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Abstract—Computation offloading or cyber foraging is a key
capability required to achieve effective resource utilization in mo-
bile cloud computing. It enables the dynamic offloading of com-
putations to either neighboring mobile nodes or remote cloud-
based servers, retrieve results from the offloaded computations,
and thereafter continue execution of the mobile business logic.
A number of computational mobility solutions have emerged
recently for mobile cloud computing involving smartphones and
tablets. However, these solutions incur limitations in the context
of Internet of Things (IoT) due to the significant heterogeneity
illustrated by the range of objects involved in IoT and the
fact that existing solutions tend to be tightly coupled to their
underlying frameworks, which makes it hard to seamlessly adapt
these solutions to the IoT scenarios. To address these concerns,
this paper makes three contributions. First, it presents a novel
modular and highly configurable framework for providing seam-
less computational mobility in the IoT realm. Second, it provides
implementation details for key capabilities of this framework.
Third, it provides qualitative evaluation of the framework’s
capabilities.

Index Terms—Mobile cloud computing, IoT, software engineer-
ing, modular and configurable framework.

I. INTRODUCTION:

Computation mobility or cyber foraging [16] is a capa-
bility that is critical to the success of mobile cloud com-
puting (MCC). Computation mobility refers to the ability of
the infrastructure to seamlessly migrate a computation from
one node to another node. The major difference between
computation mobility and traditional client-server distributed
computing model using remote procedure call (RPC) is that
in RPC no computation is being executed at the client while
in computation mobility, the computation is performed mostly
at the client but may get migrated to the server machine for
a variety of reasons. Computation mobility is desired in cases
where computing devices are available in every size and shape,
and where sharing of computing resources can be beneficial.

In the context of MCC, smartphones and tablets can take
advantage of computation mobility. By offloading or moving
a computation, MCC attempts to alleviate restrictions on
smartphone devices (e.g., their computation power, battery life,
memory capacity, etc.) by offloading all or some part of its
computation to either a neighboring smartphone device or to
the remote cloud. A number of computation mobility solutions
have been proposed for MCC like MAUI [6], CloneCloud [5],
ThinkAir [12], Scavenger [13] and MobiCloud [11]. All
these offloading solutions rely on partitioning the application

running on the smart device (phone or tablet) at different
granularities, such as a method call or a process, which is
called as a computation unit. Depending on the offloading
policy programmed in these frameworks, these computation
units will be offloaded to the other devices such that optimum
usage of device resources is achieved.

Although these computation offloading solutions have
shown significant promise in traditional mobile cloud com-
puting1, they incur limitations in the context of Internet of
Things (IoT). IoT aims to achieve total connectedness in the
environment we live in [9]. Computation as we know today
is constrained to only personal/server computers or mobile
phones/tablets. In the realm of IoT, every person is expected
to encounter thousands of new entities that are going to be
smarter, powered with computational ability, and which will
be able to sense/process/store/send/receive data in one form or
another [3].

To list a few instance of such smart devices, people are
expected to interact in a variety of ways with TVs, watches,
air conditioners, clothes, car keys, refrigerators, house doors,
house floor/ceiling, air conditioners, vehicles, roads, kiosks,
vending machines, bank ATMs, postal boxes, medical devices
and many others. This non-exhaustive list of smart objects
or “things” makes it immediately apparent that these objects
will come in a variety of shapes and sizes. The computing
power on these objects will range from few MHz to GHz.
Similarly, these objects will illustrate substantial variability in
their storage capacity, memory, power, network bandwidth etc.

IoT is thus positioned to be a far larger superset of mobile
entities than just phones and tablets. Consequently mobile
cloud computing will continue to play an important role for
IoT, in turn implying that computational mobility will be a
required capability – in fact a much more critical capability –
for IoT to effectively utilize the resources. However, contem-
porary computation mobility solutions based on offloading [5],
[6], [11]–[13] have been studied in the context of mobile cloud
computing involving just smartphones (and tablets) but not the
broad range of objects expounded by IoT. These contemporary
solutions have been developed with very specific assumptions
about the role, power, mobility, trust etc. of the offloading
client and offloading server which is very dynamic in the IoT.

