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ABSTRACT
Software Defined Networking (SDN) has emerged as an at-
tractive solution to allow cloud-to-cloud interconnection and
federation. SDN technologies, such as OpenFlow, use both
reactive hop-by-hop and proactive approaches to program
the switches. The reactive strategy incurs substantial scal-
ability problems for large networks due to the hop-by-hop
behavior while the proactive approach is hard to implement
in practice due to the need to forecast all possible forward-
ing rules ahead-of-time. An attractive and more realistic
alternative is the proactive overlay SDN approach, however,
many challenges must first be overcome to realize it. Ex-
isting techniques to program the switches use low-level pro-
gramming abstractions, which are error-prone and cannot
scale. Middleware-based solutions, e.g., using XMPP, are
stateful and hence also incur substantial scalability issues.
Although content-based publish/subscribe (pub/sub) solu-
tions have been used in the past for SDN, they rely on bro-
kers, which is problematic and incurs unnecessary additional
infrastructure elements that pollute the SDN architecture.
To address these issues, this paper demonstrates how the
strengths of the data-centric, broker-less pub/sub paradigm
can be exploited to realize proactive overlay SDN for inter
cloud domain federation. To that end, we first present the
design rationale and architecture of our solution called PO-
SEIDON (Proactive brOkerless SubscribEr Interest-Defined
Overlay Networking). Second, we present the messaging
protocol between the controller and switches. Finally, we
present results of evaluating POSEIDON and illustrate how
it improves data delivery and provides high performance at
the network-level in proactive overlay SDN.

CCS Concepts
•Networks → Routing protocols; Overlay and other logical
network structures; •Software and its engineering →
Message oriented middleware;

Keywords
Publish/Subscribe, Overlay Network, Software-defined Net-
working, Network Virtualization.

1. INTRODUCTION
Service providers are increasingly using data centers for

offering services such as video steaming. This approach has
been validated by the success of services, such as YouTube
and Netflix. This trend is further growing with the advent of

Internet of Things (IoT), where the applications are making
increasing demands on computation, storage, and network
resources, in turn forcing service providers to consolidate
groups of data centers in the form of cloud domains. The
key requirement is that resources – in our case the network
– should be made available any where and any time. Un-
fortunately, the current network architecture is not suited
to support the elastic and on-demand networking resource
demands stemming from the federation of cloud domains.

Software Defined Networking (SDN) [22] has emerged as
a promising technology for network management, e.g., to
provide new capabilities for managing individual flows, au-
tomate resource provisioning, and provide more agility in
deploying, configuring and instantiating cloud networking.
The separation of the packet forwarding logic from the data
plane, i.e. from the switches, and handing it to an external
controller, which embeds all the network intelligence, makes
it easier to manage and control the switches and networks
since any change must now be made only in the controller.

OpenFlow [19] is a dominant SDN technology that allows
the controller to install flow rules in the underlying switches
it controls to enable packet forwarding. OpenFlow provides
both reactive and proactive approaches to setup flow rules in
the switches. In the reactive flow setup, for every new flow
that arrives at a switch, that switch should send a packet-
in event to the controller so that the latter can send the
switch all the flow rules that it should apply to any incoming
packets belonging to that flow. This behavior is illustrated
by every switch that lies in the flow path. The controller
contacts all the switches between the source and destination
of a flow in a point-to-point manner to install the desired
forwarding rules.

The reactive approach incurs several performance and scal-
ability limitations when the number of switches in a flow in-
creases, which is often the case when connecting distributed
cloud domains. The problem is further exacerbated for fine-
grained flow matching in latency-sensitive, long-lasting short
flows because of an explosion in the number of forwarding
states [26]. To address the overhead stemming from this
hop-by-hop behavior of the reactive approach, the proactive
flow setup approach was conceived. In this approach, the
controller populates all possible flow rules into the switch
ahead-of-time for all possible traffic that could arrive at that
switch. This behavior is akin to typical routing tables in tra-
ditional networks.

Although the proactive flow setup approach tries to pro-
vide better performance by avoiding the extra-latency of the
first packet matching [3], it is hard to realize in practice be-



cause of the need to forecast all possible flow entries that
can match against future arriving packets. Moreover, irre-
spective of the approach used, the OpenFlow switches must
buffer a number of short flows in the flow table. However,
typical buffer sizes do not exceed a few hundreds of packets
thereby causing memory overflows. Subsequently, an extra
latency may be incurred in forwarding packets across large
networks as the number of new flows to be programmed in-
creases and the SDN controller has to setup all the properties
for those flows onto the SDN switches it controls.

With the advent of Internet of Things and cloud federa-
tions, it is becoming increasingly important to be able to in-
terconnect multiple cloud domains. Although the proactive
SDN approach is promising, as discussed above, the con-
cept is mostly of theoretical value and hard to implement in
practice. To meet these urgent needs, we surmise that the
easy-to-implement functionality of the reactive approach can
be blended into the proactive approach, however, without
incurring the scalability issues of the reactive approach by
enabling the proactive SDN at an overlay layer. The overlay
property stems from the ability to use multiple tunnels to
create network slices whose endpoints terminate in a variety
of entities, such as virtual switches or physical edge routers.
In such an overlay approach, only the endpoint switches of
the tunnels must be programmed by the controller instead
of every switch in the flow path.

A number of challenges manifest in this proposed ap-
proach. The first challenge stems from having to decide
which technique to use in the SDN controllers and switches
to program the endpoints of the tunnels that reside in the
forwarding plane. One approach is to leverage existing Open-
Flow APIs. However, these APIs are too low-level and lack
intuitive abstractions that can support compositional se-
mantics [9] to combine a sequence of rules and process them
in parallel. Middleware solutions have tried to address these
issues. For instance, some approaches have adopted the Ex-
tensible Messaging and Presence Protocol (XMPP) [18] to
distribute the control plane and management plane informa-
tion to end servers. XMPP, however, is a stateful protocol
that requires a server to retain history information status
carried over from the previous session processing. Subse-
quently, XMPP creates significant overhead of data when
multiple users are interconnected and thereby suffers from
scalability issues.

