ∂νv + ui on ∂Ω,

v = 0 on ∂B,´
∂B

∂νvdσ = 0,

and ui ∈ L2(Ω) is the unique solution to the equation:

(7.5)

 4v = Js in Ω,
∂νv = 0 on ∂Ω,´
∂Ω
vdσ = 0.

7.2. Retrieval of the frequency independent part. We consider M fre-
quencies of measurements ω1, ω2, · · · , ωM . Since 1/2 is the unique accumulation

point of the eigenvalues (λ̃±n )n∈N, we only consider the Nf first eigenvalues as un-
knowns, and we approximate the others eigenvalues by 1/2. In fact it has been
shown in [17] that if D is Cβ with β ≥ 2 then for any α > −2β + 3, we have

|λ̃±n − 1/2| = o(nα), n→ +∞.
If the boundary of D is C∞ smooth, then the eigenvalues will decay faster than
any power. Recently H. Kang and his collaborators have shown the exponential
convergence of the eigenvalues in the case of analytic inclusions [11]. Therefore, we
make the following approximation, for x ∈ Ω, 1 ≤ p ≤M ,

(7.6) ũ(x, ωp) ≈ ũ0(x) +

Nf∑
n=1

v±n (x)

1 + λ̃±n (k(ωp)− 1)
+

2

k(ωp) + 1
vNf+1(x),

where

v±n (x) =
1

ξ

ˆ
∂Ω

ũiw̃
±
n dσw̃

±
n (x),

and

vNf+1(x) =
1

ξ

∑
n>Nf

ˆ
∂Ω

ũiw̃
±
n dσw̃

±
n (x).

By a simple integration by parts, we have, for all n ∈ N,

(7.7)
1

ξ

ˆ
∂Ω

ũiw̃
±
n dσ =

ˆ
B\Ω
∇ũ?∇w̃±n dx+

1

ξ

ˆ
∂Ω

ũ?w̃
±
n dσ,

where ũ? is the unique solution in W0 to

(7.8)


4ũ? = 0 in B \ Ω,
ũ? −

ffl
ũ?dσ − ξ∂ν ũ? = ũi on ∂Ω,

ũ? = 0 on ∂B´
∂B

∂ν ũ?dσ = 0.



16 ERIC BONNETIER, FAOUZI TRIKI, AND CHUN-HSIANG TSOU

In other words, the function
∑∞
n=1 v

±
n is the orthogonal projection of the function

ũ? on the space H�.

On the other hand ũ0 satisfies, for all n ∈ N, n ≥ 1ˆ
B\Ω
∇ũ0∇w̃±n dx+

1

ξ

ˆ
∂Ω

ũ0w̃
±
n dσ

=

ˆ
B\(Ω∪D)

∇ũ0∇w̃±n dx+
1

ξ

ˆ
∂Ω

ũ0w̃
±
n dσ

= −
ˆ
∂Ω

ũ0∂νw̃
±
n dσ +

1

ξ

ˆ
∂Ω

û0w̃
±
n dσ −

ˆ
∂D

ũ0∂νw̃
±
n dσ

= −ũ0

ˆ
∂D

∂νw̃
±
n dσ = 0.(7.9)

As ũ? − ũ0 ∈ H�, the orthogonal projection of ũ? on the space H� is ũ? − ũ0.

Then, the formula (7.6) becomes

ũ(x, ωp) ≈
k(ωp)− 1

k(ωp) + 1
ũ0(x) +

2

k(ωp) + 1
ũ?(x)

+

Nf∑
n=1

(
1

1 + λ̃±n (k(ωp)− 1)
− 2

k(ωp) + 1
)v±n (x).(7.10)

The previous equation can be formulated with the following matrix form.

For x ∈ ∂Ω, we define the vectors

Ũ(x, ω1, . . . , ωM ) = (ũ(x, ωj)) ,

V (x) =
(
ũ0(x), v+

1 (x), v−1 (x), . . . , v+
Nf

(x), v−Nf
(x)
)
,

and

L(λ̃±1 , . . . , λ̃
±
Nf
, ω1, . . . ωM ) = (Li)1≤i≤M , where

Li(x) =
(
q0(ωi), q(λ̃

+
1 , ωi), q(λ̃

−
1 , ωi), · · · , q(λ̃

+
Nf
, ωi), q(λ̃

−
Nf
, ωi)

)
.

