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Abstract—Fog computing has recently emerged as a new
cyber foraging technique to offload resource-intensive tasks from
mobile devices to mobile cloudlets in close proximity to end-
users. Since the one-hop communication in the network edge
is predominantly wireless, Wireless Mesh Networks (WMNs)
are being considered to build wireless fog networks. However,
WMNs use distributed hop-by-hop routing protocols to reflect a
partial visibility of the network, which limits their ability to
perform global network management and monitoring needed
by fog networks. Software Defined Networking (SDN) provides
a centralized control and management of the entire network,
which makes it a good candidate to support fog communication.
Unfortunately, the SDN OpenFlow protocol does not support
any functionalities for wireless fog networks as it is primarily
targeted to wired networks. To address these issues, this paper
presents a SDN-enabled wireless fog architecture that combines
both OpenFlow and distributed wireless protocols. The proposed
solution provides lower latency and efficient load balancing to
offload the network load by enabling programmable fog routers.

Index Terms—Wireless Fog Networks, SDN, Hybrid Control
Plane, Hybrid Routing, Load Balancing.

I. INTRODUCTION

Fog Computing [1] is an emerging technology to bring
cloud computing services, such as communication, computa-
tion, network control and storage, to the network edge. Fog
services can be hosted at users’ edge wireless devices to
improve network reliability and latency, and overcome the
issues stemming from geographically distributed locations in
cloud computing. Additionally, fog computing relies on dis-
coverable, generic, forward-deployed servers located in single-
hop proximity of mobile devices [2]. These servers should be
used to offload expensive computation at the network edge,
perform data filtering to remove unnecessary data from streams
intended for dismounted users, and serve as collection points
for data heading for enterprise repositories. Obviously, the
number of users in the fog network is typically bounded since
we can estimate in advance what the size of the network
is, how big a group of wireless users, similar to traditional
wireless access points in public environment such as airports,
cyber-coffee, etc.

An additional trend reveals that wireless fog devices are
increasingly used locally, e.g., for intra-vehicle communica-
tion [3], intra-sensor communication [4] and smart energy

management in intra-building [5], where data are generated
and consumed locally. To make such and future solutions, fog
computing architectures should enable real-time data sharing
across a range of platform such as mobile severs and embedded
sensor, wirelessly. In this setup, each fog node is envisioned to
act as a wireless router to its neighbors to provide a resilient
network with high capacity data transfer, fault tolerance as well
as higher availability. Meanwhile, Software Defined Network
(SDN) [6] has been envisioned as a new approach to enable
network programmability to test out new protocols. SDN al-
lows creating modular and declarative programming interfaces
across the wireless stack by refactoring the wireless protocols
into processing and decision planes. On one hand, an external
SDN controller that holds all the routing intelligence is used
to centralize the management and the control of the network.
On the other hand, the hardware pipelines in the traditional
routers are replaced by software pipelines holding abstracted
flow tables. The controller can program those flow tables to
enable a customized and fine-grained control of the traffic.

So far, the above two technologies, i.e. Fog computing
and SDN, have been studies separately. The wireless SDN
approaches predominantly focus on using only OpenFlow to
interconnect virtual public mesh network [7] and offloading
the router’s computation to the cloud [8]. Furthermore, SDN
has been used to maintain the session continuity from the
application perspective, ensure mobility management [9], and
maintain the network connectivity [10]. Similarly, fog com-
puting technologies are used to extend the capabilities of
mobile devices by enabling real-time analytics and performing
computational functions at the edge of a network. For example,
Datta et al. [11] introduced a Fog computing architecture
for connected vehicles to optimize data dissemination over
single-hop communication. Hong et al. [12] proposed a high
level programming model for data staging in geographically
distributed mobile devices. Elgendi et al. [13] proposed a SDN
architecture to interconnect distributed fog cloudlets.

