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Kinetic theory models described within the Fokker–Planck formalism involve high-dimensional spaces (including physical and conformation 
spaces and time). One appealing strategy for treating this kind of problems lies in the use of separated representations and tensor product 
approximations basis. This technique that was introduced in a former work [A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers 
for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids, J. Non-Newtonian 
Fluid Mech. 139 (2006) 153–176] for treating steady state kinetic theory models is extended here for treating transient models.

Keywords: Complex fluids; Kinetic theory; Model reduction; Multidimensional problems; Separation of variables; Numerical modeling; Fokker–Planck equation

1. Introduction

This paper constitutes the progression of a previous work [3] which focused on the steady solution of some classes of multidi-
mensional partial differential equations (PDE) defined in spaces of dimension N (with N � 1), and that is extended in the present
work for treating multidimensional parabolic PDE.

In [3] a new solution technique based on a tensor product representation was introduced. In this technique the solution defined
in multidimensional domains is built by adding a certain number of products of N one-dimensional functions, each one defined in
a different space dimension. These functions are not known a priori, but they are constructed during the solution procedure. The
resulting technique was evaluated by solving some multidimensional elliptic problems as well as in some kinetic theory models.

The solution of multidimensional transient Fokker–Planck equations could be performed within an incremental time discretization.
However, the separated representation could be extended for representing the space-time solution. The main difficulties related to
such approach lies in the fact that the initial condition being non-zero the proposed procedure cannot be applied in a direct manner.
Another difficulty lies in the fact that space approximations are built using standard piece-wise functions, and when this kind of
approximation is retained to construct the time interpolation, the well known instability related to centered differences of time
derivatives is encountered. This paper proposes alternatives to circumvent both difficulties.

Despite the fact that tensor product spaces allow a significant reduction of the number of degrees of freedom, i.e. N × nn instead
of (nn)N (where nn is the number of degrees of freedom on each coordinate axis and N is the dimension of the problem), the resulting
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discrete system is strongly non-linear. In this work, we propose an efficient alternating directions strategy for solving those non-linear
problems.

The novelty of the proposed technique justifies that a lot of questions are still open: (i) the treatment of non-linear Fokker–Planck
equations; (ii) optimal basis enrichment; (iii) analysis of complex flows involving non-homogeneous solution in the physical space;
(iv) general initial conditions; (v) analysis of convergence; (vi) stabilization of advection operators; . . ..

We would like to emphasize that we are not looking for a general numerical procedure for solving multidimensional PDE’s. In this
context, the sparse grids or sparse tensor product basis [6] are excellent candidates, even if it was argued in [1] its inability for treating
highly multidimensional problems (N � 20). The sparse grid technique has been applied for solving parabolic equations in moderate
high-dimensional spaces [13](where the numerical examples concerned N ≤ 20) as well as kinetic theory models also involving
moderate high-dimensional spaces [8]. Moreover, some recent works [9] on sparse grids prove its ability for integrating functions
defined in really high-dimensional spaces (an example in dimension 256 was reported in that paper), enlarging the perspectives
towards the solution of multidimensional partial differential equations. The technique proposed in our former work [3] and extended
in the present one to transient simulations, is, in our opinion, a suitable choice when dealing with highly multidimensional parabolic
PDE’s with homogeneous boundary conditions. Despite the apparent loss of generality induced by these assumptions, usual molecular
descriptions make use of a configuration distribution function that is defined in a bounded domain and vanishes at its boundary.

2. Illustrating the solution strategy

Let us define the following heat problem in a space of dimension N:

∂T

∂t
− �T = f (x1, x2, . . . , xN ), (1)

where T is a scalar function of space and time coordinates, i.e. T (x, t) = T (x1, x2, . . . , xN, t). Problem (1) is assumed defined in
the domain Ω = Ωx ×Ωt =] − L,+L[N×]0, tmax] and T vanishes at the space boundary, i.e. T (x∈ ∂Ωx, t) = 0, as well as at the
initial time, i.e. T (x, t = 0) = 0.