1Although mobile cloud computing is also a relatively new field, we use
the term “traditional” to refer to use cases that involve only smartphones and
tablets.



To address these challenges, this paper makes the following
contributions:

• We present a novel modular and highly configurable
framework for providing seamless computational mobil-
ity in the IoT realm.

• We describe key capabilities of this framework such as
modularity and dynamic configurability for dynamic IoT
scenarios in terms of node mobility, trust, cost model etc.

• We validate our solution by showing how it can be applied
to multitude of IoT scenarios.

The rest of the paper is organized as follows: Section II-A
describes the similarities and differences in using computa-
tion mobility in traditional mobile cloud computing and IoT,
and outlines the key challenges that call for a modular and
highly configurable framework for computational mobility in
IoT; Section II-B describes the components of a computation
mobility framework for the IoT scenario; Section III describes
the architecture, configuration and implementation of mobility
framework; Section IV compares our solution to related efforts
in the area of computation offloading in traditional MCC and
IoT; and finally Section V provides concluding remarks de-
scribing potential future directions and open research problems
in this realm.

II. DESIGN CONSIDERATIONS FOR A IOT COMPUTATION
MOBILITY FRAMEWORK

We now elicit the design considerations for realizing a
computation mobility framework for IoT. First, we understand
the problem space by illustrating the different dimensions of
complexity that arise in the IoT realm. We then present key
desired features of such a framework.

A. Computation Mobility Challenges for IoT

Section I mentioned several computation offloading solu-
tions [5], [6], [11]–[13] that have been developed for the
traditional MCC use cases. In these scenarios, multiple mobile
smartphones (or tablets) are distributed across geographical
locations and connected to remote cloud machines via cel-
lular or WiFI network. The computation on a smartphone is
offloaded either to another smartphone or to the cloud server
machine. All these solutions make specific assumptions about
the characteristics of smartphones and cloud capabilities as
follows:

1) Smartphone is a “weaker” device.
2) Smartphone is a “mobile” device.
3) Remote resources in cloud machine require a “stronger”

device.
4) Remote resources may be held in a “non-mobile” device.
5) Remote resources should be “trusted” by smartphones.
6) Cloud machine is may be a “remote” device in the context

of a smartphone device.
7) Communication between smartphone and cloud may obey

“client-server” protocol where smartphone is always a
client.

8) A smartphone communicates with the cloud machine over
WiFi or cellular networks.

In the above assumptions, the notion of stronger and weaker
can be construed as relative quantitative measures of the
computation power, storage power, memory, battery power or
any other measurable device resource. A weaker device in the
context of traditional MCC is basically a client while stronger
device is the server.

Although these assumptions are valid for the traditional
MCC use cases, they apply in only a small subset of the much
larger IoT realm. IoT consists of thousands of devices capable
of sensing, computing, storing, sending and/or receiving data
with different capacity. These devices and the services offered
within the realm of IoT illustrate several additional characteris-
tics that must be taken into consideration for computation mo-
bility solutions, such as mobile/non-mobile, trusted/un-trusted,
weaker/stronger, client/server, WiFi/cellular, free/for profit and
many others. In such a complex scenario, different devices
talk to each other at different times in different ways which
gives rise to a very broad range of complex interactions. The
increased complexity limits the applicability of contemporary
computational mobility solutions in the IoT context.

In Table I we have attempted to capture many such inter-
actions in IoT. For example in scenario 5 in the Table I, we
encounter heterogeneity of communication protocols used by
different devices. For example, the smartCars communicate
with each other using gossip protocol(at every traffic signal
e.g). The smartPhones communicate with each other using
peer to peer protocol. A smartPhone and cloud talk to each
other using client-server protocols. A smartphone and smart-
Car communicate with each other using publish/subscribe
protocol.

The list of interactions in Table I is by no means exhaustive;
instead we should expect many more such complex interac-
tions among devices as more and newer devices get attached
to the IoT. Consequently, in such a varied and dynamic IoT
device interactions scenario, computation offloading solutions
developed for the traditional MCC are not readily applicable
to all IoT interactions. Hence, we need highly configurable,
modular and dynamic computation mobility solutions, which
can be tailored for and used in each and every use case of
IoT.