Despite the promise, all these efforts used a centralized SDN
control plane to manage isolated islands of fog computing
infrastructure, which may result in adverse consequences to
the reliability and performance due to increased traffic and
can become a single point of failure. Conversely, a distributed
control plane is more responsive to handle network events



because its proximity to the fog island. However, managing
multiple independent distributed controllers can become a hard
task as i) it incur a different set of complexities to provide a
global optimal view of the whole network; and ii) developers
should take care of all the concerns that arise out of distributed
nature of the system including controller synchronization,
controller replication, controller logic partitioning and con-
troller placement. Furthermore, the aforementioned efforts use
OpenFlow protocol to statically establishes paths to every
SDN switch so that it can run centralized routing algorithms,
which is orthogonal to the fundamental distributed wireless
routing functionality. Despite some wireless routing protocols
(e.g. AODV [14], OLSR [15], etc.) can be used to perform
distributed routing, they however incur significant issue: their
routing decisions are taken based on local knowledge of each
router’s neighbors. Thus, this neighborhood reflects only a
partial visibility of the network without providing a global
view of the entire wireless backhaul. In other words, this
local visibility contracts the SDN requirements for centralized
management of the network, as it limits the ability to perform
network traffic engineering tasks and best path selection across
the available SDN-enabled Fog computing devices.

Consequently, we need an intelligent approach that can i)
provide an hybrid control plane across the distributed Fog
computing devices, ii) exploits the advantages of existing
routing protocols to perform flexible and fine-grained flow
control across the wireless fog infrastructure, and iii) selecting
the best forwarding path that increases the radio channel
transmission capacity. To realize such a capability, we present
in this paper an integrated architecture for software-defined
networking and virtualization for wireless fog computing. The
main contribution of this paper are:

• We present a novel architecture to mange wireless fog in-
frastructure using a hybrid SDN control plane to perform
a flexible deployment and management.

• We propose a hybrid SDN routing protocol that combines
the OLSR data forwarding and OpenFlow to perform
global and optimal path selection as well as monitoring
the entire network.

• We propose a network traffic engineering approach to
perform load balancing for offloading fog devices in the
edge network. It also allows transmitting the Signal-to-
Noise Ratio (SNR) to the controller to perform best path
selection based on the highest SNR values.

• We have implemented our solution on a SDN emulation
testbed and evaluated our approach for various QoS
metrics like latency, router overhead, and bandwidth
utilization.

The remainder of this paper is organized as follows: Sec-
tion II details the design rationale and the implementation for
our architectural decisions; Section III evaluates our solution to
validate its claim about flexible data delivery and low-latency
communication; Section IV compares our approach with the
related work; and finally Section V presents concluding re-
marks alluding to lessons learned and future work.

II. ENABLING SDN FOR WIRELESS FOG NETWORKS

In this section we describe the design principles and details
of our SDN-enabled solution for managing fog computing
infrastructure.

A. Architecture

Figure 1 depicts the architecture of the SDN-enabled Wire-
less Fog Network. At the core of this design is the SDN
controller, i.e., the control plane, which communicates with
the underlying fog routers using the OpenFlow protocol. The
controller includes several network modules:
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Fig. 1: Architecture of the SDN-enabled Wireless Fog Network

• Routing Module: which implements the shortest path
algorithm to build optimal routing strategy to route pack-
ets across the fog routers. It builds a network graph of
connected routers, removes a node from the graph when a
router leaves the network, and activates/deactivates links
to force packets to follow an optimal path.

• Monitoring module: which enables fine-grained control
and monitoring of the OpenFlow traffic. It also supervises
the path reservation and modification at run-time. This
module allows the controller to query a fog router to
gather individual statistics.

• Traffic engineering module: which supports load bal-
ancing to offload fog devices in case of traffic congestion.
It also performs traffic redirection based on the optimized
routing strategy used in the routing module.

• Partitioning Module: is responsible for slicing the
control plane logic. This module requires the controller
to expose an API to perform flow slicing, i.e, separating
data flow, control flow and meta-controller traffic.

• Host Remote Access: allows the access to remote hosts
to install or initialize remote distributed controllers. It
provides new API to the controller by combining SSH
and SCP through the Python command line tool Fabric.



• Synchronization Module: it used to specify the syn-
chronization mechanism to be used in the control plane,
e.g., how to synchronize the backup controller, i.e. using
Apache Zookeeper.