The authors in [14] introduced line-rate, content-based
middleware and matching semantics to disseminate rout-
ing information to SDN-enabled switches. Similarly, au-
thors in [1] and [28] introduced content-based middleware
to enable group communication as well as control and man-
agement tasks among distributed SDN controllers, respec-
tively. However, a significant limitation of content-based
routing systems is the lack of decoupling between publishers
and subscribers for distributed SDN. In this approach, both
participants remain tightly coupled to a broker for message
delivery. Moreover, the broker cannot guarantee message
delivery to applications, which may require additional en-
forcement outside of the existing middleware solutions.

To address these concerns, we propose Proactive brOker-
less SubscribEr Interest-Defined Overlay Networking (PO-
SEIDON), which is a broker-less, extensible architecture for
proactive overlay SDNs that can be realized within Open-
Flow. POSEIDON is a publish/subscribe (pub/sub) mid-
dleware that exploits the expressiveness power of the data-

centric information model to allow the controller to configure
and manage the data plane, and to describe the states of the
network elements, e.g. creating route instances, exchang-
ing routes and VPN membership information, and manag-
ing link status for connection and disconnection. POSEI-
DON requires proactively programming only the endpoints
of the tunnel at boot-time or at policy creation-time. The
data plane can thereafter populate packets over these over-
lay tunnels. The result is that all packets are forwarded at
line-rate, which eliminates any unnecessary latency induced
by consulting the controller for every flow thereby improving
scalability. To overcome the low-level programming issues,
POSEIDON uses the Pyretic [24] description language to
offer a higher-level of abstraction that is both intuitive and
hides the complexity of the underlying network.

The following benefits accrue from our work:

• POSEIDON has full configuration and control of how
it processes and forwards packets through the SDN
data plane.

• When upgrading the OpenFlow-enabled switches, PO-
SEIDON can continue to perform the forwarding op-
eration independently from the underlying firmware
without deteriorating network performance.

• The use of a higher-level of abstraction enables POSEI-
DON to provide a combination of fine-grained flows at
the virtual edge switches and coarse-grained flows in
the physical underlay core network devices.

• The use of pub/sub middleware provides higher lev-
els of structure and semantics to build common and
computation-independent services.

The remainder of this paper is organized as a follows: Sec-
tion 2 uses two concrete real-world case studies to elicit the
solution requirements for POSEIDON; Section 3 describes
the design of POSEIDON and its messaging protocol illus-
trating how they meet the solution requirements; Section 4
shows how the POSEIDON architecture can address the
needs of our motivational case studies; Section 5 presents
results of experiments evaluating various properties of PO-
SEIDON; Comparison with related work is described in Sec-
tion 6; and finally, conclusions drawn from this work and
lessons learned are presented in Section 7.

2. MOTIVATIONAL CASE STUDIES
This section describes motivating use cases, which are

used to elicit key requirements that must be met by PO-
SEIDON.

2.1 Use Case 1: Data Center Networking and
Virtualization

High bandwidth multimedia applications like YouTube
and Netflix are typically hosted over distributed data centers
connected over different ISPs which may use data replication
on different sites to ensure the availability and reliability of
their services. The traffic generated at an ISP’s edge net-
work may be aggregated over virtual tunnels with a certain
bandwidth and forwarded to end users for performance and
efficiency sake. Accordingly, applications should be able to
discover and register remote endpoints (e.g., BGP routers,
virtual machines, etc), and negotiate network resources to



provision and virtualize multiple virtual links to construct
an overlay network for groups of users. The provisioning ser-
vice should allow creating, modifying, and updating network
tunnels between the discovered endpoint devices.

A key requirement is that these applications need a medi-
ator layer/service to coordinate the communication between
applications in virtualized servers or tenants and their un-
derlying network to provision their QoS requirements. Sub-
sequently, these requirements should be communicated to a
control service that takes the configuration from the medi-
ator service to provision and virtualize the underlying net-
work resources. Additionally, ISPs need to constantly mon-
itor the SLA (Service Level Agreement) conditions with re-
mote applications and adjust the network resources if nec-
essary. Therefore, a monitoring service is required to gather
network topology information at a higher level of abstrac-
tion, and detect and report network failures.

2.2 Use Case 2: Internet Exchange Point
A Software-defined Internet Exchange (SDX) [7] is a large

layer 2 domain that interconnects participant router peers of
multiple ISPs together using the BGP routing protocol. It
offers capabilities to address inter-domain routing issues by
creating virtualized connections between routing endpoints.
In the traditional approach, each BGP router is required
to “learn” by itself the presence of other routers, select the
best path for each prefix and re-advertise the new selected
path. Additionally, a given router needs to control multi-
ple switches at once and advertise its data simultaneously
to multiple ISPs networks. These data need to be queued
and made available for joining participants. For example, a
router maybe be interested in a subset of traffic that conveys
web HTTP traffic to its clients, or a subscribing router may
be interested in video streaming traffic for its end users.

SDX may benefit from using the more expressive, proac-
tive overlay SDN policies than conventional hop-by-hop des-
tination based forwarding. SDX may also benefit from the
data-centric, pub/sub for disseminating data only based on
subscribers’ interests.

2.3 Solution Requirements
Based on the real-world scenarios above, we derive the

following requirements that must be met by POSEIDON:

1. Since the underlying network needs to be dynamically
reconfigured, there is a need for the control plane to
be notified whenever there is a change in the under-
lying physical network. This motivates the need for a
publish/subscribe-based solution.

2. It is also important to provide the users with a generic
policy framework that hides the heterogeneity in the
underlying network devices. Thus, it is desirable to
have a common interface and messaging capability be-
tween the control plane and forwarding plane where
new devices can be added seamlessly.

