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On the electro-sensing of weakly electric fish
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In this paper we are interested in electro-sensing inverse problems. Our objective is to understand the electro-perception mechanism of weakly electric fish. These species of fish have the ability to recognize the environment around them in complete darkness by generating a weak electrical field at different frequencies, and perceiving the transdermal potential perturbation. Assuming that the target has a known conductivity profile, the electro-sensing inverse problem consists in recovering the shape and location of the target from measurements of the electric potential over the skin. Using an original spectral decomposition of the solution to the direct problem in terms of Poincaré variational eigenfunctions, we retrieve the Cauchy data of the electric potential over the fish skin corresponding to the case where we substitute the target by a perfect conductor with the same shape and position. We then identify the target from the recovered Cauchy data. We derive uniqueness and stability estimates to the considered electro-sensing inverse problem. The numerical validation of our theoretical approach is realized by reconstructing different targets using synthetic data in dimension two. The numerical experiments are conducted using gradient descent optimization algorithms.
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Introduction

Some species of fish have the ability to recognize the environment around them by generating a weak electrical field at different frequencies. Their sensorial organs can generate electric fields, and their skins are sensitive to nearby electric fields. Their central nervous systems can identify objects by the response perceived on their skin to the electric impulses they generated. From the mathematical point of view these electric waves can be described by the Maxwell equations in the quasi-statistic regime, and understanding the behavior of the electrical fields in the neighborhood of the fish leads to an inverse conductivity problem with a finite number of excitations at different frequencies, and a finite number of boundary measurements.

To identify its targets the weak electric fish solves an inverse problem that has many similarities with the multifrequency electric impedance tomography. This latter method is a recent imaging technique of biological tissues where one tries to take advantage of the fact that most biological tissues exhibit frequency dependent conductivities, when excited by electric waves with frequencies ranging roughly around 10kHz [START_REF] Ammari | Identification of an inclusion in multifrequency electric impedance tomography[END_REF][START_REF] Habib Ammari | Spectroscopic imaging of a dilute cell suspension[END_REF][START_REF] Moller | Electric fishes: history and behavior[END_REF]. Experiments indicate that electric fish produce time harmonic electric waves at different frequencies, to gather information about their environment. Assuming that the target is a different fish, our objective here is to study how a weakly electric fish might identify it. The proposed inverse problem has many potential bio-inspired applications in underwater robotics [START_REF] Lebastard | Underwater robot navigation around a sphere using electrolocation sense and kalman filter[END_REF][START_REF] Curet | Aquatic manoeuvering with counter-propagating waves: a novel locomotive strategy[END_REF].

In this paper we are interested in the case where the electric fish and the target fish occupy respectively the bounded domains Ω ⊂ R d , d = 2, 3, and D ⊂ R d \ Ω. We assume that the conductivity distribution around the electric fish, is given by γ(x, ω) = 1 + (k(ω) -1)χ D (x), where χ D denotes the characteristic function of D. The conductivity of the background is normalized to be equal to one, k(ω) : R + → C \ R -denotes the conductivity of the target fish, and ω the frequency of the electric wave u produced by the electric fish. Recently, shape recognition and classification methods have been applied on small volume target fish [START_REF] Habib Ammari | Target identification using dictionary matching of generalized polarization tensors[END_REF][START_REF] Habib Ammari | Shape recognition and classification in electro-sensing[END_REF]. In the present work we adapt the method developed in [START_REF] Ammari | Identification of an inclusion in multifrequency electric impedance tomography[END_REF] to the weak electric fish inverse problems. We take advantage of multifrequency measurements and combine unique continuation techniques for meromorphic complex functions with a particular spectral representation of u that involves the eigenfunctions of the Poincaré variational operator, to reconstruct the conductivity map γ. The spectral decomposition can be written in the form u(x, ω) = u 0 (x) + u f (x, k(ω)), where the function u 0 is independent of the frequency ω, and represents the limiting solution when the contrast k(ω) tends to ∞. In fact u 0 is exactly the electric potential when we substitute the target fish by a perfect conductor with the same shape and position. Thus, it is not surprising that one can uniquely identify D from only one boundary measurement u 0 | ∂Ω . The problem of determining D from u 0 | ∂Ω has been studied by several authors (see e.g. [START_REF] Al Bukhgeim | Conditional stability in an inverse problem of determining a non-smooth boundary[END_REF][START_REF] Alessandrini | Optimal stability for inverse elliptic boundary value problems with unknown boundaries[END_REF]).

In this paper, we are concerned with the multifrequency inverse inclusion problem in unbounded domains. We first describe the mathematical model of electroreception. After introducing the weighted Sobolev space W 1,-1 (R d ), which is the natural space for solving the Laplace equation using variational techniques in unbounded domains, we prove the existence and uniqueness of solutions to the direct problem. We then set up a spectral decomposition using a modified Poincaré variational operator on W 1,-1 (R d ). Using the same techniques of reconstruction as in [START_REF] Ammari | Identification of an inclusion in multifrequency electric impedance tomography[END_REF], we derive the uniqueness of solutions to the inverse problem, and obtain stability estimates. To validate our theoretical approach we reconstruct different targets using synthetic data in dimension two.

This paper is organized as follows. In the next section, we present the mathematical model of the weakly electric fish. In section 3, we study the well-posedness of the partial differential system associated to the forward problem. In section 4, we introduce the Poincaré variational operator, and study its spectrum. Next, we derive the spectral decomposition of the unique solution to the forward problem in section 5. We derive uniqueness and stability estimates to the inverse problem in section 6. Section 7 is devoted to numerical illustrations of our theoretical results. A similar spectral decomposition is used to derive the frequency independent part u 0 in a bounded truncated numerical domain. We introduce an optimization scheme to reconstruct the position and shape of the target fish and present some numerical experiments.

