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COMPARING GRU AND LSTM FOR AUTOMATIC SPEECH RECOGNITION

Shubham Khandelwal Benjamin Lecouteux Laurent Besacier

LIG/GETALP, Univ Grenoble Alpes, France

ABSTRACT
This paper proposes to compare Gated Recurrent Unit (GRU)
and Long Short Term Memory (LSTM) for speech recog-
nition acoustic models. While these recurrent models were
mainly proposed for simple read speech tasks, we experi-
ment on a large vocabulary continuous speech recognition
task: transcription of TED talks. In addition to be simpler
compared to LSTM, GRU networks outperform LSTM for all
network depths experimented.

We also propose a new model termed as DNN-BGRU-
DNN. This model uses Deep Neural Network (DNN) fol-
lowed by a Bidirectional GRU and another DNN. First DNN
acts as a feature processor, BGRU is used to store temporal
contextual information and final DNN introduces additional
non-linearity. Our best model achieved 13.35% WER on
TEDLIUM dataset which is a 16.66% & 17.84% relative
improvement on baseline HMM-DNN and HMM-SGMM
models respectively.

Index Terms— Speech Recognition, Acoustic Models,
LSTM, GRU, RNN.

1. INTRODUCTION

In recent years, artificial neural networks (ANNs) have been
deployed rapidly for Automatic Speech Recognition (ASR)
systems. Several factors like huge data availability and ad-
vancements in computing power (notably GPUs) helped neu-
ral networks to become popular (again). To improve ASR
performance, many methods have been proposed such as
hybrid Deep Neural Network-Hidden Markov Model (DNN-
HMM) systems, Recurrent Neural Networks (e.g. Long Short
Term Memory (LSTM), Gated Recurrent Units (GRU)), etc.
Contributions. This paper proposes to investigate ASR
acoustic modeling using several recurrent neural networks
(RNNs). More precisely, we systematically compare LSTMs
and GRUs in several architectures. Our findings (for an En-
glish transcription task) are that GRUs are not only simpler
but also more efficient than LSTMs for ASR. Our best archi-
tecture, based on a deep GRU, obtains a WER of 13.35% on
the first version of TED-LIUM data set [1], which is (to our
knowledge) the best result reported so far on TED-LIUM v1.
Outline. The rest of this paper is organized as follows: sec-
tion 2 is dedicated to related works. We present our proposed
method in section 3 while section 4 reports experiments.
Finally, section 5 concludes this work and gives some per-
spectives.

2. RELATED WORK

Feed forward neural networks have been used as feature ex-
tractors in HMM-based speech recognition systems [2, 3, 4].
Lately, Recurrent Neural Networks (RNNs) have also been
introduced for speech recognition because of their modeling
capabilities for sequences. RNNs allow the model to store
temporal contextual information directly without explicitly
defining the length of temporal contexts. Among several im-
plementations of RNNs, Long Short Term Memory (LSTM)
[5] networks have the capability to memorize sequences with
long range temporal dependencies and they started to be used
for end-to-end speech recognition.

Graves et al [6] proposed the first use of deep Long Short
Term Memory (LSTM) for speech recognition. They have
shown that bidirectional LSTM (BLSTM) has more advan-
tage over unidirectional LSTM and that depth is more im-
portant than layer size. Their combination of deep BLSTMs
achieved a phoneme error rate of 17.7% on TIMIT bench-
mark (test set) which was comparable to state-of-the-art re-
sults. To overcome the difficulty of integrating deep BLSTM
networks with existing large vocabulary speech recognition
systems, Graves et al. [7] proposed an hybrid HMM-BLSTM
architecture. The proposed model outperformed both GMM
and DNN benchmarks on a subset of the Wall Street Journal
(WSJ) corpus.