3. It is important to provide the user with a flexible and
higher-level of abstraction to program the system that
can handle QoS issues and policies.

4. It is important for each instance of the virtualized over-
lay network instance to run in isolation from other
networks, and to allow dynamically scaling up and

down the number of applications/users in the virtu-
alized data center. This motivates the creation of tun-
nels at the endpoint so that users/applications can be
placed or migrated seamlessly without impacting the
network performance.

3. POSEIDON ARCHITECTURE
This section details the POSEIDON architecture explain-

ing how it meets the solution requirements of Section 2.3.
The fundamental contribution of POSEIDON lies in how it
realizes the proactive overlay SDN idea using data-centric
pub/sub middleware. The use of data-centric, topic-based
pub/sub is critical to our design because information can
be represented as topics that can be easily queried using a
variety of filter expressions, and can be disseminated to only
interested entities thereby improving scalability.

To be compliant with the SDN architecture of separating
the control plane from the data plane, and to not pollute
it with extra infrastructure elements such as brokers, PO-
SEIDON supports only two key elements as illustrated in
Figure 1: a POSEIDON agent that resides in the control
plane, and a routing agent that resides in the forwarding
plane. The former relies on a policy management service in
the SDN controller which supports intuitive and expressive
interfaces at a higher-level of abstraction for applications to
use. The latter receives these higher-level policy descriptions
and translates them to low-level configuration commands in
the switch thereby completely relieving the applications and
developers from low-level programming.
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Figure 1: POSEIDON Architecture

POSEIDON provides a southbound interface based on the
data-centric, pub/sub paradigm for communication between
the two types of agents with a well-defined messaging proto-
col and message types. POSEIDON ensures no disruption to
existing OpenFlow-based SDN deployments since it encap-
sulates the original OpenFlow messages within its messages
that are exchanged between the POSEIDON agent and rout-
ing agents. POSEIDON also allows new network devices to
be introduced into the system without any disruption to the
currently operational system. This feature is derived from
the pub/sub system’s discovery service, which promotes in-
teroperability between endpoints so that remote participants



can (i) dynamically learn about each other by sending par-
ticipant declaration messages; and (ii) exchange information
(e.g., QoS, data types, etc.) to match each other by sending
pub/sub declarations. Consequently, POSEIDON provides
more flexibility and programmability to users.

Intuitively, the POSEIDON middleware can manage one
or more interconnected network slices, where each network
slice is composed of a set of configurable SDN switches. Two
or more neighboring network slices are interconnected inside
a virtual global data space (GDS). Multiple GDSs are then
connected to each other through edge SDN switches. PO-
SEIDON exploits the expressiveness of data provided by the
topics. Each topic is associated with the publication of data
between each module. The content of each topic includes
internal fields of our pub/sub routing services.

The rest of this section delves into the details of POSEI-
DON explaining the rationale for the design decisions.

3.1 POSEIDON Agent: The Control Plane
Figure 2 shows the internals of the POSEIDON agent,

which comprises four types of nodes: monitor node, policy
node, configuration node and control node. The monitor
node collects information related to the health of the sys-
tem including faults, errors, etc. The policy node includes
a policy decision point and policy enforcement point both
connected to a policy data store. The configuration node
communicates with the orchestration layer via REST APIs
to the applications. It also communicates with other config-
uration nodes through the distributed synchronization ser-
vices provided by the built-in discovery mechanisms of the
pub/sub system and with the policy node through a request-
response model. The control node is used to define the rules
for the proactive overlay. We now describe each of these
node types in detail providing a rationale for their need in
our design.
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Figure 2: Internal components of the POSEIDON Agent

3.1.1 Configuration Node
The configuration node serves as the link to the cloud

orchestration and automation systems using RESTful inter-
faces, which offer loosely coupled communication and high
scalability. RESTful interfaces are used by cloud opera-
tors/applications to install configuration states to perform
traffic engineering, e.g., load balancing. The configuration

node can communicate with both the policy node and con-
trol node. For instance, the configuration node can query
the policy node for the network virtualization policy used in
the orchestration system. Similarly, it can direct the con-
trol node to install policy decisions in the network device.
The configuration node uses topic-based filters provided by
the pub/sub system for these communications. Topic-based
filters are important because queries should return only per-
tinent information thereby reducing control-level traffic.

3.1.2 Policy control
Recall that network switches must be programmed to for-

ward incoming traffic based on some rules specified by the
controller. Our goal is to reduce the frequent and poten-
tially non-scalable communication between the SDN con-
troller and switches. Such forwarding rules and network
management functions can be driven by different policies.

Figure 3 depicts the policy management service inside the
policy node. This service provides policy control functions
to the configuration node for ensuring best resource orches-
tration. To that end, the policy node infers policy decisions
from application requirements specified through the config-
uration node and communicates them to the control node
for enforcement. The policy module specifies how packet
forwarding/updating abstractions should be realized.
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Figure 3: Policy Service within POSEIDON Policy Node

The core of the abstract set of policies we use is defined
in [5] and [20]. The policies include a set of primitive actions,
predicates, query policies, policy combinators and composi-
tions. The primitives can be mixed to create complex policy
functions to handle packets. The policy control functions
ensure that the POSEIDON agent can continue to honor
guaranteed service delivery to end-users. The policies also
determine how network resources are allocated as well as
how individual subscribers can take into account network
flow control and application-oriented flow.

These policy abstractions are defined using the Pyretic
description language [4], which enables users to express con-
flict resolution by composing different policies into a single
set of matching rules in the network devices. Hence, rather
than supporting many policies, the abstraction policy layer
combines policies from multiple participants to generate a
set of rules that can be used for route advertisements with-
out flooding the flow tables.

Pyretic provides a higher-level of abstraction to the op-
erators, and automates the mapping of these higher-level
descriptions into topic filter expressions used for querying.



