N

N

Rethinking the Design of LR-WPAN IoT Systems with
Software-Defined Networking
Akram Hakiri, Aniruddha Gokhale

» To cite this version:

Akram Hakiri, Aniruddha Gokhale. Rethinking the Design of LR-WPAN IoT Systems with Software-
Defined Networking. Distributed Computing in Sensor Systems (DCOSS), 2016 International Confer-
ence on, May 2016, Washington, DC, USA, United States. hal-01633328

HAL Id: hal-01633328
https://hal.science/hal-01633328

Submitted on 12 Nov 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01633328
https://hal.archives-ouvertes.fr

Rethinking the Design of LR-WPAN IoT Systems
with Software-Defined Networking

Akram Hakiri*?, Aniruddha Gokhale f
*Univ de Carthage, SYSCOM ENIT, FST Bizerte, ISSAT Mateur, Tunisia.
t CNRS, LAAS, 7 Avenue du colonel Roche, F-31400 Toulouse, France
TISIS, Dept of EECS, Vanderbilt University, Nashville, TN, USA.
Email: hakiri@laas.fr and a.gokhale @vanderbilt.edu

Abstract—Wireless Sensor Networks (WSNs) are becoming a
key enabling technology for Internet of Things (IoT) by virtue of
providing a highly unstructured cloud of wireless devices. Despite
these advances, the current Internet architecture is not able to
cater to the high volume of new traffic patterns delivered by
these smart sensing devices. In this context, Software Defined
Networking (SDN) has emerged as an intelligent solution to
deliver dramatic improvements in network programmability,
agility and flexibility. However, SDN was originally targeted to
wired networks deployed in cloud data centers, and does not lend
itself well to WSNs due primarily to its higher footprint and lack
of WSN programmable interfaces.

To address these challenges, this paper describes an ap-
proach to realize software-defined wireless sensor networks by
introducing a novel SDN-enabled architecture for WSNs that
can be used for diverse IoT systems. Specifically, we propose
new control plane services for supporting automatic topology
discovery, sensor virtualization as well as managing network
policies. Additionally, we introduce new customized SDN-enabled
flow tables to meet the requirements of sensor network packets.
Finally, we introduce a programmable MAC layer to support
fine-grained flow processing.

Index Terms—SDN; OpenFlow; IoT; Wireless Sensor Net-
works; TDMA.

I. INTRODUCTION

Smart grids, smart cities, intelligent transportation, retails,
health-care, safety, industrial automation, and environment
services are evolving as infrastructure systems that deliver
their data through the Internet. Since these systems are able
to sense the environment and communicate, they play a key
role in realizing the vision of the Internet of Things (IoT) in
everyday life, wherein the confluence of inexpensive wireless
communication has created a new generation of smart devices.
The current estimate for the number of smart things are on the
order of 50 billion self-organized devices that utilize Wireless
Sensor Networks (WSNs). WSNs consist of wireless entities
comprising sensors that gather data from surrounding environ-
ment, low-power radio transceivers and micro-controllers, all
of which have limited power and computation resources.

Given their traits, WSNs are required to be autonomous
and be able to adapt their behavior in accordance with the
users’ requirements to handle application-driven networks in
dynamic and versatile environments. Hence, an intelligent
network architecture is required to address the complexity
of WSNs to support IoT systems. In this context, Software-

Defined Networking (SDN) [1] has emerged as a new archi-
tecture to deliver dramatic improvements in network agility
and flexibility. However, existing realizations of SDN, such
as OpenFlow [2] which is the dominant SDN technology, are
geared towards wired networks deployed in settings, such as
cloud data centers, and does not support communication within
WSNs. For instance, OpenFlow specifies 44 header fields for
wired networks, but none of them can be used for the Low-
Rate Wireless Personal Area Network (LR-WPAN) such as
WSNEs.