• Topology & Discovery module: which uses the Link
Layer Discovery Protocol (LLDP) to perform automatic
discovery of joining and leaving fog routers. The con-
troller broadcasts OpenFlow PACKET_OUT messages to
all connected routers, which in turn respond by sending
ARP messages to notify their liveliness.

• Network Hypervisor: it provides the access to the un-
derlying network hypervisors, which are used to slice the
network into control and data slice based on OpenVir-
tex [16].

On the data plane, each fog router forwards OpenFlow
messages using the OpenVSwitch soft router. OpenVSwitch
implements a software pipeline based on flow tables. These
flow tables are composed of simple rules to process packets,
forward them to another table and finally send them to an
output queue or port. Furthermore, the data plane includes
an IP-based forwarding daemon running the OLSR routing
protocol. OpenVSwitch bridges OpenFlow and OLSR using
virtual network interfaces, i.e., br0, br1, etc., to exploit the
capacity of IP networks to route packets via the shortest path.
Additionally, to enable multiple virtual routers inside the same
physical node, the data plane implements two virtual radio
interfaces, i.e. PHY1 and PHY2 shown in Figure 3. Using
virtual radio interfaces allows efficient sharing of the downlink
bandwidth between multiple fog clients and airtime fairness
scheduling with the help of channel sharing.

B. Hybrid SDN Control Plane

To address the limitation of both the centralized and dis-
tributed SDN controllers, we introduced a hybrid control plane
insofar as it helps to decouple the orthogonal distributed
systems concerns from the primary issues related to the
controller. The hybrid SDN approach, depicted in Figure 2, is
designed to make SDN more flexible, reliable, fault-tolerant
without adding complexity to the controllers. Specifically, we
introduces a meta-controller layer based on the bootstrapping
mechanism adopted by operating systems, so that a centralized
controller is deployed at the initialization phase to control and
manage the entire network. Then, in case of a controller failure
or overhead, additional controllers are added at runtime as
required to balance the network performance.

Indeed, our hybrid approach divides a single network into
two logical slides: a control slice that contains one or more
distributed SDN controllers; and ii) a data slice that contains
other clients and routers. Based on the network requirements,
i.e. traffic load and the availability of the other controllers,
it allocates the right number of clients and routers to each
controller, while offering a set of coordination mechanisms
to ensure the network consistency. In particular, these mecha-
nisms include an election process that allows electing the clos-
est controller as a master. Furthermore, this hybrid approach
can increase or decrease the size of the control plane, change
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Fig. 2: Hybrid Control Plane

the coordination mechanism among the controllers, i.e. using
Apache Zookeeper to adapt to network topology changes or
to dynamic network loads or simply as part of an upgrade.

In the large scale wireless fog infrastructure, SDN will need
to provide services for creating virtual SDNs (vSDN). In such
environments, individual vSDN will be managed by different
independent controllers and may require different control plane
topology. For example, client A and client B lease the one
vSDN each from the SDN service provider C. C hosts both
the vSDN on the same physical network hardware. The client
A wants hierarchical control-plane with POX controllers, while
B wants centralized control-plane with RYU controller. We can
accomplish such requirements easily as follows:

1) Case when vSDN is created before SDN bootstraps
i.e. statically. A network hypervisor first creates two
vSDNs on the data slice. It will then inform the meta-
control layer about switches and hosts used to create
these two vSDNs. It will also provide control-plane
topology requirements of these two vSDNs. The, the
meta-control layer can calculate the total number of
controllers needed to satisfy requirements of both vSDN.
This calculation depends upon the switches used by the
both vSDNs. It can optimize the number of hosts re-
quired for control plane based on switch sharing between
two, for example if vSDNs share a switch between them,
e.g. port 1 of switch S1 goes to first vSDN and port 2
of the same switch goes to other vSDN etc.

2) case when vSDN is created dynamically i.e. after the
SDN is booted. In this case, similar approach is used,
however the meta-control layer needs to use the existing
control plane or scale up if required. This decision
is based on whether control-plane requirement of new
vSDN is met by the existing control-plane. In this way,
the meta-control layer provides more flexibility to the
SDN control plane management.