The policy database shown in Figure 3 is a repository of mul-
tiple abstract policies that can be composed using multiple
parallel and sequential composition operators [24]. For in-
stance, the sequential composition (�) redirects the output
of one policy to the input of another forming a pipeline of
sequential policies. Likewise, the parallel composition oper-
ator (+) applies multiple policy functions to the same packet
and combines the results.

3.1.3 Control Node
The control node is responsible for installing the rules in

the switches. It receives configuration states from the config-
uration node using content-based filtered topics, which con-
tain the forwarding rules to be sent to the routing agent for
installing new rules in the forwarding plane (i.e., data plane).
Additionally, it exchanges network route information with
other distributed control nodes and routing agents using the
POSEIDON protocol. It also sends forwarding policies into
the policy database for enabling intelligent decision making
without having to contact the controller every time a new
flow arrives. The control node holds a global snapshot of
the network and the link states which helps it in performing
the best route selection. Hence, the controller can configure
virtual overlay tunnels based on the high-level information
provided by the configuration node and the policy manage-
ment service inside the policy node of the POSEIDON agent.
To that end, the control node uses three types of topic-based
messages for communication with the switches. The messag-
ing protocol is described in Section 3.3.

3.1.4 Monitoring, Analysis and Troubleshooting
Monitoring the health of the system is critical. Figure 4

shows the internal structure of the monitor node. A mon-
itor node supervises the network resources and communi-
cates with applications using northbound REST interfaces.
These interfaces are used to query statistics and analysis,
and retrieve network operational states using the POSEI-
DON agent. Thus, the POSEIDON agent performs flexible
and robust monitoring built atop the pub/sub model.
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Figure 4: Monitoring node

Furthermore, the monitor node contacts the control node
using the distributed management module to collect data
from the network. The monitor node uses a data collector to
communicate with the policy management module through
the content-filter interface. That is, the monitoring service
uses filter expressions to select data samples of interest by

using SQL-like expression to store the information in the
policy database.

3.2 Routing Agent: The Data Plane
As depicted in Figure 5, the routing agent is a user space

process available on each instance of an OpenFlow-capable
switch and acts as a local translator at the forwarding plane.
It is responsible for exchanging control states between the
POSEIDON Agent and the network devices using the PO-
SEIDON protocol.

POSEIDON

Agent

OpenFlow Capable switch 

Routing Agent

POSEIDON 

Protocol

POSEIDON

Agent

Figure 5: Internal view of the routing agent inside OpenFlow
capable switch

The routing agent receives high-level configuration infor-
mation from the POSEIDON agents and translates them to
low-level details (i.e., QoS, VLAN tags, etc.), which is under-
stood by the switches in the overlay. To support a uniform
abstraction that can cover a range of these low-level possi-
bilities, POSEIDON supports the notion of a built-in data
isolation called Partition, which is a scoping mechanism to
organize traffic by creating non-overlapping logical virtual
data spaces for dynamic association of participants. Parti-
tioning the network into several network slices can increase
the scalability of the system by allowing multiple advertise-
ments and subscriptions.

For virtual LANs (VLANs), Partitions can be seen as
VLAN identifiers (i.e., VLAN tags) so that routing agents
belonging to the same physical infrastructure can easily be
isolated into different VLANs. These partitions are mapped
into specific VLAN ports for grouping the sent data into spe-
cific receivers. Consequently, the routing agent translates
these partitions into VLAN tags and installs the forwarding
states within the OpenFlow entries of the SDN switches.

Likewise, a partition can be translated to an IP multi-
cast address to perform multicast VLAN registration to effi-
ciently distribute data across switches thereby reducing the
bandwidth consumed by the multicast traffic. In such a case,
POSEIDON can check whether routing agents belonging to
a specific partition are still alive. The pub/sub discovery
process reports whether new virtual switches have joined or
left the network. Besides, the routing agent carries and re-
ports analytics, health status, errors, and statistics from the
forwarding plane to the distributed POSEIDON agents.

3.3 POSEIDON Messaging Protocol
In this section we describe the three types of messages

currently supported by the POSEIDON messaging proto-
col: peer discovery, network configuration, and monitoring



messages, which are exchanged between the control node of
the POSEIDON agent and the routing agents.

3.3.1 Endpoints Discovery Message
POSEIDON relies on the underlying pub/sub system’s

built-in discovery protocol to identify the tunnel endpoints
matching POSEIDON agents and routing agents. Discovery
messages are sent periodically (i.e., regulated by a heart-
beat) to check the liveliness of different POSEIDON peers.
Listing 1 shows the peer discovery message exchanged be-
tween POSEIDON agents and routing agents. The “sender”
field describes the IP address of the publishing endpoint. It
can also contain the MAC address in the context of a layer
2 participant. The “sender ID” describes the “VLAN ID” of
a participant or any other membership information that can
uniquely identify a participant within its group. The format
is extensible and customizable to the underlying pub/sub
system.

Listing 1: Built-in participant Discovery

<?xml version="1.0"?>
<-- Discovery topic -->
<struct name="discovery">
<member name="sender" type="string" key="true"/>
<member name="sender_ID" type="string" />
<member name="receiver" type="string"/>
<!-- QoS policies ... -->
<member name="LivelinessQoS" type="string"/>
<member name="DurabilityQoS" type="string"/>
<member name="TopicDataQoS" type="string"/>
<member name="GroupDataQoS" type="string"/>
<!-- more QoS policies ... -->
<!-- Session Management -->
<member name="scope_announce" type="sequence">
<member name="register_context" type="sequence">
<member name="session" type="sequence" key="true"/>
</struct>

For example, depending on the underlying pub/sub sys-
tem’s features, the discovery message supports reconfigurable
QoS policies to control many reliability aspects, such as live-
liness. For instance, when using the OMG Data Distribu-
tion Service (DDS) pub/sub technology, in Listing 1, “Liveli-
nessQoS” is used to ensure automatic discovery and liveness
check of endpoints. The endpoint discovery process uses in-
bound session management to ensure that communication
will be established end-to-end. The field “scope announce”
in Listing 1 describes the announcement of a session from
a participant to all others. The “scope announce” is a se-
quence of fields that includes the forwarding path, the ses-
sion heartbeat, and discovery data.