Extending SDN to WSNs was considered impractical be-
cause WSNs run in resource-constrained Internet devices with
limited computation resources, small data-storage capabilities
and low-power consumption. Specifically, most of the WSN
technologies specify packet formats close to 127 Bytes, while
the current OpenFlow packet is encapsulated in IP packets,
which are close to 1,500 bytes. Besides, the addressing scheme
of sensor devices is different from the IP-based addressing
format. For example, the addressing scheme of LR-WPAN
technologies like IEEE 802.15.4 and ZigBee comprises at most
8 or 16 bits, while IP4 and IPv6 addresses used by OpenFlow
comprise 32 and 128 bits, respectively. Subsequently, the
existing OpenFlow protocol as is is not able to support the
current addressing scheme used by WSNs.

Some recent initiatives attempt to overcome these limita-
tions. For example, Flow-Sensor [3] and Sensor-OpenFlow
(SOF) [4] proposed extending the OpenFlow protocol to
WSNs, however, these approaches are not suited for real
deployment scenarios due to their larger memory footprint,
which is no suitable for WSNs. Likewise, TinySDN [5] uses
multiple distributed SDN controllers for managing sensor
motes that run a single WSN router. However, it depends
on a specific operating system, i.e. the TinyOS, which hin-
ders interoperability with Contiki OS or RIOT OS, which
are geared towards IoT. Similarly, SDCSN [6] introduced a
cluster-based SDN approach for WSNs in which a cluster
head is elected to manage a group of sink devices. However,
typical sensor motes are equipped with small buffers that can
support only a few hundreds of short packets. Conversely,
such approaches will need to buffer thousands of packet data
in the flow tables before sending them to next hops. The
increase in buffered data will lead to an increase in energy
consumption, which is a concern in WSNs given their limited

capacities for processing and storage memory. Furthermore,
communication in WSNs should occur at low data rates
to guarantee low energy consumption. Most WSNs require
low-cost nodes communicating over multiple hops to cover
a large-scale geographical area. They also need duty cycle
management for efficient energy consumption to operate for
multi-year lifetimes on modest batteries.

In summary, to make the SDN concept applicable and
beneficial to IoT/WSNss, there is a need to develop a novel and
customized OpenFlow approach that can fill the current gap
for WSNs outlined earlier. Such an approach should provide
low software footprint with respect to the limited amount
of memory storage and CPU processing of the resource-
constrained IoT devices. To address these concerns, we pro-
pose the SensorSDN framework, which defines a new SDN
abstract model that fulfills the specific requirements of diverse
WSNs. First, we propose new control plane services for
supporting automatic topology discovery, node mobility as
well as managing network policies. Second, we introduce
new matching fields based on existing LR-WPAN technologies
along with new flow rules for allowing routing packets based
on the specific matching values we introduce for SensorSDN.
Finally, our SensorSDN allows a programmable cross-layer
optimization between the MAC link layer and the network
layer, as well as data aggregation.

The remainder of this paper is organized as a follows:
Section II presents the architectural design decisions of our
SensorSDN solution and describes the novel services and flow
entries we specifically defined for SensorSDN. Section III
presents related works and compares them to our work pre-
sented in this paper. Finally, Section IV presents concluding
remarks and lessons learned.

II. SENSORSDN PROTOCOL ARCHITECTURE

In this section we describe the architecture and the rationale
behind the proposed SensorSDN, which is based on LR-
WPAN. First, we introduce the control plane services in the
controller side. Second, we present the new abstract flow
table entries we introduce in the data plane. Finally, we
show the automated resource allocation approach using the
programmable TDMA MAC layer.

Figure 1 illustrates the control plane and the data plane
of SensorSDN inside sink motes. Each router mote contains
a customized flow table that abstracts the software pipelines
as well as the programmable MAC layer, i.e., pTDMA. The
controller and the sink router exchange OpenFlow (OF) infor-
mation through a wired OF channel based on USB or serial
RS232 protocols.

A. The Controller Services

The controller resides in the centralized control plane that
controls the entire sensor network. The controller is part of
the PAN (Personal Area Network) coordinator, which is a
sink node that boots up and initializes by creating a unique
network address called PAN ID. Multiple networks can exist
in the same geographic area, however, each one should have

()
Control Plane
Topology Packet A i
e acket Aggregation
[Management Service]
(Virtualization Layer)
- J

¢ OF Channel

Data Plane (Sensing Hardware)

Sink Node

If Dest_Endpoint == 2 Forward Battery Leve
If Src_addrr =3 Modify RSSI
If Src PAN ID==3 Drop Received packets

Fig. 1: Architectural Overview of SensorSDN

its own PAN ID. When a user application wants to create a
new network instead of joining an existing one, the controller
selects a router to act as a PAN coordinator and provides it
with a list of available channels.