B. Key Desired Capabilities of IoT Computational Mobility
Framework

Based on the different dimensions of complexity alluded
to in Table I, we describe the key desired capabilities that
can be realized as components or modules of the computation
mobility framework for IoT.

Figure 1 shows the various capabilities of the framework at
an abstract level. Table II lists these capabilities (in columns)
indicating how the different scenarios of IoT device inter-
actions (slightly simplified) give rise to the need for these
capabilities. To capture the smallest possible variation or
heterogeneity, in Table II, we use individual IoT interactions,
i.e. interaction involving two IoT devices, to realize IoT
complexities in a modular structure. We can also see that some
modules of computation framework are needed in every IoT



TABLE I
INTERACTION SCENARIOS AND DIMENSIONS OF COMPLEXITY IN IOT FOR COMPUTATIONAL MOBILITY

No. Complexity Dimension Participants Scenario
1 Relative strength and weakness

of devices
smartTV, smartPhone, smartCar
and smartGas-station

(1) smartTV is a weaker device while smartPhone is a stronger device; (2)
smartphone is a weaker device while smartCar is a stronger device; (3)
smartCar is a weaker device while smart Gas-station is a stronger device

2 Relative mobility of devices smartTV, smartPhones and
smartCars

(1) smartPhone is a mobile device for smartTV; (2) smartPhone is
non-mobile device for the smartCar (as long as the vehicle is on the road)

3 Dynamically changing relative
strength and weakness of
devices

multiple smartPhones One smartPhone is stronger than the another smartPhone at time t. But at
time t+ 1, the situation reverses possibly due to the dynamic load on both
the phones or remaining battery power.

4 Communication paradigm used Multiple smartCars, smartPhones
inside each smartCar and cloud

The smartCars communicate with each other using gossip protocol, e.g. at
every traffic signal. The smartPhones communicate with each other using
peer to peer protocol. A smartPhone and cloud talk to each other using
client-server protocols. A smartphone and smartCar communicate with
each other using publish/subscribe protocol.

5 Communication channel used smartPhone, smartTV, smartCar
and smart Gas-stations

The smartTV and smartPhone communicate over WiFI, smartPhone and
smartCar communicate by direct physical connection, smartCar and smart
Gas-station communicates over cellular.

6 Trust and security smartPhone, smartTV, smartCar
and smart Gas-stations

The smartTV and smartPhone always trust each other but smartCar and
smart Gas-station may not trust each other all the time.

7 Stronger in one resource but
weaker in another

The smartCar and RSU (Road
Side Unit) used as a static relay
point

The smartCar is a stronger computational device but has less network
bandwidth. The RSU on the other hand is almost a dumb device but has
maximum network bandwidth and stable connectivity to the wired network.

8 Application partitioning The smartPhone and Cloud Some applications running on the smartPhone are partitioned (e.g. using
annotations) by developers while others are not.

9 Business or cost smartPhone, smartTV, smartCar
and smart Gas-stations

A smartCar and smartPhone offload to each other with no money involved;
while a smartCar and smartGasStation may offload to each other based on
some pricing model.

Fig. 1. Components of a Computation Mobility Framework

device interaction, e.g., optimization solver, fault tolerance,
application interface and partitioning.

In this subsection, we describe these modules in more detail.
We also show the possible variations of each one of those
capabilities required to cater to different configurations in
the IoT scenario. We will use these component abstractions
to design a concrete modular and configurable framework
described in Section III. Each capability and its responsibility
is described below.

Sensing for Discovery and Data Collection: Node sensing
is an important part of the computation mobility framework
for IoT. Each node dynamically needs to (1) discover and (2)
gather/update resource information of other nodes. Different

nodes may use different sensing mechanisms, e.g.,
1: node discovery using multicast/broadcast protocols.
2: node discovery using publish/subscribe paradigm.
3: discovery based on node mobility predictions (e.g. in

vehicular networks).
4: peer-to-peer node discovery (e.g. node discovered by

one node can be used by other nodes).
5: node discovery through gossip protocol.
6: distributed node discovery where multiple nodes work

together to find new nodes.
7: similar variations as above may apply during gathering

of resource information from discovered nodes.
Computational Granularity: The computational mobility

framework needs to decide the granularity at which it should
offload to or compute offloaded computations. Below are the
possible granularity variations that the framework should be
support.