More recently, it has been shown that recurrent neural net-
works can outperform feed-forward neural networks on larger
scale speech recognition tasks [8][9]. Geiger et al [10] trained
BLSTM with HMM states as training targets for acoustic
modeling. Their experimental results showed that the hybrid
system (using state prediction networks) achieves competi-
tive results on a medium-vocabulary ASR task on read speech
data. (from the CHiME challenge). Further improvements
were obtained by combining different LSTM acoustic mod-
els. Graves et al [11] proposed a speech recognition system
that directly transcribes the audio data into text with minimal
preprocessing using spectrograms and no explicit phonetic
representation. They described a novel objective function
that allows the network to be directly optimized for WER
and directly integrated the network outputs with a language
model during decoding. Chan et al [12] presented Listen,
Attend and Spell (LAS), an attention based neural network
which can directly transcribe acoustic signals into characters.
The Listener (first component), is a pyramidal acoustic RNN
encoder that transforms the input sequence into a high level
feature representation. The Speller (second component) is a



RNN decoder that attends to the high level features and spells
out the transcript one character at a time. LAS achieved a
WER of 14.1% without any dictionary nor language model,
and WER of 10.3% with language model rescoring. By com-
parison, the state-of-the-art CLDNN-HMM model achieved a
WER of 8.0% on the same dataset. Miao et. al [13] proposed
a framework called EESEN: a single RNN is learned to pre-
dict context-independent targets (phonemes or characters).
Connectionist temporal classification (CTC) [14] objective
function is used to infer the alignments between speech and
label sequences so that they do not need pre-generated frame
labels. 7.87% and 7.34% WER were obtained using phoneme
based and character based systems respectively on TIMIT
corpus using a trigram LM which is a relative improvement
of 15% compared with [11].

A novel TC-DNN-BLSTM-DNN acoustic model archi-
tecture was proposed by Chan et al [15]. The model com-
bines a Deep Neural Network (DNN) with Time Convolution
(TC), followed by a Bidirectional Long Short Term Memory
(BLSTM), and a final DNN. The first DNN acts as a feature
processor to their model, the BLSTM then generates a con-
text from the sequence acoustic signal, and the final DNN
takes the context and models the posterior probabilities of the
acoustic states. This model achieved 3.47% WER on the Wall
Street Journal (WSJ) eval92 task (8% relative improvement
over the baseline DNN models).

Finally, Gated Recurrent Unit (GRU) was proposed by
[16] for machine translation. Chung et al [17] evaluated the
performance of tanh, LSTM and GRU models on several NLP
datasets. They demonstrated the superiority of both LSTM
and GRU models over tanh unit. However, no concrete con-
clusion was drawn on which one is better: LSTM or GRU?
Amodei et al [18] tried to compare GRU with simple RNN
for speech transcription and their experimental results showed
that if the model size is scaled up for a fixed computational
budget, then simple RNN performs slightly better than GRU.

This paper is one attempt to compare LSTM and GRU ar-
chitectures on a large vocabulary continuous speech recogni-
tion (LVCSR) task which is more complex than read speech
transcription on TIMIT or WSJ. For this, we experiment on
the transcription of TED Talks using TED-LIUM corpus [1].

3. PROPOSED METHOD

The proposed model is summarized as DNN-BGRU-DNN
acoustic model shown in figure 1. This model uses fixed win-
dow context of acoustic features (Feature-space maximum
likelihood linear regression (fMLLR) transformed features
[19]) as an input.

To project the original acoustic features into a high dimen-
sional feature space, 2 layers of DNN (2048 ReLU neurons)
are used. Then high dimensional features are consumed by
a single layered BGRU which models the temporal depen-
dencies of the speech signal. The output of BGRU is then
consumed by another DNN (2048 ReLU neurons) to add ad-
ditional non-linear transformations before softmax layer to
classify the context dependent acoustic states.

Our BGRU is implemented similarly to [16]. GRU is used
to make each recurrent unit adaptively capture dependencies
of different time scales. Similar to the LSTM, GRU has gating
units used to deal with the flow of information inside the unit
without having separate memory cells. The architecture is
simpler than LSTMs.