The problem solution is assumed in the form:

T (x1, x2, . . . , xN, t) =
∞∑
j=1

αj

[(
N∏
k=1

Fkj(xk)

)
F(N+1)j(t)

]
, (2)

where Fkj is the jth basis function which only depends on the k th space coordinate. Thus, within the Galerkin framework the solution
can be approximated in the form:

T (x1, x2, . . . , xN, t) ≈
J∑
j=1

αj

[(
N∏
k=1

Fkj(xk)

)
F(N+1)j(t)

]
, (3)

where functions Fkj are not given in advance but they are computed adaptively using the algorithm described later.
The construction of solution (Eq. (3)) consists of an iteration procedure involving, at each iteration n, three steps (see [3] for

additional details).

Step 1. Projection of the solution onto a discrete basis

If we assume the functions Fkj(∀j ∈ [1, . . . , n]; ∀k ∈ [1, . . . , N + 1]) known (verifying the boundary and the initial conditions,
that is vanishing on ∂Ωx), the coefficients αj can be computed by introducing the approximation of T into the Galerkin variational
formulation associated with Eq. (1):∫

Ω

T ∗ ∂T
∂t

dΩ+
∫
Ω

Grad T ∗ · Grad T dΩ =
∫
Ω

T ∗f dΩ. (4)

Introducing the approximation of T and T ∗:

T (x1, x2, . . . , xN, t) =
n∑
j=1

αj

(
N∏
k=1

Fkj(xk)

)
F(N+1)j(t), (5)

and

T ∗(x1, x2, . . . , xN, t) =
n∑
j=1

α∗
j

(
N∏
k=1

Fkj(xk)

)
F(N+1)j(t), (6)
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we obtain

∫
Ω

⎛
⎝ n∑
j=1

α∗
j

(
N∏
k=1

Fkj(xk)

)
F(N+1)j(t)

⎞
⎠× ∂

∂t

⎛
⎝ n∑
j=1

αj

(
N∏
k=1

Fkj(xk)

)
F(N+1)j(t)

⎞
⎠ dΩ

+
∫
Ω

Grad

⎛
⎝ n∑
j=1

α∗
j

(
N∏
k=1

Fkj(xk)

)
F(N+1)j(t)

⎞
⎠× Grad

⎛
⎝ n∑
j=1

αj

(
N∏
k=1

Fkj(xk)

)
F(N+1)j(t)

⎞
⎠ dΩ

=
∫
Ω

⎛
⎝ n∑
j=1

α∗
j

(
N∏
k=1

Fkj(xk)

)
F(N+1)j(t)

⎞
⎠ f dΩ. (7)

Now, we assume that f (x1, . . . , xN ) can be written in the form

f (x1, . . . , xN ) =
m∑
h=1

N∏
k=1

fkh(xk). (8)

Eq. (7) involves integrals of a product of N + 1 functions, each one defined in a different dimension. Let (
∏N
k=1gk(xk))gN+1(t) be

one of these functions to be integrated. The integral overΩ can be performed by integrating each function over its definition interval
and then multiplying the N + 1 computed integrals according to:

∫
Ω

(
N∏
k=1

gk(xk)

)
gN+1(t) dΩ =

N∏
k=1

∫ L

−L
gk(xk) dxk ×

∫ tmax

0
gN+1(t) dt. (9)

This makes possible the numerical integration in highly dimensional spaces.
Now, due to the arbitrariness of coefficients α∗

j , Eq. (7) allows us to compute the n approximation coefficients αj , by solving the
resulting linear system of size n× n. This problem rarely exceeds the order of tens of degrees of freedom.