3.3.2 Network Configuration Operation
Once the endpoints are discovered, it is important for

the POSEIDON agent to configure all the identified rout-
ing agents with flow rules. Listing 2 illustrates a configura-
tion message used by the POSEIDON agent to populate the
Routing Information Base (RIB) of the routing agent.

Listing 2: Configure BGP Path

<?xml version="1.0"?>
<struct name="bgp_advertise">
<member name="sender" type="string" key="true" />
<member name="receiver" type="string"/>
<member name="sender_id" type="long"/>
<member name= "node" type="string" />
<member name="instance-id" type="long">

<--! BGP Network Layer Reachability
Information (NLRI) -->
<member name="nlri" type ="string">
<!-- Label for label switch routers (LSRs) -->
<member name="label" type="long">
</struct>

3.3.3 Monitoring messages
Currently, POSEIDON supports network management and

monitoring capabilities through the monitoring message. List-
ing 3 shows the topic data used by POSEIDON to query
the state of a SDN switch. This topic message contains in-
formation about the fault, statistics, errors, and health of
the network device. It also includes information about the
sender of that request (i.e., IP address, VLAN tag), the en-
tity which sent the report and other information including
statistics, faults, and errors, etc.

Listing 3: Query Network Statistics

<?xml version="1.0"?>
<struct name="report_sate">
<member name="sender" type="string" key="true" />
<member name="sender_id" type="long"/>
<member name="receiver" type="string"/>
<member name= "node" type="string" />
<member name="statistics" type="struct" >
<member name="faults" type="struct">
<member name="health" type="struct">
</struct>

4. VALIDATING THE POSEIDON
APPROACH FOR REAL-WORLD
USE CASES

The aim of this section is to validate the POSEIDON ap-
proach for the same use cases we used to motivate the work.

4.1 POSEIDON for Interconnecting
Distributed Cloud Networks

Figure 6 illustrates how POSEIDON can be used to scal-
ably interconnect distributed cloud networks. In contrast to
the traditional approach that uses physical links (shown as
PLI , i = 1..5 in Figure 6) to exchange routing information,
POSEIDON provides a topology abstraction to simplify in-
terconnection by virtue of creating a big virtual switch“v sw”.
This is feasible because the abstracted physical topology
can be ported to a collection of distributed routers due pri-
marily to the policy repository (Section 3.1.2). Recall that
this repository holds a topology abstraction library that de-
termines whether to aggregate multiple underlying switches
into a single overlay or splitting a physical node into several
virtual ones.

Listing 4 using the expressive description in Pyretic shows
the topology transformation of the underlying network where
the physical switches“SW1, SW2, and SW3”are aggregated
to create the virtual switch “v sw” in the overlay network.

Listing 4: Mapping the Physical devices to Virtual ones

def virtual_switch(topo):

self.v_sw = 1

self.vport = 1

for (sw, port) in topo.egress_location:

vmap[(v_sw, vport)] = (sw, port)

vport +=1
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Figure 6: POSEIDON for Interconnecting Multiple Data
Centers over the Internet

return vmap

The next step consists of creating the transformation pol-
icy which allows virtualizing the underlying network. To
generate the topology abstraction policy that abstracts the
underlying switches into the virtual switches, the virtual-
ize() function in Listing 5 takes SW1, SW2, and SW3 as
input and renders “v sw” as a topology transformation. The
merge abstracted policy takes a list of the underlying physi-
cal switches and renders a single overlay virtual switch“v sw”.
It selects the shortest path to forward packets from one edge
router to another. Thereafter, the routing agent at the cus-
tomer edge router implements translation of the virtualize
policy into a single new policy for the underlying router.

Listing 5: Virtualize topology abstraction function

virtualize(v_sw,

merge(name=3,

from_switches=[sw1, sw2, sw3]))

This abstracted policy creates a virtual tunnel in the over-
lay network to allow distributing the route’s information
among autonomous systems and enable a high level of ag-
gregation between customer interfaces and provider’s edge
devices. Each customer device implements a POSEIDON
Agent to translate the configuration sent by the control
plane through the POSEIDON protocol.

4.2 POSEIDON for Internet Exchange Point
Figure 7 depicts how POSEIDON uses the BGP protocol

for simplifying the exchange of network reachability informa-
tion using a POSEIDON agent in the SDX controller. Un-
like traditional approaches where each BGP router should
“learn” by itself the other routers, our approach acts as a
route reflector that learns BGP route advertisements, selects
the best path for each prefix, and re-advertises the new se-
lected path on the appropriate session using the scope anno-
unce field in the endpoint discovery message described in
Listing 1.

The POSEIDON agent runs an SDN application to drop,
modify, update, and forward traffic among different Au-
tonomous Systems (ASs). In particular, it combines BGP
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Figure 7: POSEIDON for Software Defined Internet Ex-
change

reachability information from all AS’ edge routers into a sin-
gle set of policies to give each router the illusion as if it has its
own virtual switch, while ensuring the isolation of the traffic
between different BGP participant routers as illustrated in
Figure 8.
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Figure 8: Transforming the underlying topology into single
virtual switch

ISP C has virtual interfaces to connect to virtual interfaces
of ISP A and ISP D through the switch. Listing 6 depicts
the parallel composition of the abstracted policy that allows
ISP C to filter HTTP traffic towards ISP A and forwards
Netflix video streaming on UDP port 443 towards ISP D.