The Mathematical Model

In this section we adapt the mathematical model of the weakly electric fish introduced by Ammari and al. in [START_REF] Habib Ammari | Modeling active electrolocation in weakly electric fish[END_REF]. Let Ω ⊂ R d , d = 2, 3, be an open connected and bounded region, which represents the electric fish. We suppose that ∂Ω is of class C 1,α for some α ∈ (0, 1]. We denote by Ω e the exterior of Ω, that is

Ω e := R d \ Ω.
The target fish D is also assumed to be an open connected region in Ω e . We assume that there exists δ > 0 such that dist(∂Ω, ∂D) > δ. We define a class of inclusions on which we study the uniqueness and stability of the inverse problem. We assume that the inclusion D contains the origin. Let b 1 = dist(0, ∂Ω) and let b 0 < b 1 . For m > 2 and ς ∈ (0, 1], we define the class of inclusions

D := D := {x ∈ R d : |x| < Υ(x), x = x |x| }; b 0 < Υ(x) < b 1 -δ; Υ C 2,ς ≤ m .
We assume that the conductivity is equal to 1 everywhere in Ω e except in the target D where the conductivity is equal to k(ω). We denote by γ(x, ω) := 1 + (k(ω) -1)χ D , the conductivity distribution in Ω e . Let u be the electric voltage produced by the electric fish, which satisfies the following system

           u = J s in Ω, div[γ(x, ω)∇u] = 0 in Ω e , ∂ ν u| -= 0 on ∂Ω, u| + -u| -= ξ∂ ν u| + on ∂Ω, |u| = O( 1 |x| d-1 ) as |x| → ∞, (2.1) 
where the constant ξ > 0 is the effective fish skin thickness, where J s represents the electric current source generated by the fish organs, and where ∂ ν denotes the derivative with respect to the outward normal vector ν. We assume that J s can be written as the sum of Dirac masses

J s = M j=1 α j δ x (j) s , (2.2)
where x (j) s ∈ Ω and the electric charges α j ∈ R satisfy the neutrality condition

(2.3) M j=1 α j = 0.
Note that the equation (2.1) can also be rewritten as

(2.4)                    u = J s in Ω, u = 0 in Ω e \ ∂D, ∂ ν u| -= 0 on ∂Ω, u| + -u| -= ξ∂ ν u| + on ∂Ω, u| + = u| - on ∂D, ∂ ν u| + = k(ω)∂ ν u| - on ∂D, |u| = O( 1 |x| d-1 ) as |x| → ∞.
Assuming that k(ω) is a given continuous function, the inverse problem of weakly electric fish consists in recovering the shape and the position of the inclusion D from measurements of the voltages u(x, ω) on the boundary ∂Ω for ω ∈ (ω, ω), where ω, ω are fixed constants.

Well-posedness of the direct problem

In this section, we study the well-posedness of the direct problem (2.1). Firstly, we introduce the Sobolev space W 1,-1 (Ω e ). Secondly, we establish the existence and uniqueness of the solution to (2.1) in W 1,-1 (Ω e ).

3.1. Sobolev space W 1,-1 (Ω e ). In this subsection, we establish using variational techniques the existence and uniqueness for the Laplace equations with a Robin boundary condition in Ω e . To overcome the difficulties of integrating by parts in the unbounded exterior domain Ω e , we introduce the following weighted Sobolev spaces [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF].

Definition 3.1. (3.1) W 1,-1 (Ω e ) := u; u(x) (1 + |x| 2 ) 1/2 (log(2 + |x| 2 )) 3-d ∈ L 2 (Ω e ), ∇u ∈ L 2 (Ω e ) .
Remark 3.1. We make the following observations.

-From the boundedness of the weighted functions, W (Ω e ) := {u ∈ W 1,-1 (Ω e ); u| ∂Ω = 0}. -The functions v ∈ W 1,-1 (Ω e ) satisfy the following decay behavior far from

Ω v(x) = O( 1 |x| d-2 ), |x| → +∞. (3.2)
In particular, the constant functions belong to W 1,-1 (Ω e ) when d = 2.

We introduce the space

L 2 -1 (Ω e ) := u; u(x) (1 + |x| 2 ) 1/2 (log(2 + |x| 2 )) 3-d ∈ L 2 (Ω e ) .
We state now a useful compact embedding result involving these weighted Sobolev spaces.

Lemma 3.1. The embedding W 1,-1 (Ω e ) → L 2 -1
(Ω e ) is compact. The proof follows the same approach used in [START_REF] Robert | Compact sobolev imbeddings for unbounded domains with discrete boundaries[END_REF].

Proof. If the embedding W 1,-1 (R d ) → L 2 -1 (R d
) is compact, then it is also compact for any connected domain O ⊂ R d . So, without loss of generality, we only consider the case R d , d = 2.

Let u ∈ D(R 2 ), we have

(3.3) u(ρ, θ) = - ˆ∞ ρ ∂ r u(r, θ)dr,
where (r, θ) are the polar coordinates. Then,

(3.4) |u(ρ, θ)| 2 (1 + ρ 2 )(log(2 + ρ 2 ) 2 ) ≤ C 1 ρ 2 (log(ρ)) 2 ˆ∞ ρ |∂ r u(r, θ)u(r, θ)|dr, for ρ ≥ ρ 0 > 0.
Denoting by B c R the exterior of the ball B R = B(0, R), we have, ˆBc

R |u(x)| 2 (1 + |x| 2 ) log(2 + |x| 2 ) 2 dx ≤ C ˆ2π 0 dθ ˆ∞ R 1 ρ(log(ρ)) 2 ˆ∞ ρ |∂ r u(r, θ)u(r, θ)|drdρ ≤ C 1 log(R) u 2 W 1,-1 (R 2 ) (3.5)
By density, this inequality holds for any

u ∈ W 1,-1 (R 2 ). Let (u i ) i∈N be a bounded sequence in W 1,-1 (R 2 ). To prove that this sequence is a precompact in L 2 -1 (R 2 ), it is sufficient to show i) for ε > 0, there exists R such that u i L 2 -1 (B c R ) < ε for all i. ii) for any bounded part O ⊂ R 2 , (u i | O ) i∈N is a precompact.
The first point is a direct consequence of the previous inequality. The second point can be obtained by applying the Rellich-Kondrachov Theorem. Thus, the result of the lemma follows.

Well-posedness.