1: process
2: thread
3: class object
4: class method
5: application-level component
6: entire application

Optimization Solver: The purpose of an optimizer solver is
to dynamically decide the matching between (1) nodes and (2)
computations such that the given optimization function cost is
minimized. The optimization function can be defined using the
following constraints.

1: number of nodes
2: resources (computation time, power usage, network

load, memory, disk etc.)
3: actual cost in dollars if cost/business model is present

(see below)



TABLE II
CAPTURING & MODULARIZING HETEROGENEITY IN IOT

Individual interaction in IoT. Sensing Trust Business Payment Mobility Comm Resource Resource Fault App Opt
Mgmt Model Payment Mgmt Mgmt Monitor Provision Mgmt i/f Solver

smartCar & smartPhone in the same smartCar 5 5 5 5 5 4 4 5 4 4 4
smartCar & smartPhone in the different smartCar 4 4 4 4 4 4 4 5 4 4 4
two smartCars both at rest 4 5 5 5 5 4 4 4 4 4 4
two smartCars both on the road 4 4 4 4 4 4 4 4 4 4 4
two smartphones at home 4 5 5 5 5 4 4 4 4 4 4
a smartPhone & smartTV (physically connected) 5 5 5 5 5 5 4 4 4 4 4
a smartPhone & cloud 5 5 5 5 5 4 4 5 4 4 4
a smartPhone & smart Gas-station 4 4 4 5 5 4 4 4 4 4 4
a smartCar & smart RSU (Road-Side-Unit) 4 4 5 5 4 4 4 5 4 4 4

4: computational granularity
5: fault tolerance policy (see below)

Cost or Business Model-based Trade-offs: Some nodes in
the IoT may want to offer their resources for profit Different
nodes may require different cost models.

1: A node may want to trade in dollars for their time
2: A node may want trade in dollars for their resources
3: A node may want to trade symbiotically, e.g. node A

may want to use equal amount of resources in future
that it is letting other node use at present

4: A node may want to trade what it has more with what
he lacks, e.g. node A wants to trade in its storage
space against computational power.

Payment Methods: For those nodes who want to do
business using the computation framework, a payment option
must be available. For cost models like those mentioned in
bullet 1 and 2 of the above list, any eFinancial service can
be used. However, for cost models like those in bullet 3 and
4, we need a secure way agreed by both parties involved. We
may need to implement secure software service on the basis
of bit-coin for such cost models.

Fault Tolerance Strategies: Different nodes may have
different fault management strategies in the offloading frame-
work. For instance, a node N1 may want to offload the same
computation C1 to two nodes N2 and N3 so as to tolerate one
fault. Node N2 in turn may also want to offload C1 (which was
offloaded to it by N1) to N4 (in addition to computing it by
itself) to tolerate a fault and retain its credibility in the system.
This is desirable especially if nodes are getting charged/paid
for offloading computation. Nodes may want to protect their
computations against following faults.

1: FT against unreliable network
2: FT against random node mobility
3: FT against dynamic load
4: FT against malicious nodes
5: FT against network partitioning

Application Interface: Applications running on the device
may need to communicate with the framework in a standard
way for one or more of the following purposes:

1: report computations which are compute-
intensive/missing deadlines.

2: report the required granularity/partitioning of an ap-
plication, computation priority and other configuration
information

3: receive information about offloaded computation like
expected time for results

4: receive results back from the framework of the of-
floaded computation

Security/privacy/trust of the Computation: Nodes use
different protocols/strategies for various trust management
tasks like

1: establish a trust with other device
2: communicate with a trusted device
3: communicate with an untrusted device

Framework should be flexible enough to accommodate these
variation among nodes.