The activation ht of GRU at time t is a linear interpola-
tion between the previous activation ht−1 and the candidate
activation h̃t:

ht = (1− zt)ht−1 + zth̃t

where the update gate zt decides the update weight. This up-
date is computed by:

zt = σ(Wzxt + Uzht−1 + bz)

The candidate activation h̃t is computed similar to the stan-
dard RNN:

h̃t = f(Whxt + rt � Uhht−1 + bh)

where rt is a set of reset gates and � is an element-wise mul-
tiplication. The reset gate rt is computed similarly to the up-
date gate:

rt = σ(Wrxt + Urht−1 + br)

Bidirectional GRU (BGRU) consumes the input acoustic
window. BGRU output is a concatenation of two vectors (one
for each direction: forward and backward).

c =

[
hfT
hbT

]
Here, c represents the context of the acoustic signal generated
by the BGRU.

Context c is further consumed and projected by a second
DNN. This DNN is further used to add more non linear trans-
formations. The output of the second DNN is fed to the soft-
max layer to model the context dependent state priors. The
proposed model is trained using backpropagation minimizing
the cross entropy. Proposed architecture is inspired from [15].

4. EXPERIMENTS

4.1. Experimental setup

The proposed approach is evaluated on a lecture transcrip-
tion task (TED talks in English). TEDLIUM dataset [1] was
used for the experimentation of all models. It was developed
for large vocabulary continuous speech recognition (LVCSR).
The train part of the dataset is composed of 774 talks, repre-
senting 118 hours of speech. Evaluation is performed on the
dev part of the dataset (19 talks, 4h).



Fig. 1. Proposed architecture: DNN-BGRU-DNN. The model has 3 parts: ReLU DNN used to project the original fMLLR
acoustic features to vectors which are then consumed by a BGRU before a final ReLU DNN uses the BGRU output for additional
non linear projections before softmax classification. Figure modified from [15].

We use Kaldi [20], an open-source speech recogni-
tion toolkit distributed under a free license. The baseline
GMM system is based on mel-frequency cepstral coefficient
(MFCC) acoustic features (13 coefficients expanded with
delta and double delta features and energy : 40 features) with
various feature transformations including linear discriminant
analysis (LDA), maximum likelihood linear transformation
(MLLT), and feature space maximum likelihood linear re-
gression (fMLLR) with speaker adaptive training (SAT). The
GMM acoustic model makes initial phoneme alignments of
the training data set for the following DNN (or RNN) acoustic
model training.

The speech transcription process is carried out in two
passes: an automatic transcript is generated with a GMM-
HMM model of 12000 states and 200000 Gaussians. Then
word graphs outputs obtained during the first pass are used to
compute a fMLLR-SAT transform on each speaker. The sec-
ond pass is performed using DNN or SGMM acoustic model
trained on acoustic features normalized with the fMLLR
matrix.

The English language model is trained with MIT language
model toolkit 1 using following corpora:

• News commentary 2007-2012 [21]

• Gigaword version 5 [22]

1https://github.com/mitlm/mitlm

• TDT 2-4 [23]

• TED Train (80%)

Then, linear interpolation is applied between the LM
trained on the above corpora by tuning the perplexity on the
remaining 20% data of TED/train. We will use 3 and 5-gram
language models for our experiments.

4.2. HMM-SGMM and HMM-DNN baselines

We have used two baseline systems based on Kaldi s5 recipe
using HMM-SGMM model and HMM-DNN. The perfor-
mance using 3-gram and 5-gram language models are pro-
vided in Table 1 (HMM-SGMM) and Table 2 (HMM-DNN).

Model dev (WER%)
subspace-GMM 18.64 (lm3)

16.25 (lm5)

Table 1. HMM-SGMM performance on TEDLIUM dev

For HMM-DNN, we experimented with deeper and wider
networks, however we found that 8 layered DNN architecture
was the best.



Model size layers dev (WER%) params n.
DNN 512 3 22.98 (lm3) 4.8 M

1024 5 19.96 (lm3) 12.76 M
1024 8 19.45 (lm3), 15.91M

16.02 (lm5)

Table 2. HMM-DNN performance on TEDLIUM dev

Model Size Layers dev (WER%) params n.
BLSTM 128 1 23.2 (lm3) 4.6M
LSTM 128 5 25.91 (lm3) 1.2 M
LSTM 256 5 22.98 (lm3) 3M

BLSTM 512 1 23.73 (lm3) 5.2M
BGRU 512 1 22.44 (lm3) 4.8M
GRU 256 5 21.32 (lm3) 1.8M

Table 3. Small size LSTM and GRU performance on
TEDLIUM dev. Preliminary experiments on TEDLIUM dev.