The controller provides the following services: (i) the topol-
ogy discovery service, which is responsible for discovering
other sinks, perform packet aggregation, and facilitate traffic
engineering; (ii) the management service, which includes
network policy control and security enforcement capabilities;
and (iii) the virtualization service, which enables sharing the
same WSN infrastructure and abstracts the physical computing
resources into logical isolated and interconnected units.

1) Topology Discovery: In order to discover the topology,
the controller uses the discovery function to invoke the active
scan service at the MAC layer, which will broadcast beacon
frames to discover any suitable router on the same advertised
channel to join the newly formed network. When other devices
see the beacon frame, they respond with their own beacon
frame to join the network. The responding device adds network
information into the frame and communicates its distance from
the controller and from other devices in terms of number of
hops and their battery levels. When the controller receives all
the request and response messages, each device will add the
MAC and network addresses of its neighbor to its descriptor
list and its neighbor table. Subsequently, a list containing all
the scan descriptors is sent to the topology discovery service
to create a topology graph based on this list.

New devices can join the network later by sending join

requests to their “parent” devices. For example, a temperature
Sensor or a pressure Sensor can join its parent router; or a new
router can join the network by sending a request to the sink
device. If incoming packets are not recognized by the sink or
the sinks are unable to process them according to their flow
entries, they send them to the controller for redefining new
flow rules. Thereafter, the controller replies with a notification
message to add the address of the new device.

Subsequently, appropriate actions can be applied to those
packets to ensure that they match against their packet header.
To this end, the controller inspects the headers of incoming
packets that have not yet been matched and compares them to
its aggregation flow information base. If a match is found in
this database, it will applied to the packet header; otherwise,
packets will be dropped.

Once the device has successfully joined the network, it will
broadcast an announcement message to advertise to all other
devices that it has joined the network and sends its short 16
bit address as well as its 48-bit IEEE MAC Address. Receiver
devices will then search in their neighbor’s tables if the 48-bit
IEEE MAC address already exists. If it does, then it means
that the requesting device has already previously joined so it
just will issue the same network address; otherwise, it will add
it as a child device and generate a new network address for it.

Besides, each router stores a neighbor table containing a
list of all single-hop sinks within its transmission/reception
range. The neighbor table is populated during the discovery
process when a router is searching to join a network group. In
order to keep the neighbor table up-to-date, each router should
compare the incoming Beacon frame to its neighbor table and
add it if an entry does not exist. All neighbors within a router’s
earshot will resend it to other neighbors and multiple copies
of the same frame will be forwarded. If a router has already
received and processed the same frame, it will discard the
copies. Otherwise, it increases the distance from its neighbor
node by 1, overwrite the existing value of battery level by
its own battery level, and then send the packet to next hop.
The battery level is overwritten each time a packet is received
because each router will change it with its battery level and
resend the packet.

Accordingly, the controller is able to estimate the link
quality, and the number of packets that satisfy a given rule.
In such a way, the controller is able to build the network
topology and select the best path between routers based on
the Receive Signal Strength Indicator (RSSI) information. Best
path selection is based on three metrics: the nearest distance
is considered first, then the energy level and finally the link
quality provided by the RSSI information.

2) Management Service: The management service in Fig-
ure 1 is used by the controller to support frequency agility at
the sink node. This is required because multiple frequencies
allowed for use for the multiple channels. The management
service will perform channel scanning to select the best one
in terms of signal-to-noise ratio, and can also dynamically
change the channel in case of interferance, etc. In particular,
it offers the ability to prevent PAN ID conflicts and be able to

change channels in order to avoid tearing down the network
or rebuild another channel. The management service calls
energy scan and active scan services from the MAC layer to
perform scanning on the supplied channels. Once the scan
is performed, the network formation function is called to
decide on the channel to join. The channel selection can be
decided according to different criteria, such as the lowest
energy reading, the lowest amount of traffic, and the fewest
networks or some weighted function of these criteria.