Communication Protocols & Channels: Different devices
employ different strategies for sending and receiving data to
other devices. Framework should be flexible enough to take
these into consideration. The variation here also affects the
way nodes discover each other (described under the first bullet
point)

1: publish-subscribe based data dissemination
2: client-server based data dissemination
3: peer-to-peer based data dissemination
4: multi-path data dissemination
5: network channels(cellular, WiFi, radio, wired)

Resource Monitoring: Framework also need to make sure
it has latest resource usage information of the device. Hard-
ware resources that need to be monitored could be following

1: network b/w
2: processor usage
3: power usage
4: memory usage
5: disk usage
6: sensors

Resource provisioning: Nodes also need to make sure
they have enough resources before they accept the computation
from another node. This is relevant especially to those nodes
which scale up and down based on the load like cloud server,
e.g. smart Gas-station is serving no smartCars at time t0 and
hence running on low power mode or possibly on hibernate.
But at time t1, n number of smartCars arrive at gas station,
discover a smart Gas-station, sense an opportunity for faster
computation and offload some of their heavy computations to
it. The gas station needs to make sure it is able to scale up its
computing resources to serve those cars and financially benefit
from it [15].



TABLE III
MODULE TO CLASS STRUCTURE MAPPING

Class Sensing Trust
Mgmt

Business
Model

Payment Mobility
Mgmt

Comm
Mgmt

Resource
Moni-
tor

Resource
Provi-
sion

Fault
Mgmt

App.
Inter-
face
(pari-
tioning
&
granu-
larity)

Optimi-
zation
Solver

node_repository : 4 4 4 4 4 5 5 5 5 5 4
mobility_info 5 5 5 5 4 5 5 5 5 5 4
trust_model 5 4 5 5 5 5 5 5 5 5 4
resource_info 5 5 5 5 5 5 4 4 5 5 4
cost_model 5 5 4 4 5 5 5 5 5 5 4
application_info 5 5 5 5 5 5 5 5 4 4 4
communication_info 4 5 5 5 5 4 5 5 5 5 4

III. IOT COMPUTATION MOBILITY FRAMEWORK:
ARCHITECTURE, CONFIGURATION AND IMPLEMENTATION

In this section we concretely describe the internals of the
framework by focusing on its software engineering, i.e., class
structure of its various components.

A. Architecture

We describe top-level or primary classes (entities) that
exist in the software architecture of the IoT computational
mobility framework that capture the IoT complexities. The
need for these classes/entities in our software framework is
motivated by the key capabilities described in Section II-B.
These classes/entities components encode one or more of these
capabilities. We show the mappings between abstract modules
we envisioned in the previous section mapped to concrete class
structue of the framework in the Table III.

1. Node Repository: Figure 2 shows the class structure of
the node repository. The node repository object is used to store
the information about the nodes that device can connect to.
The important information of a node required for computation
mobility including node mobility, resources, cost, trust etc. is
stored in here. It will have functions to set/get information
about node and to add or remove nodes.

We store mobility information of a node in the mobility_info
object which has parameters like current location, current
speed, frequency for location update and history location data.
It also has parameter called mobility function. It is used to
predict the mobility of node if required by other components
e.g. cost function may need to determine network connectivity
during given time period in the near future to determine the
realistic cost of offloading to a node. This function can be used
in two ways. For devices with specialized mobility patterns
like a moving car, train, airplane or phones, this function can
be set/adapted according to the route set by the user of the
moving device. For other devices where mobility is random
(like phone with a walking person), this function is derived
from the recent history location data.

The Node repository stores resource information about
nodes into the resource_info object. Resource information
can be configured with various standard and non-standard
resources.

2. Resource Info: Figure 3 shows the class structure of
the resource_info. It has functions to add resource, remove
resource, get/update/predict resource value, add a resource
monitor, set frequency for resource monitoring. This class can
be used to collect information about various general resource
types like network, disk, memory, power, computing power,
sensors etc. It can also be used to define special-purpose
resources by overriding functions in the base resource class.
For example, in the use case 5 from Table I, smartCar may
want to offload its computation to other smartCar based on the
temperature/fuel efficient of the other smartCar. This object
has parameters like measurement_unit, max value, min value,
history values, monitor and monitor frequency.

3. Application Repository: Figure 4 shows the class struc-
ture of the application repository. Every node in IoT that runs
its application(s) would like to use the offloading framework.
So the framework stores information about such applications.
It provides an API interface to the running applications to talk
to the framework. This class of framework needs to be linked
to the application running on the device which wants to use
the computation mobility framework.