C. The Routing Approach

The routing approach is shown in Figure 3 and is divided
into two sub logical layers: traditional OpenFlow-enabled SDN
data forwarding at the upper sublayer and the OLSR routing
protocol at the bottom layer. The former is responsible for
communicating OpenFlow policies with the controller in the



upper layer. The latter is responsible for handling IP routing
among the wireless interfaces. We use an in-band approach
to forward signaling packets across different fog routers. This
design decision is motivated by the desire to provide long
distance wireless connectivity among the wireless backhaul.
Additionally, the controller can implement its own routing
algorithms to select the best paths that packets should follow.
The advantages of this composite architecture are twofold:
(i) the IP forwarding using OLSR allows reporting of every
changes in the wireless routers’ topology graph, such as
addition/removal of a fog router and/or wireless link; and
(ii) OLSR routing increases the availability and dependability
of the fog network since even if a SDN controller fails or
becomes unavailable, the IP routing continues to manage the
network. Moreover, packets can be routed according to OLSR
routing tables under the instruction of the SDN controller
by using OpenFlow. The controller configures the wireless
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fog routers by adding, removing, and/or updating OpenFlow
rules and retrieves the current network states from the nearest
wireless router. Since OLSR is a proactive routing protocol,
each fog router acquires the topology information from other
nodes using multi-points relays (MPRs). The MPRs are used
to reduce the network overhead and provide the shortest path
routes for all fog routers selected as a destination in the
network. Each router keeps a list of its neighbors, which are
selected by the MPR using the MPR-selector list. Each node

can periodically refresh its routing table, i.e., after exchanging
HELLO messages periodically with other neighbors, and se-
lecting the new shortest path to all destinations. Subsequently,
the SDN controller can retrieve topology information from
its nearby router using the topology discovery service imple-
mented in the controller.

D. Monitoring Fog Devices with OpenFlow

After the startup phase, a client sends a request for a service
from the remote fog server, but there no end-to-end connection
between them. As depicted in circle 2© of Figure 4, the request
is redirected by the fog router towards the controller using
PACKET_IN message. Then, the controller responds to this
request to establish the path for data transfer between the
client and the server. The controller first examines the packet
header and checks whether a new flow entry needs to be
created and new actions should be applied on these packets.
The controller sends a Flow_Mod message ( 3© in Figure 4) to
the fog router that includes the new actions to perform on the
packets belonging to this entry. Each flow entry contains a set
of instructions to apply immediately to the packet or forward
them to the next match table in the pipeline. Each pipeline
consists of multiple OpenFlow tables which in turn contain
multiple flow entries. A “goto” instruction in the pipeline
indicates the next table where the lookup object is found and
match actions are performed at each stage.
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Meanwhile, the controller injects PACKET_OUT command

messages ( 4© in Figure 4) into the data plane of the fog
router. PACKET_OUT command messages are not processed
the same way as packets that arrive on standard ports. These
packets jump to the action sets application and instructions are
checked to determine how a packet and its associated data will
be processed. All subsequent packets in both directions, i.e.,
between the client and the server, are matched at the MAC
Ethernet port. At the client side, the data received from the
server are matched against the IP source-destination addresses
and ports.

E. Traffic Engineering

To illustrate traffic engineering, consider a scenario from
Figure 5 depicting four wireless fog routers connected in mesh
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topology. Links a, b, c, d, e, and f establish the communication
paths across all the wireless fog routers.

Algorithm 1 shows the load balancing algorithm to select
the optimal path between the client and the fog server in
Figure 5. Assume that the first optimal path is across the
wireless link a between router 1 and router 4. The controller
has already installed the default parameters to establish the
path a, and periodically discovers the link states. Once the
bandwidth utilization reaches the threshold “Th” and the client
experiences traffic congestion, the load balancing algorithm
detects the network bottleneck and starts calculating new
OpenFlow rules to reroute the traffic across new links, i.e.,
links b, f or e, d. Thereafter, the controller floods all the
ports (i.e., using OpenFlow FlowMod packets) towards the
selected fog routers in the path to the server. The controller
calculates the new optimal path based on the graph topology,
which includes all available routers < as well as the links
ℵ connecting them. Then, it installs new OpenFlow rules to
program the flow entries inside the software pipeline in each
router.