In this subsection we establish the existence and uniqueness to (2.1) 

in W 1,-1 (Ω e ). Lemma 3.2. If d = 2, let α > 0. Then there exists β > 0 such that ∀u ∈ W 1,-1 (Ω e ), (3.6) ˆΩe |∇u| 2 dx + α ˆ∂Ω u 2 dσ ≥ β u 2 L 2 -1 (Ωe) .
Proof. We suppose by a contradiction argument that (3.6) is not true. The opposite of the statement of the lemma implies that there exists a sequence (u m ) m∈N with

u m ∈ W 1,-1 (Ω e ), u m W 1,-1 (Ωe) = 1, such that (3.7) ˆΩe |∇u m | 2 dx + α ˆ∂Ω u 2 m dσ < 1 m u m 2 L 2 -1 (Ωe) .
From the previous compact imbedding result, there is a subsequence, still denoted by (u m ) m∈N , which converges in L 2 -1 (Ω e ). Moreover, (3.7) implies that (∇u m ) m∈N converges to 0 in L 2 (Ω e ). So, the sequence (u m ) m∈N converges to a constant in W 1,-1 (Ω e ). We deduce again from relation (3.7) that the trace of u m converge to 0, thus the sequence (u m ) m∈N converges to 0, which is a contradiction with the normalization assumption.

Theorem 3.1. Let α > 0, let f be in the dual space (W 1,-1 (Ω e )) * , and let g ∈ H -1/2 (∂Ω). Then, the following Laplace equation with Robin boundary condition

(3.8) -u = f in Ω e , u -α∂ ν u = g on ∂Ω.
admits a unique weak solution in W 1,-1 (Ω e ).

Proof. A variational formulation to (3.8) is given by

∀v ∈ W 1,-1 (Ω e ), ˆΩe ∇u∇vdx + 1 α ˆ∂Ω uvdσ = ˆΩe f vdx + 1 α ˆ∂Ω gvdσ (3.9)
It follows from the trace theorem that the left-hand side is a bounded bilinear form and the right -hand side is a bounded linear form. We study separately the 2d and 3d cases for the coercivity of the bilinear form. i) If d = 2, the coercivity is a direct consequence of lemma 3.2. ii) If d = 3, we deduce from Theorem 2.5.13 in [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF], that there exists a constant c > 0 such that ∀u ∈ W 1,-1 (Ω e ), (3.10)

u W 1,-1 (Ωe) ≤ c ∇u L 2 (Ωe)
Then, the left-hand side bilinear form in (3.9) is coercive.Thus, the result follows from the Lax-Milgram Theorem.

From the previous theorem, and without considering the asymptotic behavior

u(x) = O( 1 |x| d-1
) as |x| → ∞, we next construct solutions to (2.1) up to a constant. In a second step in order to establish the uniqueness of the solution, we will give necessary conditions on the trace of the interior and exterior solutions u| ∂Ω-and u| ∂Ω+ respectively, such that the exterior solution satisfies the desired asymptotic behavior.

In the first step we split the equation (2.1) into two parts: the interior part

(3.11)    u i = J s in Ω, ∂ui ∂ν = 0 on ∂Ω, ´∂Ω u i dσ = 0,
and the exterior part

(3.12)    div[(1 + (k(ω) -1)χ D )∇u] = 0 in Ω e , u = ξ∂ ν u + u i + c u on ∂Ω, |u| = O( 1 |x| d-1 ) as |x| → ∞
where c u is a constant depending on u that has to be fixed. It is clear that there exists a unique solution u i to (3.11). For a given constant c u theorem (3.1) guarantee the existence and uniqueness of solution to (3.12) in W 

= u i +c u . ∀v ∈ W 1,-1 (Ω e ), ˆΩe ∇u∇vdx + 1 α ˆ∂Ω (u -c u )vdσ = 1 α ˆ∂Ω u i vdσ.
We distinguish two different cases:

i) d = 2.
Since the constants belong to W 1,-1 (Ω e ), by taking v = 1 in the previous variational formulation we obtain the desired result. ii) d = 3.

Let B R be a ball centered at 0 with radius R > 0, and assume that R is large enough such that Ω ⊂ B R . Multiplying (3.12) by 1 and integrating by parts lead to

1 α ˆ∂Ω (u -c u )dσ = R 2 ˆS2 ∂ ν u(Rt)dt,
where S 2 is the unit sphere in R 3 . Since u harmonic in B c R , and decays as O( 1|x| 2 ) when |x| → +∞, by expanding it in the spherical harmonic basis [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF], we can easily obtain that

∂ ν u(Rt) = O( 1 R 3 ) as R → +∞ uniformly in t ∈ S 2 .
Consequently, the right hand term in the previous inequality tends to zero as R → +∞, which achieves the proof of the lemma.

Regarding the results of lemma 3.3, we can rewrite the problem (2.1) as follows

(3.14)    div[(1 + (k(ω) -1)χ D )∇u] = 0 in Ω e , u -1 |∂Ω| ´∂Ω udσ -ξ∂ ν u = u i on ∂Ω, |u| = O( 1 |x| d-1 ) as |x| → +∞,
where u i is the unique solution to the system (3.11). Let

W 1,-1 (Ω e ) = u ∈ W 1,-1 (Ω e ); |u| = O( 1 |x| d-1 ) as |x| → +∞ . (3.15)
We now state the main result of this subsection.

Theorem 3.2. The forward problem (2.1) has a unique solution in W 1,-1 (Ω e ).

Proof. Multiplying the equation (3.14) by v in W 1,-1 (Ω e ) and integrating by parts we obtain the following variational formulation

∀v ∈ W 1,-1 (Ω e ), ˆΩe ∇u∇vdx + 1 α ˆ∂Ω (u - ∂Ω u)(v - ∂Ω v)dσ = 1 α ˆ∂Ω u i vdσ,
where

ffl ∂Ω udσ = 1 |∂Ω| ´∂Ω udσ.
We claim that the left-hand bilinear form is coercive. In fact, when d = 3 we deduce from [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF], that the term ´Ωe ∇u∇vdx is coercive in W 1,-1 (Ω e ). When d = 2 it is proved in [START_REF] Bonnetier | On the spectrum of the poincaré variational problem for two close-to-touching inclusions in 2d[END_REF] that the term ´Ωe ∇u∇vdx is also coercive in W 1,-1 (Ω e ).

Then, by Lax-Milgram Theorem we obtain the desired result.