An application can register itself with the framework, set
computational granularity for offloading, set priority, set a
partitioner strategy or define a specialized partitioner, and pro-
vide partitioning points. This class object has parameters like
application_id, computation_info, and partitioning_info. It can
then register or remove computations with the framework for
offloading which is the object of the class computation_info.
The computation_info stores all the information related to
a computation such that it can be offloaded, e.g. code_size,
code, time_limits, resource_requirements, history_run_times,
computation_id and application_id.

4. Communication Repository: Figure 5 shows the class
structure of the communication repository. This captures all
the variations in the node to node communication. It has
functions to discover nodes, update nodes, get node infor-
mation (mobility information, trust information, resources
information etc). It also can offload a computation to a node
and receive results or receive a computation from a node
and send the results back. It can be configured with various
network communication protocols (publish-subscribe, peer-to-



node_repository

set_node_mobility_info ()
set_node_trurst_info ()

add_node ()

set_node_resrource_info ()

remove_node ()

-mobiliity
-trust
-resources
-nodeID

mobility_info

get_current_location()
predict_future_location ()
set_mobility_model ()

-location
-speed
-mobility_function
-history_locations

resource_info

add_resource ()
remove_resource ()

update_resource_value ()
get_current_resource_value ()

set_resource_monitor ()

-measurement_unit
-current_value
-min_value
-max_value
-avg_value
-standard_deviation

get_standard_deviation ()

-history_values

predict_future_resource_value ()

-resource_ID
-monitor_frequency

set_resource_monitor_frequency ()

cost_model

add_cost_model ()
update_cost_model ()
calculate_computaiton_cost ()

-resource_info
-node_info
-payment_method

-cost

set_node_cost_model ()

Trust_model

add_cost_model ()
update_cost_model ()
calculate_computaiton_cost ()

-resource_info
-node_info
-payment_method

Fig. 2. Node Repository Class Diagram

peer, gossip protocol) and network channels (cellular, WiFi
etc). Different communication protocols can be defined by
overriding functions in the base class like discover_nodes.

B. Configuration:

Now that we have designed all the required components
for the IoT computational mobility framework, we describe
how to configure these components to satisfy requirements
of individual node or application. Note that there could be
different/better ways to configure the framework. The primary
purpose of describing it is not to show how to configure
framework but to show how easily the framework can be
configured.

Algorithm 1 describes one possible approach to configure
the communication component. At the start, Algorithm 1 sets
the communication channel and communication protocol. Val-
ues for these two parameters are provided by the configuration
object. The framework reads the configuration values from the
.xml file and then populates the configuration object to be used
by other components in the framework.

At line 3, it sets a trigger to notify that discovery is required.
Framework can use different types of user-defined triggers like

1) timeout: e.g. after every 10 seconds.
2) resource value: e.g. if cpu usage crosses 90%
3) application/process level fault: e.g. if a

process/application misses a deadline.
4) offloadable computation added: e.g. if a new computation

is added to offload-able computation list

Then the algorithm proceeds to check if a discovery event
has been triggered. If triggered, it continues to discover nodes
and get their trust information. If the trust level of node is
as per the requirements, then it stores these nodes in the

Algorithm 1: Communication Setup & Discovery
Data:
1. comm_info = an object of communication_info class
2. r_node = remote node
3. config = object of class configuration_info
Result:
1. nodes are discovered according to communication protocol and communication
channel
2.

1 comm_info.set_communication_protocol(config.proto);
2 comm_info.set_communication_channel(config.channel);
3 comm_info.set_discovery_evnet_trigger();
4 while true do
5 if comm_info.discovery_event_trigger == true or time_to_last_discovery >

Y seconds then
6 comm_info.discover_nodes();
7 while comm_info.nodes.empty() == false do
8 r_node = comm_info.get_nodes ();
9 r_node.get_node_trust_info;

10 if r_node.check_trust == true then
11 r_node.get_node_resource_info();
12 r_node.get_node_cost_info();
13 r_node.get_node_mobility_info();
14 add_to_trusted_node_list();
15 else
16 add_to_untrusted_node_list();
17 end
18 end
19 else
20 discovery_event not triggered;
21 sleep(x seconds);
22 continue;
23 end
24 end

trusted list otherwise in the non-trusted list. It also gathers
more information about nodes like mobility, resource, cost etc.