Algorithm 1: Load Balancing Algorithm
Data: Th, <,ℵ
Result: Rerouting traffic to the optimal path

1 installDefaultFlowRules(<);
2 while Listening to LLDP packets do
3 if TrafficCongestion(Th) then
4 calculateNewOFRules(<,ℵ);
5 FloodPackets(<);
6 calculateOptimalPath(source, destination,<,ℵ);
7 if isBestPATH then
8 InstallnewOFRules(<);
9 else

10 goto:
11 calculateNewOFRules(<,ℵ);
12 end
13 else
14 monitoring();
15 end
16 end

Furthermore, we modified the MAC layer of the wireless
devices to allow them sending information about the inter-
ference towards the controller. Algorithm 2 depicts the SNR-
based route optimization approach, which calculates the best
path that has the highest SNR ratio. In particular, rather than
storing the SNR values in the MAC layer, we have modified
the "Maclow" and "MacRxMiddle" modules to allow them
forwarding the SDN radios to the "StaWifiMac" module of
each wireless fog router. Such an approach allows centralizing
information about the interference in the SDN controller side,
by modifying the "WifiNetDevice" and "TabBridge" modules
in the SDN emulator.

Algorithm 2: SNR-based routing optimization algorithm
Data: SNR
Result: Best_SNR_Path(<,ℵ);

1 if ∃ path (SNR) then
2 path←− Find_Best_SNR (rules)
3 return path
4 else
5 rules←− calc_new_rules(SNR);
6 FlowMod_router();
7 best_path(rules);
8 end

Table I depicts the flow entries the controller can program
before traffic congestion and after triggering the load balancer
algorithm. At startup time, the controller has already installed
the data path between router 1 with ID dpID1 and router 4
with ID dpID4. When router 1 receives incoming packets in
its virtual port, i.e., ingress-Port: virtual port 1, the headers
of those packets are inspected to check whether they match
the OpenFlow rules in the flow entries. The action sets are
provided through the physical port of router 1, i.e., output:
To port router 4 and the destination of packets from router 1
is the next nearest hop, i.e., the router 4. Thus, packets from
router 1 should encapsulate in their headers the IP and MAC
destination addresses of router 4. Hence, the flow entries are
injected by the controller to allow forwarding data to router 4
using both its IP, i.e., SetDestIP: IP router 4, and its MAC,
i.e., SetDestMAC: MAC router 4, destination addresses.

OF Before After
OpenFlow router1: dpID1 router1: dpID1
rules router4: dpID4 router2: dpID2

ingress-Port: virtual port 1 router4: dpID4
ingressPort: virtual port 1
ingressPort: virtual port 2

OpenFlow SetDestIP: IP router 4 setDestIP: IP router 2
entries SetDestMAC: MAC router 4 SetDestMAC: MAC router2

output: To port router 4 output: To port router 2
setDestIP: IP router 4
SetDestMAC: MAC router4
output: Port router 4

TABLE I: OpenFlow entries the controller installs inside the
fog routers



Upon the failure of radio link a, the controller installs new
OpenFlow rules to redirect the flow from router 1 to router
4 through router 2 with ID dpID2. Since the new available
forwarding path should pass through router 2, the controller
should program both routers 2 and 4 with the new flow entries
as described in the "After" column of Table I. Since the
controller have a centralized view of the network, he can
easily decide the network bottleneck and switch data to the
best available new path. To do so, the controller calculates
the new rules, i.e., the MAC and IP addresses for the new
fog routers in the new path and send OpenFlow FlowMod
messages to select the new end-to-end path. Thereafter, it
floods all the ports towards the selected fog routers, open
the TCP connection to allow fog clients reach each other’s,
while it continue performing node discovery for monitoring
the network topology.