Listing 6: Forwarding Policy in ISP C

match(dstport = 80) >> fwd(A)) +

match(dstport = 443 >> fwd(D))



The policies include conflict resolution rules to program
the virtualized switch and avoid the policies’ interference
conflicts between edge routers. Additionally, the POSEI-
DON agent implements a router reflector to replace the
traditional BGP route server [11]. These routing decisions
are based on per-endpoint policy control and the best-path
calculation for each set of paths available between the dis-
tributed routes.

The route reflector is an SDN application at the control
plane that checks the advertised routes from each AS and
performs path filtering at that exchange endpoint. It also
allows enforcing the traffic ratio among different routing end-
points. POSEIDON splits the virtual tunnel of AS C into
two small virtual tunnels, each conveying the filtered traffic
for each AS separately as shown in Figure 8. Consequently,
each network provider can apply a customized route selec-
tion process to select one or more best routes to each Internet
destination.

In traditional approaches, each BGP speaker should be
configured separately to provide point-to-point communica-
tion with all the other speakers. In contrast, in our approach
the big virtual switch in Figure 8 hides the complexity of
configuring each BGP speaker separately. The virtualiza-
tion policy supported by our POSEIDON agent creates vir-
tual tunnels between edge routers. It creates the overlay big
switch by virtualizing the underlying network, i.e. the phys-
ical BGP edge routers. The resulting virtual overlay switch
maps the ingress physical ports into virtual ports to create
the illusion that each router has its own switch interface.

Furthermore, the control plane translates the local RIB
into the corresponding prefix in each nearest BGP speaker
to forward multiple paths for the same speaker on a single
BGP session. Path adding/removing is negotiated bidirec-
tionally between the POSEIDON Agents and the service
provider routers. The POSEIDON agent ensures that there
is no inactive, invalid or even suboptimal path to its peering
routers.

5. PERFORMANCE EVALUATION
This section describes results of experimental evaluation

of POSEIDON. Specifically, we describe the results for dif-
ferent network metrics such as bandwidth, latency, network
overhead, and scalability.

5.1 Experimental Setup
POSEIDON has been evaluated for the two use cases de-

scribed in Section 4. The experiments were conducted on a
SDN testbed running the Mininet SDN tool [16]. Mininet is
a Linux-based lightweight SDN virtualization tool for run-
ning large number of OpenFlow network equipment, and al-
lows experimenting with different types of network topolo-
gies. We also integrated the different modules comprising
our solution into the NOX [6] SDN controller, which is writ-
ten in C++ and Python programming languages. We im-
plemented the reactive OpenFlow in the SDN controller so
that each time a new packet arrives at the edge router,
it sends a request using PACKET IN message to the con-
troller. The controller examines the packet header of the
incoming packets and checks whether a new entry should be
created and new actions should be applied to those packets.
Then, the controller sends PACKET OUT message to all
the underlying routers from the source to the destination.
Additionally, to implement the proactive approach, we used

the OMG Data Distribution Service (DDS) as the under-
lying topic-based, data-centric pub/sub middleware. Thus,
POSEIDON can create virtual tunnels between edge routers.
To install new rules for establishing the tunnel, the controller
sends OpenFlow messages to the tunnel endpoints, i.e. the
edge routers of that tunnel.

5.2 Evaluating the End-to-end Latency
Rationale. End-to-end latency is critical to many SDN-

enabled applications since it allows routing traffic in pre-
dictable time scales. To evaluate the timing performance of
our solution, we consider the end-to-end delay as the time
duration to send a packet from source to destination. The
measurement of the one way delay is not straightforward be-
cause packets experience different network delays including
processing delay, queuing delay, transmission and propaga-
tion delays. Thus, we have considered the two-way latency,
i.e., the Round Trip Time (RTT). We then consider one-way
delay as half of RTT. Furthermore, to evaluate the effective-
ness of our approach, we compared the latency results with
those of the traditional, reactive hop-by-hop OpenFlow data
dissemination.1

Analysis. Figure 9 depicts the end-to-end latency for
both the reactive OpenFlow and our proactive overlay SDN
approach. A close inspection of Figure 9 shows that the la-
tency experienced by our proactive overlay solution is close
to 20 milliseconds on average (reaching 35 msec in worst
case), which is better than the reactive approach that showed
worst-case latency up to 75 milliseconds. Indeed, the re-
active OpenFlow is constantly changing in reaction to the
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Figure 9: Latency: Proactive POSEIDON vs. Reactive
OpenFlow

current network conditions. The volatile reactivity to the
changing events introduces high rate of changes because re-
active OpenFlow must continually update all the switches
along routing paths. Moreover, the OpenFlow agents in
every switch should lookup in their flow tables to check
whether a matching rule/action for a given packet flow can
be found. If no matching is found in the flow entries, the
OpenFlow agents should send requests, i.e. PACKET IN
messages, to the controller to create new flow entries for
that given flow. Accordingly, reactive OpenFlow experiences
larger latencies and substantial jitter than our proactive so-
lution, which attempts to address the latency concerns be-
fore it becomes a problem in the network.

As seen, our overlay routing paths do not introduce ex-
tra processing latency in the overlay network and demon-

1Recall that the pure proactive approach is impractical and
mostly of theoretical value.



strate less jitter. Rather, our approach creates a virtual
tunnel between two end switches along the routing path so
that packet processing is enabled only at the beginning and
the end of the tunnel. Our solution improves the network
latency by enabling proactive overlay SDN anonymity to
all applications running on top of overlay routing protocols.
Our approach preserves the higher performance characteris-
tics required over the overlay routing path while hiding the
complexity of the underlying network topology.

5.3 Evaluating Bandwidth usage
Rationale. Since SDN networks must share the same

physical infrastructure with other existing applications, the
bandwidth usage is a concern. Thus, data dissemination
in POSEIDON middleware should be protected against any
network fluctuation such as congestion. To evaluate the us-
age of the shared links, we consider each application gener-
ating best effort traffic close to 10 MB/sec. Our aim is to
evaluate whether our approach shows better results to pro-
tect the flow in the face of bandwidth fluctuation. We also
compared our approach with the reactive OpenFlow solu-
tion.