4.3. Preliminary RNN Experiments

Preliminary experiments were done to compare small size
LSTM and GRU (similar or smaller number of parameters
compared to our DNN-512-3 baseline).

The experimental results using trigram language model
are shown in table 3. The results show that the GRU performs
better than the LSTM for equivalent number of parameters
(BGRU512-1 better than BLSTM128-1 while both models
have the same number of parameters). Also, we observe that
deeper GRUs perform better. The result obtained with only
1.8M parameters (GRU256-5, WER=21.32%) outperforms
the DNN-512-3 baseline (4.8M parameters, WER=22.98%)
as well as the LSTM with similar topology (LSTM256-5, 3M
parameters, WER=22.98%).

4.4. Proposed Architecture

Different combinations of BLSTM and BGRU with DNN
were evaluated. We report here the main results obtained
with the architecture proposed in previous section.

We compared our proposed DNN-BGRU-DNN architec-
ture with the DNN-BLSTM-DNN architecture proposed in
[15]. The results are shown in table 4.

The results show that adding DNN before and after
BLSTM and BGRU significantly improves the performances
reported in Table 3 for BLSTM and BGRU. The DNN-
BGRU-DNN model (2 layered DNN + 1 layer BGRU +
2 layer DNN ; dimension of the GRU recurrent and non-
recurrent node: 512 & DNN: 1024 ) achieved 20.13% WER
and 16.85% WER using 3-gram and 5-gram language models
respectively which is better than the results obtained with the
corresponding DNN-LSTM-DNN architecture, while having
less parameters. Surprisingly, it seems that DNN-BGRU-
DNN benefits more from a 5-gram LM which would mean
that the obtained word graph contain better hypotheses.

Model Size Layers dev (WER%) params n.
[Existing]

DNN-BLSTM-DNN 1024-512-1024 2-1-2 20.24 (lm3), 12.37M
19.11 (lm5)

[Proposed]
DNN-BGRU-DNN 1024-512-1024 2-1-2 20.13 (lm3), 11.12M

16.85 (lm5)

Table 4. Proposed Model Results on TEDLIUM dev.

The proposed model is very easy to train and converge and
is equivalent in performance to the deeper DNN baselines (5
and 8 layers) mentioned in Table 2 (which use slightly more
parameters). The model is trained using stochastic gradient
descent method using a minibatch size of 100. The learning
rate was started from 0.0006 and it was decayed by an geo-
metrical distribution in every epoch. The learning rate floor
was 0.00006 (that mean the learning rate does not decay be-
yond this value). The proposed model took around 47 hours
to train with GeForce Nvidia GTX Titan 970 GPU.

4.5. Deeper RNN models

Model Size Layers dev (WER%) params n.
BLSTM 512 3 18.36 (lm3) 16.8M
BGRU 1024 2 17.80 (lm3) 30.3M
GRU 512 5 19.40 (lm3) 5.3M
GRU 1024 5 18.58 (lm3) 17.8M

BGRU 512 3 16.37 (lm3) 13.8M
13.35 (lm5)

Table 5. Experiments on deeper and wider RNNs (LSTM and
GRU) evaluated on TEDLIUM dev.

The model evaluated in previous subsection had only one
layered bidirectional GRU. So, we experimented with in-
creasing number of bidirectional layers in our model. Firstly,
BGRU models with deeper and wider networks were trained
and it was found that 3 layered BGRU model (dimension of
the GRU recurrent and non-recurrent node: 512) achieved
16.37%, and 13.35% WER using 3-gram and 5-gram lan-
guage models respectively which is the best performance
found among all the models tested so far, as shown in table 5.
The BGRU with 3 layers significantly outperforms our deep
DNN baseline2 with 8 layers, while having less parameters.
It is also better than its BLSTM counterpart with 3 layers.