We introduce the fundamental solution Γ to the Laplace operator in R d . Definition 3.2. Denoting by ω d the area of the unit sphere in R d , the fundamental solution to the Laplace operator is given by

(3.16) Γ(x, y) = 1 2π log(|x -y|) d = 2, -1 ω d |x -y| 2-d d ≥ 3.
A direct consequence of theorem 3.1 is the following corollary.

Corollary 3.1. Let y ∈ Ω e be fixed. Then, there exists a unique solution to the system

(3.17)    G(x, y) = δ y in Ω e , G -ξ ∂G ∂ν = Γ -ξ ∂Γ ∂ν on ∂Ω, G -Γ ∈ W 1,-1 (Ω e ).
The singular function G(x, y) is the Green function of the Laplace operator in Ω e with the Robin boundary condition.

The Poincaré Variational Problem

In this section, we introduce the Poincaré variational problem by following the approach in [START_REF] Ammari | Identification of an inclusion in multifrequency electric impedance tomography[END_REF], [START_REF] Bonnetier | On the spectrum of the poincaré variational problem for two close-to-touching inclusions in 2d[END_REF]. We denote by W 1,-1 (Ω e ), the subspace of functions

v ∈ W 1,-1 (Ω e ) satisfying |v(x)| = O( 1 |x| d-1
) as |x| → ∞. It follows from [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF], [START_REF] Bonnetier | On the spectrum of the poincaré variational problem for two close-to-touching inclusions in 2d[END_REF] that the space W 1,-1 (Ω e ) endowed with the scalar product u, v W 1,-1 (Ωe) := ˆΩe ∇u∇vdx is a Hilbert space. Thus, the following bilinear form defines also an equivalent scalar product on W 1,-1 (Ω e ),

a(u, v) := ˆΩe ∇u∇vdx + 1 ξ ˆ∂Ω ūvdσ,
where ū := u -1 |∂Ω| ´∂Ω udσ.

For u ∈ W 1,-1 (Ω e ), we infer from the Riesz Theorem that there exist a unique T u ∈ W 1,-1 (Ω e ) such that for all v ∈ W 1,-1 (Ω e ), (4.1)

ˆΩe ∇T u∇vdx + 1 ξ ˆ∂Ω T uvdσ = ˆD ∇u∇vdx.
It is easy to check that the operator T : W 1,-1 (Ω e ) → W 1,-1 (Ω e ) is self-adjoint and bounded. The spectral problem for T reads as: Find (w, λ)

∈ W 1,-1 (Ω e ) × R, w = 0, such that ∀v ∈ W 1,-1 (Ω e ), (4.2) 
λ ˆΩe ∇w∇vdx + λ ξ ˆ∂Ω wvdσ = ˆD ∇w∇vdx.
Integrating by parts, we obtain that an eigenfunction w is harmonic in D and in D := Ω e \ D. We have the transmission and boundary conditions on ∂D (4.3)

w| + ∂D = w| - ∂D , ∂ ν w| + ∂D = (1 - 1 λ )∂ ν w| - ∂D , w| ∂Ω -ξ∂ ν w| ∂Ω = 1 |∂Ω| ˆ∂Ω wdσ,
where w| ± ∂D (x) = lim t→0 w(x + t ± ν(x)) for x ∈ ∂D. In other words, w is a solution to (2.1) for k = 1 -1 λ < 0, and J s = 0. We define the space H as the space of harmonic functions in 

K * D [φ](x) = ˆ∂D ∂ ∂ν x G(x, y)φ(y)dσ(y). Since D is smooth K * D is compact on H -1/2 (∂D) (see lemma 2. (4.6) 
13 in [START_REF] Ammari | Polarization and moment tensors: with applications to inverse problems and effective medium theory[END_REF]). Since the function G and the Newtonian potential Γ have equivalent weak singularities as x → y (see Lemma 2.14 in [START_REF] Ammari | Reconstruction of small inhomogeneities from boundary measurements[END_REF] for a sketch of the proof and section 2.5.5 in [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF] for the regularity), the single layer potential S D satisfies the Plemjel jump relations across the boundary ∂D, that is,

(4.7) ∂ ν S D [φ] ± (x) = (± 1 2 I + K * D )[φ](x)
. We next characterize the spectrum of T .

Theorem 4.1. The Poincaré variational operator T has the following decomposition

(4.8) T = 1 2 I + K,
where K is a compact, self-adjoint operator. Let w ± n , n ≥ 1 be the eigenfunctions of T associated to the eigenvalues (λ ± n ) n≥1 , we have the following min-max principle

λ - 1 = min 0 =w∈H ´D |∇w(x)| 2 dx ´Ωe |∇w(x)| 2 dx + 1 ξ ´∂Ω | w| 2 dx λ - n = min 0 =w∈H ,w⊥w - 1 ,••• ,w - n-1 ´D |∇w(x)| 2 dx ´Ωe |∇w(x)| 2 dx + 1 ξ ´∂Ω | w| 2 dx = min Fn⊂H ,dim(Fn)=n max w∈Fn ´D |∇w(x)| 2 dx ´Ωe |∇w(x)| 2 dx + 1 ξ ´∂Ω | w| 2 dx , (4.9)
and similarly

λ + 1 = max 0 =w∈H ´D |∇w(x)| 2 dx ´Ωe |∇w(x)| 2 dx + 1 ξ ´∂Ω | w| 2 dσ λ + n = max 0 =w∈H ,w⊥w + 1 ,••• ,w + n-1 ´D |∇w(x)| 2 dx ´Ωe |∇w(x)| 2 dx + 1 ξ ´∂Ω | w| 2 dx = max Fn⊂H ,dim(Fn)=n min w∈Fn ´D |∇w(x)| 2 dx ´Ωe |∇w(x)| 2 dx + 1 ξ ´∂Ω | w| 2 dx . (4.10)
Proof. We define the operator R : H → H , for all v ∈ H , (4.11)

2( ˆΩe ∇Ru∇vdx + 1 ξ ˆ∂Ω Ruvdσ) = ˆD ∇u∇vdx - ˆD ∇u∇vdx - 1 ξ ˆ∂Ω ūvdσ.
We observe that K is bounded and self-adjoint. A direct calculation shows that (4.12)

T = 1 2 I + R.
It is shown in [START_REF] Ammari | Polarization and moment tensors: with applications to inverse problems and effective medium theory[END_REF] that the single layer potential S D : H -1/2 (∂D) → H 1/2 (∂D) is invertible in dimension three, and we can modify slightly S D to show the invertibility in dimension two.