Step 2. Checking convergence

From the solution of T at iteration n just calculated and given by Eq. (5), we compute the residual Re related to Eq. (1):

Re =
√∫

Ω
((∂T/∂t) − �T − f (x1, . . . , xN ))2

‖T‖ . (10)

where the norm of the solution is computed according to:

‖T‖ =
∫
Ω

T 2 dΩ, (11)

with all the integrals are computed in the space-time domain.
If Re < ε (epsilon is a small enough parameter), the iteration process stops, the solution T (x1, . . . , xN, t) being given by Eq. (5).

Otherwise, the iteration procedure continues.

Step 3. Enrichment of the approximation basis

From the coefficients αj just computed, the approximation basis can be enriched by adding the new function
(
∏N
k=1Fk(n+1)(xk))F(N+1)(n+1)(t). For this purpose, we solve the non-linear Galerkin variational formulation related to Eq. (1):∫

Ω

T ∗ ∂T
∂t

dΩ+
∫
Ω

Grad T ∗ · Grad T dΩ =
∫
Ω

T ∗f dΩ, (12)

using the approximation of T given by:

T (x1, x2, . . . , xN, t) =
n∑
j=1

αj

(
N∏
k=1

Fkj(xk)

)
F(N+1)j(t) +

(
N∏
k=1

Rk(xk)

)
RN+1(t), (13)

and the test function

T ∗(x1, x2, . . . , xN, t) = R∗
1(x1) × · · · × RN (xN ) × RN+1(t) + · · · + R1(x1) × · · · × R∗

N (xN ) × RN+1(t)

+R1(x1) × · · · × RN (xN ) × R∗
N+1(t). (14)
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This leads to a non-linear variational problem, whose solution allows us to compute the N functions Rk(xk) as well as RN+1(t). The
functions Fk(n+1) are finally obtained by normalizing the functions R1, R2, . . . , RN+1 after convergence of the non-linear problem.

Remark 1. Each one of these one-dimensional functions Rk(xk) are approximated in this work using a piecewise finite element
interpolation built from nnk nodes. Other possibilities have being investigated, as for example the use of spectral approximations that
seem an appealing choice for increasing the convergence rates of the method, or the use of wavelet basis in order to take advantage
of its multiresolution character which could lead to efficient adaptive strategies.

Remark 2. The particular choice of the ansatz (14) was justified in the first part of this work [3] in the vartiational framework.
Thus, in the steady case this ansatz leads to symmetric and positive definite linear systems (when the alternating direction strategy
described in Section 3.2.1 applies) for the differential operators having these properties. In the general case (general differential
operators or parabolic problems) this ansatz vanishes on the domain boundary and when one proceeds using the alternating direction
strategy for solving the resulting non-linear discrete problem (as described in Section 3.2.1) this choice does not introduce additional
numerical difficulties and it worked perfectly in all the problems until now considered. However, we are aware that a further analysis
on this questions should be addressed in future works.

3. Matrix form and some numerical issues

3.1. Solving the heat equation

In the 2D case, Eq. (1) reduces to:

∂T

∂t
− �T = f (x, y), (15)

where T = T (x, y, t). Eq. (15) is solved in the domain Ω = Ωx ×Ωt =] − L,+L[2×]0, tmax] with zero boundary and initial
conditions.

The solution is now sought in the form:

T (x, y) =
∞∑
j=1

αjFj(x)Gj(y)Hj(t). (16)

As seen previously, the construction of such solution involves, at each iteration n, a projection, convergence checking and enrichment
steps that we now describe.

In the enrichment step, the approximation basis is enriched by adding the new functions Fn+1(x),Gn+1(y) andHn+1(t) according
to

T (x, y, t) =
n∑
j=1

αjFj(x)Gj(y)Hj(t) + R(x)S(y)P(t), (17)

where Fn+1(x), Gn+1(y), Hn+1(t) are obtained by normalizing the functions R(x), S(y) and P(t) using the L2 norm.
From a practical point of view, these functions must be defined in a discrete form. Thus, Fj(x) (respectively,Gj(y) andHj(t)) and

R(x) (respectively, S(y) and P(t)) are defined using a 1D finite element interpolation that, in our simulations, is assumed piecewise
linear. We denote byN (respectively,M and L) the vector containing the value of the p (respectively, q and r) shape functionsNp(x)
(respectively, Mq(y) and Lr(t)). Finally Fj , Gj , Hj , R, S and P are the nodal description of those functions.