Furthermore, the management service provides a compre-
hensive network security service by setting up authentic re-
lationships between wireless motes using cryptographic key
management. The cryptography scheme uses 128-bits keys of
the AES encryption to secure transmitted frames and prevent
unauthorized nodes from joining the network.

The management service also tracks the state of the network
in order to discover, configure, and maintain routers on the
network and instruct them when to form or join a network or
when to leave it. Specifically, it can detect choke points in rout-
ing devices by looking at their routing tables. It sends requests
on behalf of the controller to read the contents of the router
neighbor table. It can also query the routing table to figure
out the table entries, and sends and reports beacon frames to
determine which networks or devices are in the transmission
or reception range of the other nodes. It then populates the
neighbor list in the topology discovery service to advertise it
about the node association/disassociation, i.e., the manamenet
service sends information to the topology discovery service in
the controller to publish the current/actualized list of devices
so this is how node association/disassociation is “reflected”
back to the controller.

3) Virtualization Service: The virtualization service allows
external applications sharing data collected from one or multi-
ple shared sensor motes. In particular, multiple sensing motes
can be arranged in the form of an unstructured cloud that acts
like gateways for sharing data between multiple applications
running in remote servers in the cloud. Additionally, the
virtualization service can use the individual capabilities of each
sink mote to run multiple application tasks concurrently. We
call this process of distributing and consolidating virtualized
tasks as Sensor Function Virtualization (SFV).

SFV allows deploying multiple sensing tasks into software
packages inside virtualized motes. By enabling such a task
chaining over WSNs we can easily create, modify and remove
new services. SFV can be achieved by either creating multiple
virtualized functions over the same router hardware or by
consolidating several sensing tasks among distributed routers.
Virtualization allows creating dynamic groups of WSNs that
are able to execute isolated concurrent tasks seamlessly with-
out being tied to specific target hardware platforms, operating
systems, or customized interfaces.

We surmise that recent advances in hardware is making
the motes powerful enough to support some degree of vir-
tualization. Moreover, current standardization efforts and test
trials are aiming at better performance and coverage up to 14
kms. Thus, by enabling SFV inside the virtualization service,

WSNss can profit from the elasticity, scalability, and flexibility
provided in the physical motes. It also allows offloading sens-
ing nodes since computation will be shared between remote
motes. As a result, virtualized functions can be added to or
removed from motes seamlessly to users/applications without
interrupting existing communicating systems, and appear like
sensing devices offering these functions by themselves. Such
capability is the result of sensor service chaining, which makes
it possible to divide several functions between remote sensors,
each function inside a given sensor node and where nodes
can collaborate together in a way to create a larger, complex
function which appears to be provided by a single node.

B. The Data Plane

A SDN data plane should forward incoming packets among
different motes based on matching their headers against entries
in its flow table by applying the required actions to those
packets. As the current SDN does not support WSNs packet
header, we defined new header fields for packet matching. We
also introduce a new abstract flow table to program the flash
memory of the router’s hardware. Finally, we introduce the
programmable TDMA layer that interacts with the network
layer to provide dynamic and flexible data forwarding.

1) Matching Fields: The matching fields described in Ta-
ble I are grouped into three different layers: the MAC layer, the
network layer, and the application layer. The MAC matching
fields include the sink and router addressing fields. Packets
are matched against either the source/destination address of
routers or sinks. The former allows routers to process received
packets based on the MAC addresses similar to using learning
switches in IP networks. Packet matching can also be per-
formed similar to VLAN tagging (VLAN ID) in the Ethernet
packet header by parsing source/destination PAN addresses.

Layer Field 1 Field 2 Field 3 Field 4
MAC Dest PAN ID Dest Addr Src PAN ID Src Addr
Network Dest NwkAddr Src NwkAddr Radius -
Application ~ Dest Endpoint Src Endpoint Cluster ID Profile ID

TABLE I: SensorSDN Matching Fields

Similarly, packets are also matched against the network
layer. Routing devices can perform actions based on the
source/destination network addresses of its neighboring de-
vices, as well as the radius value. Likewise, packets can be
processed against application layer header fields. In particular,
as LR-WPAN combines the transport layer and the application
layer in a single Application Support Layer (APS), the source
and destination endpoints are compared to source/destination
ports in the TCP/IP transport layer.