Integrating by parts the right-hand side of (4.11), and using the jump relation (4.7), we find

ˆΩe ∇Ru∇vdx + 1 ξ ˆ∂Ω Ruvdσ = ˆ∂D K * D [S -1 D [u| ∂D ]]vdσ. Since K * D is compact the operator R is compact.
From Fredholm's alternative, T is a Fredholm operator of index 0, and the spectral decomposition (4.9), (4.10) follows the min-max principle. 

4.13) u(x) = ∞ n=1 u ± n w ± n (x),
where

(4.14) u ± n = ˆΩe ∇u∇w ± n dx + 1 ξ ˆ∂Ω ū w± n dx.

Spectral decomposition of the solution u(x, ω)

Theorem 5.1. Let u(x, ω) be the unique solution to the system (2.1). Then, the following decomposition holds:

u(x, ω) = u 0 (x) + u f (x, k(ω)) = u 0 (x) + 1 ξ ∞ n=1 ´∂Ω u i w ± n dσ 1 + λ ± n (k(ω) -1) w ± n (x), x ∈ Ω e , (5.1) 
where u 0 ∈ W 1,-1 (Ω e ) is the unique solution to the system:

(5.2)        v = 0 in Ω e \ D, ∇v = 0 in D, v - ffl ∂Ω vdσ = ξ∂ ν v + u i on ∂Ω, |v| = O( 1 |x| d-1 ) as |x| → ∞,
and u i ∈ L 2 (Ω) is the unique solution to the equation:

(5.3)    v = J s in Ω, ∂ ν v = 0 on ∂Ω, ´∂Ω vdσ = 0.
Proof. Let u be the unique solution to (5.4)

               v = J s in Ω, ∂ ν v| -= 0 on ∂Ω, ´∂Ω v| -dσ = 0, v = 0 in Ω e , v| + - ffl ∂Ω v| + dσ -v| -= ξ∂ ν v| + on ∂Ω, |v| = O( 1 |x| d-1 )
as |x| → ∞.

Denote u := u -u , u is therefore harmonic in D and in Ω e \ D. Moreover, it satisfies

u| + - ∂Ω u| + dσ = ξ∂ ν u| + on ∂Ω.
Then u ∈ H , and admits the following spectral decomposition:

(5.5)

u(x) = ∞ n=1 u ± n w ± n (x),
where

(5.6) u ± n = ˆΩe ∇u∇w ± n dx + 1 ξ ˆ∂Ω u w± n dσ.
By definition, u is the unique solution to

(5.7)

   -div(γ(x, ω)∇u) = div(γ(x, ω)∇u ) in Ω e , u -ξ∂ ν u = 1 |∂Ω| ´∂Ω udσ on ∂Ω, |u| = O( 1 |x| d-1 ) as |x| → ∞.
Multiplying the first equation in (5.7) by w ± n , and integrating by parts over Ω e , we have

(5.8) u ± n = ´Ωe div(γ(x, ω)∇u )w ± n dx 1 + λ ± n (k(ω) -1)
.

The term ´Ωe div(γ(x, ω)∇u )w ± n dx can be understood as a dual product between div(γ(x, ω)∇u ) ∈ (W 1,-1 (Ω e )) * and w ± n ∈ W 1,-1 (Ω e ). It can be simplified by means of integration by parts:

ˆΩe div(γ(x, ω)∇u )w ± n dx = - ˆΩe γ(x, ω)∇u ∇w ± n dx - ˆ∂Ω ∂ ν u w ± n dσ = - ˆΩe ∇u ∇w ± n dx -(k(ω) -1) ˆD ∇u ∇w ± n dx - 1 ξ ˆ∂Ω (u | + -u | -)w ± n dσ = - ˆΩe ∇u ∇w ± n dx -(k(ω) -1) ˆD ∇u ∇w ± n dx - 1 ξ ˆ∂Ω (u | + -u | -) w± n dσ = -[ 1 λ ± n + (k(ω) -1)] ˆD ∇u ∇w ± n dx + 1 ξ ˆ∂Ω u | -w ± n dσ, (5.9) 
where u | -is exactly the unique solution to (7.5), it means, u | -= u i . Thus, it follows that (5.10)

u ± n = - ´D ∇u ∇w ± n dx λ ± n + ´∂Ω u i w ± n dσ ξ[1 + λ ± n (k(ω) -1)]
.

Let ũ0 ∈ H be the unique solution to the system (5.11)

       ũ0 = 0 in Ω e \ D, ∇ ũ0 = ∇u in D, ũ0 -ξ ∂ ũ0 ∂ν = 1 |∂Ω| ´∂Ω ũ0 dσ on ∂Ω, | ũ0 | = O( 1 |x| d-1 ) as |x| → ∞.
Since w ± n is an eigenfunction of T and ũ0 ∈ H , we have (5.12)

ˆD ∇u ∇w ± n dx = λ ± n [ ˆΩe ∇ ũ0 ∇w ± n dx + 1 ξ ˆ∂Ω ũ0 w± n dσ],
which gives (5.13)

u ± n = -[ ˆΩe ∇ ũ0 ∇w ± n dx + 1 ξ ˆ∂Ω ũ0 w± n dσ] + ´∂Ω u i w ± n dσ ξ[1 + λ ± n (k(ω) -1)]
.

On the other hand a simple calculations yields

(5.14) u -ũ0 = u 0 .
Combining (5.13) amd (5.14), the decomposition (5.1) follows.

Corollary 5.1. Let x ∈ ∂Ω, the function k → u f (x, k) is meromorphic in C. The poles of u f (x, k) are the real solutions to the equations

(5.15) 1 + λ ± n (k -1) = 0, n ≥ 1
where λ ± n are the eigenvalues of the Poincaré variational operator T . The poles of u f (x, k) in the previous corollary are given by k

± n = (1-1 λ ± n ) ∈ R -, and 
they can be ordered as follows:

(5.16)

k - 1 ≤ k - 2 ≤ • • • < -1 < • • • ≤ k + 2 ≤ k + 1 < 0
We remark that -1 is the only accumulation point of the sequence of poles, it means k ± n tends to -1 as n → ∞.