Now, to benefit from more BGRU layers, we should ex-
periment this in our DNN-BGRU-DNN architecture (for in-
stance, 2 layered DNN + 3 layer BGRU + 2 layer DNN; di-
mension of the GRU recurrent and non-recurrent node: 512
& DNN: 1024). However, such a model requires a massive
amount of gpu memory. At the time of this submission, we
could not get results with this model yet, but we plan to in-
clude them in final version of this paper if it is accepted3.

2as well as the HMM-SGMM baseline
3Based on results observed in Tables 4 and 5, we believe that WER should

be further reduced.



4.6. Discussion
Following are the main outcomes of our experiments:

• In general, it was observed that bidirectional RNNs are
better than uni-directional RNNs.

• BGRU has much less computation time than BLSTM.
So BGRU model could be more easily deployed on
small devices like mobile, etc.

• GRU networks outperformed simple LSTM for all net-
work depths and for fixed number of parameters. We
also evaluated GRU networks with 5 or more recurrent
layers but they did not improve the performance.

• Vanishing and exploding gradient problem is avoided
by looking at threshold and clip the gradient to that
threshold. On top of it, LSTM and GRU also helped to
avoid such type of problems in following way:
- LSTM allows disabling of writing to a cell by turning
”off” the gate to prevent any changes in the content of
the cell over many cycles. It means that longer term
dependencies can be learned. Similarly, when the gate
is ”open”, the update equation does not completely
replace the contents of a cell, rather maintaining a
weighted average of a new value and previous value.
- In GRU, the update gate controls how much informa-
tion from the previous hidden state will carry over to
the current hidden state to maintain an averaged gradi-
ent. Also, when the reset gate is close to 0, the hidden
state is forced to ignore the previous hidden state and
reset with the current input only. Using this, the hidden
state can drop any information which is irrelevant in
the future.

• We will provide a github link to all our GRU scripts
used, in the final version of this paper, so that other
researchers can reproduce our experiments made on
TED-LIUM dataset with Kaldi.

5. CONCLUSION AND PERSPECTIVES

5.1. Conclusion

The goal of this work was to evaluate and compare several
RNN models for a large vocabulary continuous speech recog-
nition task in English (TEDLIUM dataset). More precisely,
RNN models were trained with different number of layers to
compare the performance of LSTM and GRU. It was found
that GRU outperforms LSTM in terms of (less) computation
time and (better) WER4.

A novel architecture (DNN-BGRU-DNN) was also pro-
posed which achieves better performance than its (recently
proposed) DNN-BLSTM-DNN counterpart. The proposed
model is easy to implement using Kaldi. It does not get over-
fitting due to regularization and also avoid vanishing or ex-
ploding gradient problems observed for single LSTM/GRU.

4tested with roughly equivalent number of parameters

Intensive experiments were performed with deeper and
wider recurrent networks. For 3-layered BGRU model,
16.37% and 13.35% WER were achieved using 3- and 5-
gram language models respectively which is more than 16%
relative improvement over the DNN baseline of 19.45% WER
when 3-gram language model is considered. To the best of
our knowledge, 13.35% WER is the best performance ever
reported on dev set of this TEDLIUM experimental setup.

5.2. Perspectives

Following ideas could be proposed in future work:

• Short term: at the time of this paper submission,
we were not able to complete experiments on DNN-
BGRU-DNN with 3 or more BGRU layers. We expect
further improvements compared to our 13.35% WER
obtained with the 3-layer BGRU in Table 5. Such ex-
periments will be included in the final version of this
paper if accepted.

• Long term: other architectures such as Highway Net-
works [24], High order RNNs [25], Multi-Function
Recurrent Unit (MuFuRU) [26] could be studied and
experimented on TEDLIUM. Connectionist Tempo-
ral Classification method [14] is another promising
approach as it does not require presegmented (force-
aligned) training data, or external post-processing to
extract the label sequence from the network outputs.
Combining convolutional neural networks (CNN) with
deep LSTM and GRU models would be another inter-
esting direction to explore.
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