The cluster ID and the profile ID fields allow packet
matching at the application layer. Table II illustrates each field
we introduced along with the size inside the packet header and
a description of each field.

2) The Abstracted Flow Table: The abstracted flow table
depicted in Table IIl contains the common requirements to
process packets whose headers match the pattern defined by

Layer Field Name Size (bits) Description
MAC PAN ID 16) src/dest coordinator gddress
Device Addr 64-bit IEEE MAC long device address
16 Short device address
NwkAddr 16 src/dest node network address
Network Radius 8 Maximum hop-count
Endpoint 8 src/dest Endpoint ID
Application Cluster ID 8 Application Object address
Profile ID 16 Application domain space.

TABLE II: SensorSDN Addressing Fields

the fields described in the previous section. The controller can
control the behavior of the flow table by manipulating entries
inside the flow tables. The flow table entries are defined by
rules, actions, a counter, and a priority:

e Rules specify how packets should be matched against
their header fields. For example, in Table IV packets
with same Dest_PID == OxF1FE should receive the same
processing in the flow table pipeline.

o Actions specify the processing to perform on all packets
satisfying one or multiple rules. In Table IV, we intro-
duced five rules, i.e. Forward, Drop, Modify, SendToC-
TRL, and Flood. For example, all packets with the MAC
address is # “01:23:45:67:89:ab” should be modified by
MAC Addr 01:03:45:67:89:DE and forwarded to router
with network address Oxfff7. Similarly, packets having
the destination PAN ID 0xF1FE should be discarded.

e The counter allows gathering different statistics from a
given node including battery levels, time stamps of the
last received packets, lost packets, link quality, etc. The
collected data allows the management service to monitor
the network performance and bottlenecks.

e The Priority field defines the order of executing the
instructions by the data plane. Instructions with higher
priority should have immediate actions to handle header
fields and those with lower priority will be delayed by
changing their software pipeline.

3) Programmable TDMA: The media access protocol
(MAC) for WSN can be classified into two categories: i)
contention-based and ii) scheduling-based protocols. The for-
mer relaxes the time synchronization constraints to allow
dynamic topology adjustment as some nodes may join or leave
the network. Carrier Sense Multiple Access with Collision
Avoidance (CMSA-CA), which are the basis for various
contention-based techniques, have higher costs in terms of
message collisions, network overhead and power consumption.
The latter uses time division multiplexing, where designated
time slots are used to assign a transmission period to avoid
packet collisions and overlapping during concurrent transmis-
sion. TDMA, which is the basis of different scheduling-based
techniques, allocates independents time slots with respect to
the network topology as well as the nodes packet generation
rate. In this way, collisions can be avoided by silencing
interfering nodes in each time slot and ensuring minimum
network latencies as interference between adjacent wireless
links are avoided. Moreover, in TDMA there is no hidden

Match Fields Actions Counter Priority
Src/Dest PAN ID Forward Battery Level 32
Src/Dest MAC Address Drop NodelD 68
Radius Modify TimeStamp of loss Packets 68
Src/Dest Network address SendToCTRL Last time a node received a packet 37
Src/Dest Endpoint Flood Link Quality (RSSI) 28
Cluster Id Per-Flow counter: 27
Profile 1d e Received packets/bytes

e Duration (sec, nanosec)

TABLE III: SensorSDN Flow Table
Header Fields Action Counter Priority

if Dest_PID == OxF1FE Drop Packet

32

if MAC Addr # 01:23:45:67:89:ab

Modify MAC Addr 01:03:45:67:89:DE

& forward to Oxfff7 60
if cluster ID == 0x13 SendToCTRL 27
if Endpoint Addr == {f02:1 Flood multicast packets 68

TABLE IV: Example of Flow

node problems since all nodes will transmit during different
non-overlapping time slots.

However, the current TDMA scheme allocates fixed time
slots for every node so that no node is allowed to transmit in
the superframe if its data rates change dynamically. To address
this issue, SensorSDN introduces a programmable TDMA
scheme that improves the QoS in WSNs and allows predictable
network performance. Indeed, the controller exchanges control
messages, i.e. beacon messages, among mote routers to reflect
how the MAC layer is scheduled between different routers. In
particular, control packets reflect the structure of the super-
frame and the dynamic changes between the Contention Free
Period and the Contention Access Period.