III. PERFORMANCE EVALUATION

In this section we show results of experiments that validate
our claims.

A. Experimental Setup

To evaluate the performance of our approach, we
implemented a software integration layer that combines
Mininet [17], the reference SDN emulator, along with the
NS3 [18] simulator. The main reason behind developing the
integration layer is to complete the lack of the wireless
routing capabilities in Mininet, which are only supported
by NS3. Conversely, NS3 does not support any feature for
emulating SDN networks natively. This integration layer uses
the NS3 TapBridge functionality to integrate real wireless fog
infrastructure nodes in the SDN environment. Additionally, the
integration layer offers new capabilities to integrate the SDN
controllers along with the OpenFlow-enabled switch, i.e., the
OpenVSwitch [19].

At the controller side, we enhanced the Ryu [20] SDN
controller. As described earlier in Section II-A, we developed
our networking modules with Ryu to perform network moni-
toring and debugging, discovering the topology changes in the
network, recovering the network from failure as well as traffic
engineering throughout the load balancing module.

B. Evaluating the Network Latency

We consider the Round Trip Time (RTT) as the time taken
by a data packet to be sent from a client to the fog server
and the time it takes to be received back by that client. We
report the RTT measurement in Figure 6 after conducting
the experiments multiple times. At the startup phase, the
controller is listening to OpenFlow PACKET_IN messages
from the router to learn about the MAC and IP addresses of
the incoming packets. Then, it sends PACKET_OUT messages
to open the path for those packets. The controller-router delay
during this procedure is close to 10 milliseconds. Once the
setup phase is finished and the traffic is being sent to the
destination, i.e., the controller has already installed OpenFlow
rules into the router, the controller latency decreases to about

3 milliseconds. The controller continues performing topology
discovery using the LLDP discovery protocol. Hence, only
the OpenFlow keep-alive messages are exchanged to check
whether an idle connection occurs to indicate a loss of
controller-router connectivity.

Fig. 6: Round Trip Time Between Client and a Fog Server
Once a new client joins the network, its forwarding rules are

yet unknown to the router. The router blocks the traffic sent
by that new client and queries the controller about the new
rules to apply for the incoming packets. Thereafter, the end-
to-end latency becomes close to 20ms. This latency does not
depend on increasing the number of clients, but due mainly
to the time required by the router to negotiate and process the
new OpenFlow rules with the controller.

These results underscore another benefit of our hybrid
routing approach: additional network processing delays are not
incurred since OpenFlow messages sent by the controller to
install new routing rules do not affect the performance of the
communication.

C. Evaluating the Router Performance

Figure 7 depicts the traffic rates generated by OLSR and
OpenFlow. At startup, the OpenFlow traffic is close to 2KB/s.
This is because the traffic exchanged includes the discovery
messages. At time 32 seconds, new OpenFlow messages are
exchanged between the fog router and the controller. Those
messages include new OpenFlow rules the controller has to
install for programming the flow entries in the fog router.
Hence, the OpenFlow traffic increases during this phase.
Meanwhile, the OLSR traffic remains constant as it does not
involve any message exchange with the controller. All the
fog routers exchange their routing information including the
routing tables and the neighbors tables. After programming
the flow entries that finished at time 46s, the OpenFlow traffic
decreases and the controller continues to listen to the LLDP
packets sent by the fog routers. That is, our hybrid routing
appraoch that uses OLSR for data forwarding performs lower
bandwidth utilization compared to the traditional OpenFlow



Fig. 7: Hybrid Routing Performance

only routing, which is used to exchange data between the SDN
controller and the SDN-enabled fog router. Thus, our hybrid
routing appraoch does not introduce a network overhead in the
fog routers.

D. Evaluating the Load Balancing

To evaluate the performance of the load balancing approach,
we inject a competing flow into router 4 to introduce network
congestion and introduce a performance degradation in this
node. Figure 8 shows the throughout observed in router 4.
Due to buffer overflow, router 4 starts dropping packets and
throughput decreases from 850 kB/s to 200 kB/s and a signif-
icant packet loss is observed as foreseen by our experiments.