Uniqueness and stability estimates

By modifying slightly the proofs in sections 3 and 4 of [START_REF] Ammari | Identification of an inclusion in multifrequency electric impedance tomography[END_REF], we establish the uniqueness of the inverse weakly electric fish, and the following stability estimate |u -ũ|.

Then, there exist constants C and τ ∈ (0, 1), such that the following estimate holds:

(6.1) |D D| ≤ C 1 ln(ε -1 ) τ .
Here, denotes the symmetric difference and the constants C and τ depend only on J s , Ω, D and Σ = {k(ω); ω ∈ (ω, ω)}.

Moreover, if the boundaries are analytic, we have a Hölder-type stability estimate. |u -ũ|.

Then, there exist constants C and τ ∈ (0, 1), such that the following estimate holds:

(6.2) |D D| ≤ Cε τ .
Here, denotes the symmetric difference and the constants C and τ depend only on J s , Ω, D and Σ.

These results show that the reconstruction of D is improving according to the regularity of its boundary. Precisely, the stability estimates vary from logarithmic to Hölder. They can also be extended to a larger class of as non-star shaped and non-connected domains. In this paper for the sake of simplicity we do not handle such general cases.

The proofs of Theorems 6.1 and 6.2 follow exactly the arguments presented in sections 3-4 of [START_REF] Ammari | Identification of an inclusion in multifrequency electric impedance tomography[END_REF], and we do not reproduce them here. They fundamentally rely on the spectral decompositions of u and ũ. Thus, concerning stability estimates, one of the main contributions of our paper is to show that such spectral decompositions also hold for the solutions to exterior problems, and therefore yield similar estimates. In the proof, the electric potential on the electric fish skin is split into two parts u(x, ω) = u 0 (x) + u f (x, k(ω)), and separates between k-dependent and k-independent parts. In fact u 0 corresponds to the response of the same inclusion filled with a perfect conductor, that is u 0 is the limit of u when k tends to infinity. Since k → u is meromorphic and its poles are simple, u f (x, k)| ∂Ω can be recovered using unique continuation for meromorphic functions. (u 0 , ∂ ν u 0 )| ∂Ω can in turn be retrieved from u(., ω)| ∂Ω , ω ∈ (ω, ω). The problem of determining D from the Cauchy data of u 0 has been studied by several authors (see for instance [START_REF] Al Bukhgeim | Conditional stability in an inverse problem of determining a non-smooth boundary[END_REF][START_REF] Alessandrini | Optimal stability for inverse elliptic boundary value problems with unknown boundaries[END_REF] and references therein).

Numerical identification of the target fish

In this section, we develop a numerical scheme to determine the position and shape of the target fish. Regarding the decay of the solution of (2.1) as |x| → +∞, we first reduce the computational domain by taking a Dirichlet boundary condition on a large disk B containing the fish Ω and the inclusion D. In fact we will show that a spectral decomposition similar to (5.1) holds in the truncated problem. Using this spectral decomposition, our numerical algorithm splits into two main steps. In the first step we retrieve the frequency depend part u f , and in the second step we reconstruct the inclusion from the Cauchy data of u 0 on ∂Ω obtained in the first step. Precisely, we recover the fish target by using an optimization scheme that minimizes a given energy functional on the boundary ∂Ω with respect to the shape of the inclusion.

7.1. The mathematical model in a truncated domain. In order to implement the numerical identification method, we need to reduce the system (2.1) to a bounded domain. Let B be a centered disk large enough such that it contains the electric fish Ω and the target fish D. We substitute (2.1) by the system

               ũ = J s in Ω, div[γ(x, ω)∇ũ] = 0 in B \ Ω, ∂ ν ũ| -= 0 on ∂Ω, ũ| + -ũ| -= ξ∂ ν ũ| + on ∂Ω, ũ = 0 on ∂B, ´∂B ∂ ν ũdσ = 0. (7.1)
The standard theory of elliptic partial differential equations shows that (7.1) admits a unique solution in

W 0 := u ∈ H 1 (B \ Ω) ∪ H 1 (Ω), u = 0 on ∂B, ˆ∂B ∂ ν ũdσ = 0 .
We introduce the equivalent scalar product on W 0 and the associated Poincaré variational operator T .

ã(u, v) := ˆB\Ω ∇u∇vdx + 1 ξ ˆ∂Ω ūvdσ.
For u ∈ H, by the Riez theorem, there exists aunique T u ∈ W 0 such that for all v ∈ W 0 , (

ˆB\Ω ∇ T u∇vdx + 1 ξ ˆ∂Ω T uvdσ = ˆD ∇u∇vdx. 7.2) 
We introduce also the space H ⊂ W 0 of the functions which are harmonic in D and in B \ (Ω ∪ D), and which satisfy the zero Robin boundary condition u -ξ∂ ν u = 0 on ∂Ω.

Then, T has similar spectral elements denoted (w ± n , λ± n ) as T . We follow the analysis in the unbounded case to derive a similar spectral decomposition for ũ. Theorem 7.1. Let ũ(x, ω) be the unique solution to the system (7.1). Then the following decomposition holds, for x ∈ B \ Ω, ũ(x, ω) = ũ0 (x) + u f (x, k(ω))

= ũ0 (x) + 1 ξ ∞ n=1 ´∂Ω ũi w± n dσ 1 + λ± n (k(ω) -1)
w± n (x), (7.3) where u 0 ∈ W 0 is the unique solution to the system:

(7.4)            v = 0 in B \ (Ω ∪ D), ∇v = 0 in D, v - ffl ∂Ω vdσ = ξ∂ ν v + u i on ∂Ω, v = 0 on ∂B, ´∂B ∂ ν vdσ = 0,
and u i ∈ L 2 (Ω) is the unique solution to the equation:

(7.5)    v = J s in Ω, ∂ ν v = 0
on ∂Ω, ´∂Ω vdσ = 0. 7.2. Retrieval of the frequency independent part. We consider M frequencies of measurements ω 1 , ω 2 , • • • , ω M . Since 1/2 is the unique accumulation point of the eigenvalues ( λ± n ) n∈N , we only consider the N f first eigenvalues as unknowns, and we approximate the others eigenvalues by 1/2. In fact it has been shown in [START_REF] Miyanishi | Eigenvalues and eigenfunctions of double layer potentials[END_REF] that if D is C β with β ≥ 2 then for any α > -2β + 3, we have

| λ± n -1/2| = o(n α ), n → +∞.
If the boundary of D is C ∞ smooth, then the eigenvalues will decay faster than any power. Recently H. Kang and his collaborators have shown the exponential convergence of the eigenvalues in the case of analytic inclusions [START_REF] Ando | Exponential decay estimates of the eigenvalues for the neumann-poincar\'e operator on analytic boundaries in two dimensions[END_REF]. Therefore, we make the following approximation, for x ∈ Ω, 1 ≤ p ≤ M ,

(7.6) ũ(x, ω p ) ≈ ũ0 (x) + N f n=1 v ± n (x) 1 + λ± n (k(ω p ) -1) + 2 k(ω p ) + 1 v N f +1 (x),
where

v ± n (x) = 1 ξ ˆ∂Ω ũi w± n dσ w± n (x),
and

v N f +1 (x) = 1 ξ n>N f ˆ∂Ω ũi w± n dσ w± n (x).
By a simple integration by parts, we have, for all n ∈ N,

(7.7) 1 ξ ˆ∂Ω ũi w± n dσ = ˆB\Ω ∇ũ ∇ w± n dx + 1 ξ ˆ∂Ω ũ w± n dσ,
where ũ is the unique solution in W 0 to (7.8)

       ũ = 0 in B \ Ω, ũ - ffl ũ dσ -ξ∂ ν ũ = ũi on ∂Ω, ũ = 0 on ∂B ´∂B ∂ ν ũ dσ = 0.
In other words, the function ∞ n=1 v ± n is the orthogonal projection of the function ũ on the space H .

On the other hand ũ0 satisfies, for all n ∈ N, n ≥ 1

ˆB\Ω ∇ũ 0 ∇ w± n dx + 1 ξ ˆ∂Ω ũ0 w± n dσ = ˆB\(Ω∪D) ∇ũ 0 ∇ w± n dx + 1 ξ ˆ∂Ω ũ0 w± n dσ = - ˆ∂Ω ũ0 ∂ ν w± n dσ + 1 ξ ˆ∂Ω û0 w± n dσ - ˆ∂D ũ0 ∂ ν w± n dσ = -ũ 0 ˆ∂D ∂ ν w± n dσ = 0. (7.9)
As ũ -ũ0 ∈ H , the orthogonal projection of ũ on the space H is ũ -ũ0 .

Then, the formula (7.6) becomes

ũ(x, ω p ) ≈ k(ω p ) -1 k(ω p ) + 1 ũ0 (x) + 2 k(ω p ) + 1 ũ (x) + N f n=1 ( 1 1 + λ± n (k(ω p ) -1) - 2 k(ω p ) + 1 )v ± n (x). (7.10)
The previous equation can be formulated with the following matrix form.

For x ∈ ∂Ω, we define the vectors Ũ (x, ω 1 , . . . , ω M ) = (ũ(x, ω j )) ,

V (x) = ũ0 (x), v + 1 (x), v - 1 (x), . . . , v + N f (x), v - N f (x) , and 
L( λ ± 1 , . . . , λ ± N f , ω 1 , . . . ω M ) = (L i ) 1≤i≤M , where L i (x) = q 0 (ω i ), q( λ + 1 , ω i ), q( λ - 1 , ω i ), • • • , q( λ + N f , ω i ), q( λ - N f , ω i ) .
Here

ũ(x, ω) = ũ(x, ω) - 2 k(ω) + 1 ũ (x), q 0 (ω) = k(ω) -1 (k(ω) + 1)
, and q( λ, ω) = 1

1 + λ(k(ω) -1) - 2 k(ω) + 1 .
The matrix formulation of (7.10) becomes then

(7.11) Ũ T (x, ω 1 , ω 2 , • • • , ω M ) ≈ L( λ ± 1 , . . . , λ ± N f , ω 1 , . . . ω M )V T (x)
. So, the vector V can be obtained by the formula, (7.12)

V T (x) ≈ (L T L) † L T Ũ T (x, ω 1 , • • • ω M ).
where (L T L) † is the pseudo-inverse of the matrix L T L. The conditioning of the matrix (L T L) † depends on the distance between the frequency sampling values ω 0 . The approximate ũ0 (x) is then given by the first coefficient of the vector V (x).

7.3. Identification of the target fish. In this section, we consider a numerical scheme to identify the inclusion D ∈ D from the knowledge of ũ0 | ∂Ω recovered in the previous section. The scheme is based on minimizing the functional

J(D) = 1 2 ˆ∂Ω P i=1 |ũ 0 -ũ(i) meas | 2 dσ + ε T ˆ∂D dσ,
where ũ is the solution to (7.4). P designs the total number of measurements, we take here P = 10. For 1 ≤ i ≤ 10, we use the fact that the electric fish can swim around the target, ũ(i) meas is the measured Dirichlet data corresponding to the case when the electric fish is located at the i-th position. These quantities are obtained in the previous step by retrieving the frequency dependent part from the multifrequency measurements. The term ε T ´∂D dσ represents the Tikhonov regularization.

7.3.1. Shape derivative. Let D ε be the perturbed domain, given by (7.13)

∂D ε = {x : x = x + εh(x)ν(x), x ∈ ∂D},
where h ∈ C 1 (∂D) and ν denote the unit outward normal vector.