The pTDMA algorithm allows allocating time slots dy-
namically to transmit/receive multiple packets according to
application requirements. It allows scheduling multiple node
transmissions in both the contention access period and the
guaranteed time slot period. If the number of time slots
allocated to a given sink at the contention period are not
sufficient to send its data, it can dynamically reserve time
slots from the guaranteed communication period. In traditional
TDMA approaches, a sink is not allowed to request time
slots in the guaranteed period inside the same superframe
even if those are available. Instead it should wait for the next
superframe to request additional ones. This approach taken by
SensorSDN maximizes the channel utilization and allocates
time slots between consecutive time windows based on the
traffic demands to ensure the required QoS.

In most IEEE 802.15.4 systems, the MAC is implemented
in software that run on some MCU core, each device provides
dozens of primitives to program the MAC layer and allow
data transfer. In TDMA systems, the beacon begins a time-
interval — the so-called superframe — which are divided into
time slots of equal length to fill the time between two beacons.
The superframe is composed of two periods: the Contention
Access Period (CAP) and the Contention Free Period (CFP).

Table Entries in SensorSDN

The CFR forms the so-called Guaranteed Time Slot (GTS) is
assigned by the Sink node (PAN coordinator) to let devices
sending their data any time they want instead of using the CAP
in which any device can send data with respect to its neighbor
desire. For latency sensitive applications, it is possible to use
one of the first slots because the smaller the slot number is, the
shorter is the delay. The number of slots (Va4 x), the duration
of the time slot (Tspor) and the duration of the superframe
(TrramE) can be changed dynamically by the sink node.

III. RELATED WORKS

Recently there has been increased research in applying
SDN concepts to wireless sensor networks. Flow-Sensor [3]
builds sensor nodes with unmodified OpenFlow and uses
model checking to verify the reliability and the consistency
of Flow-Sensor. However, Flow-Sensor cannot be deployed
into physical motes because its resource requirements are too
much for the wireless devices, which cannot be provided in
WSNs due to their constrained computation resources and
memory. Similarly, Sensor OpenFlow [4] introduced additional
fields to OpenFlow by employing OpenFlow Extensible Match
(OXM) called Type-Length-Value (TLV) structure to define
flow matches. However, TLV format parsing introduces irrel-
evant header fields for WSNs such as Ethernet, MPLS, and IP
tagging that should be parsed by WSN routers. Those routers
have limited buffers and they neither can process all those
details at line rate nor require them to forward LR-WPAN
packets.

Likewise, authors in [5] introduced the TinySDN framework
atop of the TinyOS operating system. TinySDN separates
the control logic from data forwarding by enabling the use
of multiple distributed SDN controllers for managing sensor
motes that run a single WSN router. Although the abstracted
router uses a modified version of the standard OpenFlow
protocol to support customizable flow tables on each sensor
mote, it suffers from several drawbacks. Indeed, using multiple
distributed controllers may present a scalability bottleneck

in large-scale sensor deployment because all the intelligence
should be moved inside each physical mote. Such a scenario
requires additional sensor virtualization layer to orchestrate
the hardware and application resources among distributed
sensing nodes. However, sensor virtualization is not supported
in TinySDN. Moreover, it has been shown that increasing
the number of distributed controllers in a wired networks
does not necessarily increase the performance of the com-
munication [7]. Besides, because it is hard to coordinate
actions between distributed control planes, it is very hard
to keep a consistent and optimal global network state. For
example, inconsistent node discovery decisions could generate
inconsistent topology information, which could involve serious
performance and correctness problems.

SDCSN [6] consists of a cluster-based SDN approach for
WSN in which a cluster head is elected to manage a group of
sink devices. Each cluster head can act as a local gateway in
its SDN domain and can communicate with other clusters to
perform hierarchical inter-domain routing, which can enforce
the reliability and the availability of the SDCSN. However,
SDCSN uses the standard OpenFlow protocol over Linux
containers running over powerful machines, which makes it
unsuitable for embedded resource-constrained devices.