Here

ũ(x, ω) = ũ(x, ω)− 2

k(ω) + 1
ũ?(x),

q0(ω) =
k(ω)− 1

(k(ω) + 1)
, and q(λ̃, ω) =

1

1 + λ̃(k(ω)− 1)
− 2

k(ω) + 1
.

The matrix formulation of (7.10) becomes then

(7.11) ŨT (x, ω1, ω2, · · · , ωM ) ≈ L(λ̃±1 , . . . , λ̃
±
Nf
, ω1, . . . ωM )V T (x).

So, the vector V can be obtained by the formula,

(7.12) V T (x) ≈ (LTL)†LT ŨT (x, ω1, · · ·ωM ).
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where (LTL)† is the pseudo-inverse of the matrix LTL. The conditioning of the
matrix (LTL)† depends on the distance between the frequency sampling values ω0.
The approximate ũ0(x) is then given by the first coefficient of the vector V (x).

7.3. Identification of the target fish. In this section, we consider a numer-
ical scheme to identify the inclusion D ∈ D from the knowledge of ũ0|∂Ω recovered
in the previous section. The scheme is based on minimizing the functional

J(D) =
1

2

ˆ
∂Ω

P∑
i=1

|ũ0 − ũ(i)
meas|2dσ + εT

ˆ
∂D

dσ,

where ũ is the solution to (7.4). P designs the total number of measurements,
we take here P = 10. For 1 ≤ i ≤ 10, we use the fact that the electric fish can

swim around the target, ũ
(i)
meas is the measured Dirichlet data corresponding to

the case when the electric fish is located at the i-th position. These quantities
are obtained in the previous step by retrieving the frequency dependent part from
the multifrequency measurements. The term εT

´
∂D

dσ represents the Tikhonov
regularization.

7.3.1. Shape derivative. Let Dε be the perturbed domain, given by

(7.13) ∂Dε = {x̃ : x̃ = x+ εh(x)ν(x), x ∈ ∂D},
where h ∈ C1(∂D) and ν denote the unit outward normal vector.

Theorem 7.2. We denote by ũ0 and by ũ0,ε respectively the solutions to the
equation (7.4) with the inclusion D (resp. Dε). Then, the following relation holds,
for x ∈ ∂Ω,

(7.14) ũ0,ε(x) = ũ0(x) + εũh(x) + o(ε),

where ũh is the solution to the following equation

(7.15)



4v = 0 in B \ (Ω ∪D),
∇v = 0 in D,
v = −h∂ν ũ0|+ on ∂D,
v −

ffl
vdσ − ξ∂νv = 0 on ∂Ω,

v = 0 on ∂B,´
∂B

∂νvdσ = 0,

Proof. The result can be proved using layer potential techniques by following
the proof of Theorem 3.1 in [10]. �

7.3.2. Gradient descent algorithms. We assume that our domain D is star
shaped, centered at the origin and that its boundary ∂D can be described by
the Fourier series:

(7.16) ∂D = {r(θ)
(

cos θ
sin θ

)
|θ ∈ [0; 2π)}, r =

N∑
n=−N

cnfn,

where C =


c−N
c−N+1

...
cN

 ∈ R2N+1, fn(θ) = cos(nθ) for 0 ≤ n ≤ N and fn(θ) =

sin(nθ) for −N ≤ n < 0.
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Using (7.15) and integration by parts, we deduce the expressions of the shape
derivatives corresponding to each Fourier coefficient, for −N ≤ n ≤ N ,

(7.17)
∂J

∂cn
=

ˆ
B\Ω∪D

∇w∇ũhdx+ εT

ˆ
∂D

κhdσ,

where h(θ) = fn(θ)〈
(

cos θ
sin θ

)
, ν〉, κ represents the curvature of ∂D and w is the

solution of the following equation

(7.18)


4w = 0 in B \ Ω ∪D,
∂νw = 0 on ∂D,
∂νw = ũ− ũmeas on ∂Ω,
w = 0 on ∂B.

Now, we are ready to introduce our iterative algorithm:

(1) Calculate the interior solution ũi.
(2) Using (7.12), we retrieve the frequency independent part ũ0 from the

multifrequency measurements. We get the Dirichlet data (û
(i)
meas)1≤i≤P .

(3) Chose an initial domain D0.
(4) For each iteration, j > 0:

(a) Using (7.4) associated to the domain Dj for which the boundary ∂Dj

is obtained from (7.16).
(b) Calculate the shape derivatives ∂J

∂cn
for all −N ≤ n ≤ N by (7.17).