Algorithm 2 describes a way to configure the framework to
implement optimizer solver. The optimizer solver described in
the 2 is a general purpose solver. It takes optimizer function
from the configuration object as input. It then tries to find the
best mappings of offload-able computations to the computation
nodes so that specified optimization function is optimized.



Fig. 3. Resource Info Class Diagram

Of course, we can implement optimization in various other
ways however main point here is to show the flexibility of
framework to realize such fine-grained configurations and
optimizers.

C. Proof-of-Concept Implementation & Validation:
To validate the feasibility of our framework, we have im-

plemented some components of the framework for providing
a proof of concept. We have also validated it in the smaller
simulated IoT environment. This validation shows that our
framework is highly configurable and can be applied to various
scenarios in IoT seamlessly.

For validation, we have configured our framework with
“process” as a computation granularity. We used existing pro-
cess level migration solutions for java applications. It can then
be used to migrate a process running on one JVM capturing
all its context, stack, register, heap values and migrate it to
another remote JVM. We ran compute-intensive application
(for calculating highest prime number) on all nodes. This
application has 110 lines of code and would take 300 seconds
on the normal desktop machine.

We validated this framework using the (mini) IoT scenario
with multiple computational nodes with varying properties
like mobile/static, trusted/un-trusted, closer/remote etc. We

simulated computational nodes using the docker containers
running in virtual machines and communicating with each
other with virtual network interface. We simulated network
for these nodes in the Mininet simulator. For mobility, we
used random way-point model for mobile nodes. We did not
use dynamic trust model but statically defined some nodes as
trusted while other as un-trusted. We also did not use dynamic
cost model but statically defined cost model for every node
before simulation. We used different simulated communication
channels (WiFi, 802.11a/b/g, wired etc) and communication
protocols(client-server, p2p) for communication among the
simulated nodes. This experiment showed that framework is
flexibile enough to adapt to various scenarios.

However, we are yet to fully implement various components
of the framework including trust management, fault tolerance,
payment etc. We plan to achieve full implementation of the
framework and exhaustive validation in the future.

IV. RELATED WORK

This section compares our work with prior work on com-
putation offloading frameworks and efforts that provide these
to IoT.
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A. Computation Offloading Frameworks

There are several survey papers available [7], [8], [17] that
discuss different offloading frameworks in the traditional MCC
realm including MAUI [6], CloneCloud [5], ThinkAir [12],
Scavenger [13], MobiCloud [11]. These prior efforts both
similarities and differences in their offloading frameworks.

MAUI [6] uses a combination of VM migration and code
partitioning to conserve the power of mobile devices. It is
implemented in the .NET environment and uses a run-time,
dynamic partitioning algorithm. The partitioning strategy is
intrusive and application developers need to annotate the code
at method level to let the framework know about offloadable
methods. MAUI however does not address the scaling of
execution in cloud.

CloneCloud [5] unlike MAUI [6] can be used with un-
modified applications but it requires the clone of the entire
device on the cloud machine. It uses both static analyzer and
dynamic profiler to partition an application so that it migrates
and executes in the cloud, and resumes on the device. It uses
a simple cost model based on the execution time. Similarly,
RMCC [2] is lightweight resource-oriented framework for OS-

independent mobile Cloudlets based on Restful web interfaces.
RMCC allows realizing computation on the mobile devices
to enable green MCC. Likewise, HMCC [1] is a mobile
computation outsourcing model that exploits hybrid cloud-
based resources to provide fine-grained management resources
to wireless mobile devices.