At time 50 seconds, the load balancing algorithm at the
controller, which we programmed to be activated when the
bandwidth becomes 200 kB/s, is activated to redirect the
traffic from radio link a to radio links b and f of Figure 5.
The topology discovery module at the controller discovers the
disconnection of the wireless radio between routers 1 and 2,
checks the new available path based on the graph its has and
selects router 2 as new shortest path to the destination. The
new path is extracted from the routing table that is updated
regularly by OLSR protocol. Then, the controller needs to
remove the old OpenFlow rules in router 1, i.e., those used for
sending the traffic across link a, pushing down and installing
new forwarding rules as described in Column 3 of Table I.
The IP and MAC addresses of router 2 are added in the new
rules. The bow in Figure 5 shows the new path selected by
the controller by installing new OpenFlow rules in node 1.

A close inspection of Figure 8 shows that the controller
is able to make traffic adjustment using the load balancing
algorithm. The traffic is balanced among the new wireless
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links after establishing the new data path. The time delay
required by the controller for deciding the new available path
and forwarding data is close to 10ms. The redirection delay
is composed of the delay required to drop the old rules
from routers and pushing down the new rules in the flow
tables of each router. Our results show that our approach to
provide traffic engineering in wireless fog networks succeeds
in redirecting packets to the new selected path when multiple
wireless hops are available in the fog network.

IV. RELATED WORK

During the past few years, SDN has received unprecedented
attention from the research community for developing network
support for cloud and edge networks. The authors in [21]
proposed using SDN to improve data transfers between mobile
clients and the cloud, by temporarily staging data and transit
them on intermediate Fog computing infrastructure. Likewise,
Liang et al. [22] introduced OpenPipe framework that helps
in virtualizing the radio access with fog computing. Sun et
al. [23] introduced the edgeIoT framework which uses a cen-
tralized SDN controller to facilitate packet forwarding among
fog nodes. He et al. [24] used SDN for the Internet of Vehicles
(IoV) in which fog computing infrastructure is located the
road size to perform vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I), vehicle-to-base station communications.
Lazar et al. [25] and Truong [26] concluded that both SDN
and Fog computing wan work together to accommodate a large
variety of vehicular networks and the Internet of Vehicles
(IoV) as well. Besides, Authors in [27] modified the SDN
switch code to integrate a fog computing prototype and a
built-in controller that leverages the MQTT middleware to
interconnect distributed fog nodes.

Similarly, Bruschi et al. introduced in [28] a SDN-enabled
virtualization platform called OpenVolcano that exploits in-
network programmability capabilities to operate inside fog en-
vironments in a close proximity to end users. OpenVolcano al-
lows infrastructure virtualization and computation offloading,
data staging and forwarding as well as preforming QoS/QoE
provisioning and energy efficiency. Betzler et al. [29] proposes
a novel path forwarding scheme based on SDN with wireless
back-hauling and edge computing capabilities, which achieves
low balancing and external interference mitigation. Huang et
al. [30] studied the QoS provisioning of wireless sensor fog
devices. A fog layer is content-aware as it can collects data
from packet headers as well as the content of the sensing data



to allow a centralized SDN controller to perform define fine-
grained QoS provisioning policies.

All these approaches use a SDN controller to carry the
signaling messages as well as the data packets across the
wireless network. Unlike these efforts, our approach uses
the SDN controller for the control traffic and IP-based data
forwarding to transmit data in hop-by-hop fashion.

V. CONCLUSION

In this paper we presented a SDN-enabled solution to
manage wireless fog networks by blending the OpenFlow and
IP forwarding protocols. Our approach provides a flexible and
programmable wireless data plane for fog networks as well
as intelligent traffic engineering to offload the network. The
performance evaluation shows the efficiency of the proposed
solution to perform lower-latency communication, a flexible
load balancing to select the optimal shortest path, and a lower
network overhead.

Our future work will focus on unifying the radio resource
management and the network resource management by design-
ing a cross-layer architecture that can interoperate between
SDN and Software Defined Radio (SDR) for better spectrum
utilization and channel interactions.
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