Theorem 7.2. We denote by ũ0 and by ũ0,ε respectively the solutions to the equation (7.4) with the inclusion D (resp. D ε ). Then, the following relation holds, for x ∈ ∂Ω,

(7.14) ũ0,ε (x) = ũ0 (x) + εũ h (x) + o(ε),
where ũh is the solution to the following equation

(7.15)                v = 0 in B \ (Ω ∪ D), ∇v = 0 in D, v = -h∂ ν ũ0 | + on ∂D, v - ffl vdσ -ξ∂ ν v = 0 on ∂Ω, v = 0 on ∂B, ´∂B ∂ ν vdσ = 0,
Proof. The result can be proved using layer potential techniques by following the proof of Theorem 3.1 in [START_REF] Habib Ammari | Numerical determination of anomalies in multifrequency electrical impedance tomography[END_REF]. 7.3.2. Gradient descent algorithms. We assume that our domain D is star shaped, centered at the origin and that its boundary ∂D can be described by the Fourier series:

(7.16) ∂D = {r(θ) cos θ sin θ |θ ∈ [0; 2π)}, r = N n=-N c n f n , where C =      c -N c -N +1 . . . c N      ∈ R 2N +1 , f n (θ) = cos(nθ) for 0 ≤ n ≤ N and f n (θ) = sin(nθ) for -N ≤ n < 0.
Using (7.15) and integration by parts, we deduce the expressions of the shape derivatives corresponding to each Fourier coefficient, for -N ≤ n ≤ N , (7.17)

∂J ∂c n = ˆB\Ω∪D ∇w∇ũ h dx + ε T ˆ∂D κhdσ,
where h(θ) = f n (θ) cos θ sin θ , ν , κ represents the curvature of ∂D and w is the solution of the following equation

(7.18)        w = 0 in B \ Ω ∪ D, ∂ ν w = 0 on ∂D, ∂ ν w = ũ -ũmeas on ∂Ω, w = 0 on ∂B.
Now, we are ready to introduce our iterative algorithm:

(1) Calculate the interior solution ũi .

(2) Using (7.12), we retrieve the frequency independent part ũ0 from the multifrequency measurements. We get the Dirichlet data (û 
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  meas ) 1≤i≤P .(3) Chose an initial domain D 0 . (4) For each iteration, j > 0:(a) Using (7.4) associated to the domain D j for which the boundary ∂D j is obtained from(7.16). (b) Calculate the shape derivatives ∂J ∂cn for all -N ≤ n ≤ N by (7.17). (c) Update the parameters of the domain C j+1 = C j -α∇ C J(C j ) with α > 0. (d) If the updated domain boundary touches ∂Ω or if J(C j+1 ) > J(C j ), reduce the size of α. (5) When |∇J(C j )| becomes smaller than a fixed threshold, we stop.
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 1 Figure 1. Interior solution to the equation (7.1)
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 23 Figure 2. Solutions to (7.1) in the presence/absence of inclusion
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 4 Figure 4. Reconstruction of an ellipse

Figure 5 .

 5 Figure 5. Reconstruction of a triangle

Figure 6 .

 6 Figure 6. Reconstruction of a star-shape domain

Figure 7 .

 7 Figure 7. Reconstruction of a displaced disk

  1,-1 (Ω e ). Next, we show that the decay O( 1 |x| d-1 ) of the exterior solution as |x| → +∞ will uniquely determine the constant c u . Lemma 3.3. Assume that c u is given. Then, the decay O( 1 Proof. Recall the variational formulation for (3.8) with f = 0 and g

			|x| d-1 ) at infinity
	implies (3.13)	1 |∂Ω| ˆ∂Ω	udσ = c u .

Table 1 .

 1 Errors between ũ0reconstruct and ũ0 • ellipse triangle star displaced disk |D i D target |/|D target | 0.07128 0,1988 0.4232 0.16805

	•	ellipse triangle	star	displaced disk
	measure 1 0.10132 0.06892 0.01411	0.05330
	measure 2 0.07466 0.07384 0.03364	0.05010
	measure 3 0.01637 0.05302 0.07036	0.04712
	measure 4 0.00910 0.04580 0.05242	0.04388
	measure 5 0.03460 0.06548 0.02822	0.03792
	measure 6 0.06959 0.08078 0.03558	0.03408
	measure 7 0.05795 0.06175 0.02743	0.03585
	measure 8 0.02060 0.03240 0.03819	0.03891
	measure 9 0.00675 0.02760 0.07660	0.04054
	measure 10 0.03074 0.03623 0.05292	0.04663

Table 2 .

 2 Relative symmetric difference

Numerical experiments. The setting of all numerical tests is as follows:

• We use FreeFem++ for our numerical experiments [START_REF] Hecht | New development in freefem++[END_REF].

• B is a centered ball with the radius R B = 30.

• Ω is an ellipse defined by the equation:

• We assume that the source function is given by a dipole type source, i. e., in the formula (2.2), M = 2, α 1 = 100, α 2 = -100, x

= (-3, 1), and x (2) s = (-3, -1). The interior solution is illustrated in Figure 1.

• We take advantage of the fact that the electric fish can swim around the target. We chose P = 10 different locations to measure the multifrequency electric potentials, those 10 positions are equi-distributed on the circle with a radius 15. Figure 3 shows the 4 locations of them. • The multifrequency conductivity follows the model k(ω) = k r + inω 0 with k r = 5, ω 0 = 0.5 and n are integers from 0 to 7 [START_REF] Habib Ammari | Modeling active electrolocation in weakly electric fish[END_REF]. • Only the first eigenvalues are taken into consideration, and their apriori estimations are settled as

respectively in all cases. • The initial estimation of domain D: a centered disk with a radius 1 2 . • We consider the first 9 Fourier coefficients: N = 9.

• We set the Tikhonov regularization coefficient ε T = 0.01.

• We use P1 finite elements for the numerical resolution of the PDEs.

• At each iteration, we remesh the domain to adapt to the new predicted shape of the domain. • The algorithm stops if |∇J| < 10 -6 or if the number of iterations exceeds 100. We present here several numerical simulations of the algorithm. We first present in Table [START_REF] Robert | Compact sobolev imbeddings for unbounded domains with discrete boundaries[END_REF], errors in the reconstruction method of ũ0 . Here, errors are the L 2 -norm of the difference ũ0reconstruct -ũ0 :

We show in the following figures the targets and the reconstruction result. We calculate also the relative symmetric difference |D i D target |/|D target | during the iterations, and we plot the curves of the symmetric difference in terms of iteration number. We finally give the relative symmetric difference of each case in Table 2.

Conclusion

Using the mathematical model of the weakly electric fish introduced by Ammari and al. in [START_REF] Habib Ammari | Modeling active electrolocation in weakly electric fish[END_REF], we addressed the question of existence and uniqueness of the solution to the direct problem. We have established the uniqueness and stability estimates of the fish target recovery problem using a single measurement, under the assumption that its conductivity profile is known. We provided a gradient descent algorithm to determine the shape and location of the target.
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