Analysis. Figure 10 illustrates the bandwidth usage for
both the POSEIDON approach and the reactive OpenFlow.
Both approaches allow sending data at 10 MB/s. How-
ever, reactive OpenFlow experiences several bandwidth lim-
itations and the traffic becomes irregular. The bandwidth
decreases drastically at different time intervals. The packet
flow experiences several packet losses. In contrast, in our
proactive solution, the throughput decreased only at the
initialization phase comprising the creation of the tunnel,
i.e., establishing the connection between two end switches
across the overlay routing path. Thereafter, the bandwidth
becomes regular and protected against the fluctuation dur-
ing the rest of the experiment. Accordingly, the results show
that our solution is successfully able to overcome the limita-
tions of the reactive OpenFlow approach by providing better
usage of network bandwidth. This is because the POSEI-
DON agent at the controller receives fewer request messages
from the data plane since the virtual path is already setup
inside the virtual tunnel.
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Figure 10: Efficient Bandwidth usage for POSEIDON

5.4 Evaluating POSEIDON Scalability
Rationale. The design choice of our proactive SDN solu-

tion is similar to distributed systems as it was designed with
scalability concerns in mind to allow its deployment in large-
scale SDN scenarios. Therefore, to evaluate the scalability
of our proposed solution, we consider the average response
time in processing the network requests. Specifically, we in-

creased the number of the data plane nodes and we evaluate
the time latency for every additional introduced node.

Analysis. Figure 11 depicts the latency of the proposed
proactive SDN approach as a function of the number of data
plane equipment across the path. A close inspection of the
figure reveals that the average latency of our proposed so-
lution is close to 30 ms, while the maximum value of this
delay remains close 50 ms.
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Figure 11: Evaluating the Scalability

Since our proactive approach creates a virtual tunnel be-
tween end points, increasing the number of core routers
across the data path will not necessarily linearly impact the
performance of the network. There are a couple of reasons
for this: first, core routers are usually high performance net-
work equipment that forward incoming packets without any
additional processing; second, the core routers remain trans-
parent to the network as the virtual tunnel will cross them
seamlessly.

5.5 Evaluating Network Overhead
Rationale. As POSEIDON is used for interconnecting

data centers, there are several critical metrics that should
be considered in evaluating the overhead introduced by PO-
SEIDON. First, the CPU load is usually impacted by the
control modules such as the configuration module to per-
form connection setup and tear down. Moreover, the for-
warding operations performed by the POSEIDON routing
agent can come at a cost of increased memory utilization in
the overlay switches, which is a critical issue in data cen-
ter networks. In particular, memory and queuing buffers
hold packets and connection state information of the traffic
transiting across the switch. Therefore, there is a need to
maintain the memory utilization as low as possible to avoid
buffer overflow.

Analysis. Figure 12 illustrates the control plane over-
head for both the reactive OpenFlow approach and our proac-
tive solution. The figure shows that the control traffic of the
former varies between 5 Kbits/sec and 15 Kbits/sec, while
the network overhead of the proposed proactive approach is
less than 5 Kbits/sec most of the time and increases a little
up to 5 Kbits/sec at regular time intervals. Indeed, the reac-
tive OpenFlow requires processing several network requests
for network state update, topology discovery, failure recov-
ery, etc. Unlike the reactive approach, our proactive overlay
solution sends Endpoints Discovery Message that acts like
heartbeat messages at heartbeat periods to discover whether
new nodes have joined or left the network. As discussed
in Section 3.3, the discovery messages are sent periodically
to check the liveliness of different peers. In particular, the
LivelinessQoS and the scope announce parameters ensure



Figure 12: Control Plane Overhead: Reactive OpenFlow vs. Proactive POSEIDON

automatic discovery of end points as well as heartbeat pe-
riodic data discovery. Thus, the evaluation of the network
overhead confirms our claims on providing better network
performance compared to the traditional reactive approach.

6. RELATED WORK
In this section we survey relevant research efforts and com-

pare them to POSEIDON. Our SDN-based literature survey
indicates that there does not exist a clearly identified role
for middleware platforms (e.g., whether it should be used in
the northbound or southbound or east-west interfaces) with
the aim of interconnecting applications to SDN network and
providing the freedom to the developers to define the way
they would use it in SDN. There have been some efforts,
however, to introduce middleware in SDN.

The authors in [23] introduce a broker-based framework
called DISCO as an east-west interface to coordinate fed-
erated SDN controllers using RabbitMQ [10] middleware
over the Advanced Message Queuing Protocol (AMQP) [30].
DISCO allows the brokers to make routing decisions rather
than letting the SDN network application perform this task.
As a broker-based solution, DISCO routes the control traf-
fic between distributed controllers, however, it does not per-
form any routing decisions at the SDN forwarding plane,
which is left to the control plane applications. In contrast,
POSEIDON supports self-formed federation that can per-
form data dissemination/advertisement over the global data
space of topics. As such, POSEIDON operates as a reposi-
tory federation in which individual repositories can partici-
pate in a global federation in a fully distributed manner.

Authors in [8] proposed a data-centric IoT architecture in
which a pub/sub middleware is integrated into SDN as a
northbound interface for enabling agile and flexible network
orchestration. Similarly, authors in [13] describe a pub/sub
middleware called MIDAS that leverages OpenFlow to con-
trol the resource management strategy and low-level switch-
ing configurations. Unlike these approaches that consider
the middleware layer as a northbound interface, POSEIDON
can be considered as a southbound interface to connect dis-
tributed overlay SDN data planes.

Likewise, authors in [2] introduce an OpenFlow-enabled
middleware for virtual machine migration in data centers
at the SDN control plane. On the other hand, POSEI-
DON defines both the control plane functionality as well
the data plane forwarding routines for supporting proactive

SDN model. It also describes the messaging protocol to con-
nect them together.