Similarly, authors in SDMN [8] and SDN-WISE [9] define
a customizable flow table and handle packets delivery as finite
state machine by using mathematical and logic operators.
While both proposals are interesting to apply SDN concepts
to WSN, however, they do not provide any differentiation
between data flow and control flow. They also provide pro-
grammability at the data plane without paying attention to the
dynamic management of the MAC layer. Thus, cross-layering
optimization and flow differentiation is still required for sensed
data.

In contrast to those contributions, our solution provides a
cross-layer optimization within each physical mote by intro-
ducing new flow rules that takes into account the dynamic
resource reservation and the wireless medium sharing between
virtualized and physical sensing devices. Indeed, our approach
allows defining a common packet header for heterogeneous
target platforms, while ensuring their interoperability and
scalability. Furthermore, our solution provides a management
service at the centralized control plane to access the WSN
information base and enables automatic topology discovery
through autonomic association/dissociation of remote wireless
sensors. It also provides guaranteed time slot reservations to
enable flow differentiation and QoS provisioning, and security
policy enforcement at the controller side.

IV. CONCLUSION

Wireless Sensor Networks are becoming one of the most
promising wireless technologies for realizing the vision of
diverse IoT systems such as smart cities, health-care, trans-
portation, retail, safety, environment services, and industrial
automation. However, current WSNs have imposed complex
requirements on both the underlying network layer and the
MAC layer to coordinate and control the access to the shared

medium. To address these limitations, this paper introduced
a novel and intelligent SDN architecture towards the future
generation IoT systems to address their complexity and in-
teroperability. This work-in-progress paper provides a flex-
ible solution that helps to cater for network heterogeneity.
Our current ongoing work is focusing on implementing the
proposed solution in ZigBee/6LowPAN hardware platforms.
Additionally, security, resiliency, robustness and data integrity
will be a key requirement of future WSN networks, which
form additional dimensions of future work.

ACKNOWLEDGMENT

This work was partially funded by the Fulbright Visiting
Scholars Program and NSF CNS US Ignite 1531079. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of NSF, DGA, CNES or Fulbright
program.

REFERENCES

[1] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, and future
of programmable networks,” Communications Surveys Tutorials, IEEE,
vol. 16, no. 3, pp. 1617-1634, 2014.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
and J. Rexford, “Openflow: enabling innovation in campus networks,”
ACM SIGCOMM Computer Communication Review, pp. 69-74, 2008.

[3] A. Mahmud, R. Rahmani, and T. Kanter, “Deployment of flow-sensors in
internet of things’ virtualization via openflow,” in Mobile, Ubiquitous,
and Intelligent Computing (MUSIC), 2012 Third FTRA International
Conference on, June 2012, pp. 195-200.

[4] T. Luo, H.-P. Tan, and T. Quek, “Sensor openflow: Enabling software-
defined wireless sensor networks,” Communications Letters, IEEE,
vol. 16, no. 11, pp. 1896-1899, November 2012.

[S] B. Trevizan de Oliveira, C. Borges Margi, and L. Batista Gabriel,

“Tinysdn: Enabling multiple controllers for software-defined wireless

sensor networks,” in Communications (LATINCOM), 2014 IEEE Latin-

America Conference on, Nov 2014, pp. 1-6.

F. Olivier, G. Carlos, and N. Florent, “Sdn based architecture for clustered

wsn,” in Innovative Mobile and Internet Services in Ubiquitous Comput-

ing (IMIS), 2015 9th International Conference on, 2015, pp. 342-347.

B. Heller, R. Sherwood, and N. McKeown, “The controller placement

problem,” in Proceedings of the First Workshop on Hot Topics in Software

Defined Networks, ser. HotSDN *12, 2012, pp. 7-12.

S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, “Software defined

wireless networks: Unbridling sdns,” in Software Defined Networking

(EWSDN), 2012 European Workshop on, Oct 2012, pp. 1-6.

[9] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “Sdn-wise: Design,
prototyping and experimentation of a stateful sdn solution for wireless
sensor networks,” in Computer Communications WorFOCOM WKSHPS),
2015 IEEE Cce on, April 2015, pp. 513-521.

[6

[t

[7

—

[8

—_