ThinkAir [12] tries to combine approaches used by
MAUI [6] and CloneCloud [5] and improves their individual
shortcomings. It improves MAUI’s lack of scalability by
creating virtual machines (VMs) of a complete smartphone
device on the cloud machine. It also removes the restrictions
on applications that CloneCloud induces by adopting an online
method level offloading. It supports on-demand resource allo-
cation in the mobile cloud based on workloads and deadlines

MobiCloud [11], though not strictly an offloading frame-
work, is a framework for secure, trustworthy mobile cloud
in an unsecured network (e.g. MANET). The MobiCloud
framework can be used to create a secure communication
in the mobile cloud network with trust management, secure
routing, and risk management taken care by the framework.

Scavenger [13] is another framework that employs cyber-
foraging using WiFi for connectivity, partitions the application



Algorithm 2: Offloading Optimization Solver
Data:
1. node_infos = an array of communication_info class objects
2. comp_infos = an array of computation_info class objects
3. comm_info = an communication_info class object
4. configuration = an configuration class object
Result:
1. offloadable computations are matched against discovered nodes
2. matching is optimized for network traffic, cost, reliability

1 comm_info.set_communication_protocol();
2 comm_info.set_communication_channel();
3 total_cost = 0;
4 total_network_load = 0;
5 total_power_usage = 0;
6 for comp in comp_infos do
7 for node in node_infos do
8 if node.resources > comp.resources & node.cost.compute_cost(comp) <

comp.cost then
9 total_cost += comp.cost;

10 network_traffic += comp.code_size;
11 if configuration.optimizer == cost then
12 optimize total_cost;
13 end
14 if configuration.optimizer == network_load then
15 optimize total_power_usage;
16 end
17 if configuration.optimizer == power_usage then
18 optimize total_power_usage;
19 end
20 else
21 this node is not suitable for computation;
22 Check next node;
23 continue;
24 end
25 end
26 end

and distributes jobs. However, it strictly uses a client-server
architecture and hence offloading to surrogates is possible but
not vice-versa.

All of the above frameworks provide computation mobility
in a very specific way by considering only a subset of
variants that we discussed in Section II and hence it becomes
almost impossible to deploy these solutions in a scenario
where offloading requirements vary based on mobile node,
application, security, computational granularity etc.

Also, as we discussed in Section II-A, all the above
frameworks work in a scenario where multiple weak mobile
smartphones work as client device and are connected to
a remote powerful cloud machine which work as a server
machine. However, IoT brings a whole new set of different
scenarios (refer to Section II-A) where the same device may
act as a weak or a powerful, a remote or a non-remote, a
mobile or a non-mobile device. In such complex and dynamic
scenarios, solutions mentioned above would not work.

B. IoT and computation mobility

These papers [3], [9] discuss the various aspects of the
IoT including big vision, architecture, components and future
challenges.

In our literature survey, we could not find any major works
which would extend MCC computational mobility like features
to the space of IoT. However, we find the concepts described
in [4], [10], [14] (e.g. fog computing, data processing at the
edge of network, etc.) very relevant to the framework we
have proposed in this paper. The authors in [4] propose a fog

computing concept which is a highly virtualized platform that
provides compute, storage, and networking services between
end devices located at the edge of the network and traditional
cloud computing data centers. Fog computing is proposed as
a compliment to the traditional cloud computing especially
in the IoT scheme. Though the paper discusses the need for
interoperatibility and mobility support in the fog computing
network, it however does not discuss computational mobility
in particular.

V. CONCLUSION & FUTURE WORK:

In this paper we discussed the importance of code mobility
in mobile cloud computing (MCC), and specifically in the
Internet of Things (IoT) environment. We discussed the major
differences in the traditional MCC and IoT scenarios arising
because of the high degree of hetergeneity in the IoT compared
to traditional MCC. We motivated the need to take a fresh
perspective at designing a modular and highly configurable
computation mobility or offloading framework for IoT since
the solutions developed for traditional MCC environment are
not applicable in IoT due to tight coupling and lack of
configurability. We described the various capabilities of such a
framework and show a way to design it by providing a concrete
architecture through class diagrams, configuration and proof-
of-concept implementation.

In the future, we plan to implement the full implemen-
tation of our framework as a reference point with every
sub-component implemented so as to cover every scenario
or device interaction in the IoT. We also plan to deploy
the framework in the real-world or simulated IoT scenario
and configure it dynamically and test the performance of
computation mobility on the resource usage
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