Authors in [14] propose a pub/sub architecture for SDN
where the controller establishes line-rate content-based match-
ing semantics to disseminate routing information to SDN-
enabled switches. The common shortcoming of content-
based systems is their dependency on the application layer to
perform pub/sub operations. They also do not map directly
to multicast communication unless a routing engine is added
for group communication, which may result in higher band-
width consumption and higher latency [29]. POSEIDON na-
tively supports many-to-many communication pattern and
can provide reliable group communication for scalable one-
to-many and many-to-many data distribution.

Recent efforts have already showed how pub/sub and SDN
can be combined to perform content filtering at the level of
SDN controllers. For example, LIPSIN [12] uses Bloom fil-
ters in data packets to infer the underlay topology from the
overlay network, and enable efficient multicast communica-
tion. Despite this, LIPSIN requires substantial architectural
changes for moving end-point oriented systems to their ar-
chitecture. Similarly, PLEROMA [28] uses content-based
filters in SDN to enable group communication as well as
allows running multiple virtual overlay domains. Likewise,
authors in [1] introduced an event-based middleware to of-
fer distributed SDN control plane management and config-
uration. Unlike these works, our contribution provides a
distributed pub/sub service in the control plane along with
a routing agent for enabling proactive overlay data plane
communication.

Recently some efforts have explored the use of Extensible
Messaging and Presence Protocol (XMPP) service as an al-
ternative to OpenFlow in hybrid SDN networks [17]. The
XMPP middleware is used to distribute control plane and
management plane information to end servers that serve to
enhance the communication between data centers in overlay
networks and physical devices in the underlying network.
The disadvantages of XMPP and its related technologies
(i.e., roster, presence and routing functions) exist in differ-
ent contexts. In particular, XMPP is considered to be a
standard only for the wire protocol, i.e., XMPP is agnos-
tic in relation to the data being transferred. XMPP is also
stateful, which makes it more difficult to scale because each
server needs to know the entire state in order to serve a
request. Typically, the XMPP clients and servers utilize
the domain name system (DNS) to resolve a server’s do-



main name into an address they can connect to. XMPP
also requires centralized services to exchange messages be-
tween server-to-server federation, which makes it inefficient
in duplicating messages when distributing them to multiple
destinations. This is where utilizing POSEIDON for mes-
sage distribution is more beneficial than XMPP. POSEI-
DON uses the built-in pub/sub discovery service to allow
publishers and subscribers to dynamically and continuously
discover each other without the need to contact any name
servers.

The OpFlex [27] control protocol is introduced to config-
ure and monitor all connected devices. The OpFlex proto-
col is founded on the concepts of declarative policy-driven
system to control and program a large set of physical and
virtual network devices. OpFlex is a request-response proto-
col based on JSON-RPC [21], where each component sends
a request to query the information from its peer element.
However, there are several disadvantages of RPC with re-
spect to message passing since it may incur a severe degra-
dation in performance due to marshaling/unmarshaling of
messages (i.e., context switching increases scheduling costs)
and may have to deal with added complexity in configura-
tion for simple scenarios.

Unlike these approaches, POSEIDON is fully distributed
so there is no single point of failure in the network during
the communication. It also supports reconfigurable resource
management policies for efficient use of the bandwidth, net-
work and memory resources. Additionally, it supports the
proactive overlay SDN, which makes it a suitable technology
to ensure scalability, reliability, and flexibility.

7. CONCLUSION
Proactive overlay software defined networking (SDN) aims

at overcoming the scalability limitations of reactive hop-by-
hop approaches for large-scale networks and the practical
limitations of the pure proactive approach. Although both
approaches are supported by the dominant SDN technology
OpenFlow, its APIs are too low-level and lacks intuitive ab-
stractions to build reusable SDN applications. To overcome
these limitations, in this paper we described the POSEI-
DON middleware for realizing proactive overlay SDN. PO-
SEIDON proposes an efficient matching of advertisement
and subscription using the data-centric publish/subscribe
(pub/sub) paradigm to support flexible and programmable
SDN networks. The paper demonstrates how POSEIDON
can be used in two real-world use cases. The experimen-
tal evaluation of POSEIDON validates our claims about (1)
the ease of configuring the overlay SDN forwarding tables
of the data plane directly through the middleware using a
software control layer inside the SDN controller, and (2) its
scalability properties.

The following lessons were learned conducting this re-
search, which illustrates the limitations of the work while
also highlighting opportunities for further research in this
area:

• Applying POSEIDON solution for IoT systems.
The modular architecture of POSEIDON makes it suit-
able for large number of wired networks such as cloud
environment, Cloudlets, and multi-tenant networks.
However, there are many reasons to extend POSEI-
DON to support Internet of Things (IoT) systems.
To enable POSEIDON support for IoT, it should be

extended to integrate new protocols such as 6Low-
PAN [15] and ROLL [31]. Meanwhile its footprint,
stemming from its reliance on a pub/sub middleware,
should be reduced to suit the embedded, resource-
constrained systems. We also believe that such an ap-
proach will draw attention of the research community
to the need to bring agility and programmability of
SDN for scalable and high performance IoT networks.

• Securing Flow Forwarding in POSEIDON. PO-
SEIDON has the ability to interconnect hundreds of
SDN controllers and devices at different scales. Cur-
rently, POSEIDON supports built-in security policies
to deliver safety required by the control plane. At
the data plane, since the flow table entries are writ-
ten as pieces of software modules, their content may
be altered due to the increasing number of DDoS and
malware attacks, and phishing activities. Therefore,
we believe that sophisticated encryption and authen-
tication mechanisms to overcome hackers, and recov-
ery of packets from failure are needed. For example,
role-based and policy-based access control [25] could
be added to SDN to support data integrity, pedigree,
confidentiality, and non-repudiation.
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