(c) Update the parameters of the domain Cj+1 = Cj − α∇CJ(Cj) with
α > 0.

(d) If the updated domain boundary touches ∂Ω or if J(Cj+1) > J(Cj),
reduce the size of α.

(5) When |∇J(Cj)| becomes smaller than a fixed threshold, we stop.

Figure 1. Interior solution to the equation (7.1)
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(a) without inclusion (b) inclusion presents

Figure 2. Solutions to (7.1) in the presence/absence of inclusion

Figure 3. Different positions of the electric fish
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7.4. Numerical experiments. The setting of all numerical tests is as follows:

• We use FreeFem++ for our numerical experiments [15].
• B is a centered ball with the radius RB = 30.

• Ω is an ellipse defined by the equation: x2

32 + y2

42 ≤ 1.
• We assume that the source function is given by a dipole type source, i. e.,

in the formula (2.2), M = 2, α1 = 100, α2 = −100, x
(1)
s = (−3, 1), and

x
(2)
s = (−3,−1).

The interior solution is illustrated in Figure 1.
• We take advantage of the fact that the electric fish can swim around the

target. We chose P = 10 different locations to measure the multifrequency
electric potentials, those 10 positions are equi-distributed on the circle
with a radius 15. Figure 3 shows the 4 locations of them.

• The multifrequency conductivity follows the model k(ω) = kr + inω0 with
kr = 5, ω0 = 0.5 and n are integers from 0 to 7 [3].

• Only the first eigenvalues are taken into consideration, and their apriori

estimations are settled as λ̃+
1 = 3

4 , λ̃−1 = 1
4 respectively in all cases.

• The initial estimation of domain D: a centered disk with a radius 1
2 .

• We consider the first 9 Fourier coefficients: N = 9.
• We set the Tikhonov regularization coefficient εT = 0.01.
• We use P1 finite elements for the numerical resolution of the PDEs.
• At each iteration, we remesh the domain to adapt to the new predicted

shape of the domain.
• The algorithm stops if |∇J | < 10−6 or if the number of iterations exceeds

100.

We present here several numerical simulations of the algorithm. We first present in
Table (1), errors in the reconstruction method of ũ0. Here, errors are the L2-norm
of the difference ũ0reconstruct − ũ0:

error(ũ0reconstruct) :=

√ˆ
∂Ω

|ũ0reconstruct − ũ0|2dσ.

We show in the following figures the targets and the reconstruction result. We
calculate also the relative symmetric difference |Di 4Dtarget|/|Dtarget| during the
iterations, and we plot the curves of the symmetric difference in terms of iteration
number. We finally give the relative symmetric difference of each case in Table 2.

8. Conclusion

Using the mathematical model of the weakly electric fish introduced by Ammari
and al. in [3], we addressed the question of existence and uniqueness of the solution
to the direct problem. We have established the uniqueness and stability estimates of
the fish target recovery problem using a single measurement, under the assumption
that its conductivity profile is known. We provided a gradient descent algorithm
to determine the shape and location of the target.
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• ellipse triangle star displaced disk
measure 1 0.10132 0.06892 0.01411 0.05330
measure 2 0.07466 0.07384 0.03364 0.05010
measure 3 0.01637 0.05302 0.07036 0.04712
measure 4 0.00910 0.04580 0.05242 0.04388
measure 5 0.03460 0.06548 0.02822 0.03792
measure 6 0.06959 0.08078 0.03558 0.03408
measure 7 0.05795 0.06175 0.02743 0.03585
measure 8 0.02060 0.03240 0.03819 0.03891
measure 9 0.00675 0.02760 0.07660 0.04054
measure 10 0.03074 0.03623 0.05292 0.04663

Table 1. Errors between ũ0reconstruct and ũ0

• ellipse triangle star displaced disk
|Di 4Dtarget|/|Dtarget| 0.07128 0,1988 0.4232 0.16805

Table 2. Relative symmetric difference
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Figure 5. Reconstruction of a triangle
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Avenue Centrale, 38401 Saint-Martin-d’Hères, France

E-mail address: faouzi.triki@univ-grenoble-alpes.fr

Laboratoire Jean Kuntzmann, UMR CNRS 5224, Université Grenoble-Alpes, 700
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