3.1.1. Computing of the coefficients αj: projection stage
Now, we consider the variational formulation related to Eq. (15):∫

Ω

T ∗ ∂T
∂t

dΩ+
∫
Ω

Grad T ∗Grad T dΩ =
∫
Ω

T ∗f (x, y) dΩ, (18)

where the fact that T ∗ vanishes at the boundary of Ωx has been introduced. Moreover, we assume that f (x, y) can be also written
in the form:

f (x, y) =
m∑
h=1

ah(x)bh(y). (19)
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Thus, Eq. (18) becomes:

∫
Ω

T ∗ ∂T
∂t

dΩ+
∫
Ω

[
∂T ∗

∂x

∂T ∗

∂y

]⎡⎢⎢⎣
∂T

∂x
∂T

∂y

⎤
⎥⎥⎦ dΩ =

m∑
h=1

∫
Ω

T ∗ah(x)bh(y) dΩ. (20)

At iteration n, we can write T in the following matrix form:

T (x, y, t) = [NTF1M
TG1L

TH1 · · · NTFnM
TGnL

THn ]

⎡
⎢⎢⎣
α1

...

αn

⎤
⎥⎥⎦ = ATα, (21)

from which we obtain the time derivative and the gradient:

∂T

∂t
= [NTF1M

TG1dLTH1 · · · NTFnM
TGndLTHn ]

⎡
⎢⎢⎣
α1

...

αn

⎤
⎥⎥⎦ = BT

t α, (22)

⎡
⎢⎢⎣
∂T

∂x
∂T

∂y

⎤
⎥⎥⎦ =

[
dNTF1M

TG1L
TH1 · · · dNTFnM

TGnL
THn

NTF1dMTG1L
TH1 · · · NTFndMTGnL

THn

]⎡⎢⎢⎣
α1

...

αn

⎤
⎥⎥⎦ = B

x
α. (23)

Here, dN, dM and dL represent the vectors containing the value of the shape functions derivatives with respect to the coordinates
x, y and t at any point x and y and at any time t, respectively. The weighting function related to the Galerkin variational formulation
T ∗ can be expressed in the same form (the stabilization of the time derivative –first term of Eq. (18)– will be addressed later):

T ∗(x, y, t) = [α∗
1 · · · α∗

n ]

⎡
⎢⎢⎣
FT

1NG
T
1MH

T
1L

...

FT
nNG

T
nMH

T
nL

⎤
⎥⎥⎦ = α∗TA, (24)

and its gradient

[
∂T ∗

∂x

∂T ∗

∂y

]
= [α∗

1 · · · α∗
n ]

⎡
⎢⎢⎣
FT

1 dNGT
1MH

T
1L FT

1NG
T
1 dMHT

1L

...
...

FT
ndNGT

nMH
T
nL FT

nNG
T
ndMHT

nL

⎤
⎥⎥⎦ = α∗TBT

x
. (25)

Introducing the discrete form of the trial and test functions as well as their derivatives in Eq. (20), we obtain:

∫
Ω

α∗T(ABT
t + BT

x
B
x
)α dΩ =

m∑
h=1

∫
Ω

[α∗
1 · · · α∗

n ]

⎡
⎢⎢⎣
ah(x)FT

1N bh(y)GT
1MH

T
1L

...

ah(x)FT
nN bh(y)GT

nMH
T
nL

⎤
⎥⎥⎦ dΩ, (26)

where the components of matrix ABT
t + BT

x
B
x

are given by:

(ABT
t + BT

x
B
x
)
ij

= FT
i dNdNTFjG

T
i MM

TGjH
T
i LL

THj + FT
i NN

TFjG
T
i dMdMTGjH

T
i LL

THj

+FT
i NN

TFjG
T
i MM

TGjH
T
i LdLTHj. (27)

Because all terms in Eq. (26) are the product of separable functions of x, y and t, the integral over the domain Ω can be separated
into the product of integrals in x, y and t. Thus, it finally results:

α∗TKα = α∗TV . (28)

Accounting for the arbitrariness of α∗, we get

Kα = V, (29)
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where

K
ij

= FT
i

(∫ x=+L

x=−L
dNdNT dx

)
Fj ×GT

i

(∫ y=+L

y=−L
MMT dy

)
Gj ×HT

i

(∫ t=tmax

t=0
LLT dt

)
Hj

+FT
i

(∫ x=+L

x=−L
NNT dx

)
Fj ×GT

i

(∫ y=+L

y=−L
dMdMT dy

)
Gj ×HT

i

(∫ t=tmax

t=0
LLT dt

)
Hj

+FT
i

(∫ x=+L

x=−L
NNT dx

)
Fj ×GT

i

(∫ y=+L

y=−L
MMT dy

)
Gj ×HT

i

(∫ t=tmax

t=0
LdLT dt

)
Hj, (30)

and

V i =
m∑
h=1

FT
i

(∫ x=+L

x=−L
N ah(x) dx

)
×GT

i

(∫ y=+L

y=−L
M bh(y) dy

)
×HT

i

(∫ t=tmax

t=0
L dt

)
. (31)

The linear system (29) can be solved for computing the coefficients αj . The inversion of matrix K is very simple due to its reduced
dimension.

3.1.2. Enrichment of the approximation basis
At this stage, we are looking for a solution in the form:⎧⎪⎪⎨
⎪⎪⎩
T (x, y, t) =

j=n∑
j=1

αjFj(x)Gj(y)Hj(t) + R(x)S(y)P(t)

T ∗(x, y, t) = R∗(x)S(y)P(t) + R(x)S∗(y)P(t) + R(x)S(y)P∗(t)

. (32)

In order to compute functions R, S and P from the associated variational formulation (Eq. (18)), we start by writing these functions
as well as their time and space derivatives in a matrix form:

∂T

∂t
=

n∑
j=1

αj[N
TFjM

TGjdL
THj] + [0T0TNTRMTSdLT]

⎡
⎢⎣
R

S

P

⎤
⎥⎦ = BT

t α+ ET
t

⎡
⎢⎣
R

S

P

⎤
⎥⎦ , (33)

⎡
⎢⎢⎣
∂T

∂x
∂T

∂y

⎤
⎥⎥⎦ =

n∑
j=1

αj

[
dNTFjM

TGjL
THj

NTFjdM
TGjL

THj

]
+
[

dNTMTSLTP 0T 0T

0T NTRdMTLTP 0T

]⎡⎢⎣
R

S

P

⎤
⎥⎦ = B

x
α+ E

x

⎡
⎢⎣
R

S

P

⎤
⎥⎦ , (34)

T ∗(x, y, t) = [R∗T S∗T P∗T ]

⎡
⎢⎣
NSTMPTL

RTNMPTL

RTNSTML

⎤
⎥⎦ = [R∗T S∗T P∗T ]C, (35)

[
∂T ∗

∂x

∂T ∗

∂y

]
= [R∗T S∗T P∗T ]

⎡
⎢⎣

dNSTMPTL NSTdMPTL

RTdNMPTL RTNdMPTL

RTdNSTML RTNSTdML

⎤
⎥⎦ = [R∗T S∗T P∗T ]FT. (36)

Using these expressions the variational formulation results:

∫
Ω

[R∗T S∗T P∗T ]CBT
t α dΩ+

∫
Ω

[R∗T S∗T P∗T ]CET
t

⎡
⎢⎣
R

S

P

⎤
⎥⎦ dΩ+

∫
Ω

[R∗T S∗T P∗T ]FTBxα dΩ

+
∫
Ω

[R∗T S∗T P∗T ]FTE
x

⎡
⎢⎣
R

S

P

⎤
⎥⎦ dΩ =

m∑
h=1

∫
Ω

[R∗T S∗T P∗T ]Cah(x)bh(y) dΩ. (37)

As previously, each integral in Eq. (37) can be separated into an integral in the coordinate x, a second one in the direction y and a
third one in the time interval.
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Eq. (37) can then be expressed in the compact form:

U(R, S, P) +K(R, S, P)

⎡
⎢⎣
R

S

P

⎤
⎥⎦ = V (R, S, P), (38)

which defines a non-linear problem of reduced dimension (p+ q+ r). After imposing the nullity of both functions R and S at their
respective domain boundaries and P at t = 0, the non-linear system (38) can be solved by applying a Newton strategy, the size of
the linearized systems being p+ q+ r. As the solution of such problem is not unique, we can impose for example that the norm of
S is unity, by introducing the associated Lagrange multiplier. In order to accelerate the convergence, the first approximated field T
is constructed by using the functions ah and bh.

When the solutions R, S and P are obtained (after convergence), the new approximation functions can be determined after
normalization:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fn+1 = R√
RT
(∫ x=+L

x=−L
NNT dx

)
R

Gn+1 = S√
ST
(∫ y=+L

y=−L
MMT dy

)
S

Hn+1 = P√
PT
(∫ t=tmax

t=0
LLT dt

)
P

. (39)

If normality of S has been set, then the second expression of Eq. (39) reduces to Gn+1 = S.

3.2. Numerical issues

3.2.1. Efficient non-linear solvers
In high-dimensional spaces, the discrete system (38) is strongly non-linear, and the convergence of non-linear solvers becomes a

delicate task. In our previous work [3] a Newton strategy was successfully applied. However, in this work we propose an alternative
procedure based on the resolution of smaller linear systems within an iterative scheme, that from our numerical experiments seems
to be faster, simpler and more robust.

The non-linear system can be transformed into a set of N + 1 linear systems (3 in our example whose sizes are p, q and r) in the
framework of the alternating directions technique. These linear systems are solved within an iteration procedure until convergence.
To illustrate this technique we consider Eq. (38) written as:⎛

⎜⎝
U1(S, P)

U2(R,P)

U1(R, S)

⎞
⎟⎠+

⎛
⎜⎝

K
11

(S, P) K
12

(R, S, P) K
13

(R, S, P)

K
21

(R, S, P) K
22

(R,P) K
23

(R, S, P)

K
31

(R, S, P) K
32

(R, S, P) K
33

(R, S)

⎞
⎟⎠
⎛
⎜⎝
R

S

P

⎞
⎟⎠ =

⎛
⎜⎝
V 1(S, P)

V 2(R,P)

V 3(R, S)

⎞
⎟⎠ . (40)

Using the matrix expressions previously introduced, it is easy to verify the following relations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K
12

(R, S, P)S ≡ K∗
12

(S, P)R

K
13

(R, S, P)P ≡ K∗
13

(S, P)R

K
21

(R, S, P)R ≡ K∗
21

(R,P)S

K
23

(R, S, P)P ≡ K∗
23

(R,P)S

K
31

(R, S, P)R ≡ K∗
31

(R, S)P

K
32

(R, S, P)S ≡ K∗
32

(R, S)P

. (41)

They lead to 3 linear systems that must be solved iteratively until reaching convergence:

(1) Assuming S and P known:

U1 + (K
11

+K∗
12

+K∗
13

)R = V 1, (42)
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(2) Assuming R and P known:

U2 + (K∗
21

+K
22

+K∗
23

)S = V 2, (43)

(3) Assuming R and S known:

U3 + (K∗
31

+K∗
32

+K∗
33

)P = V 3. (44)

Other alternatives for solving this kind of strongly non-linear problems are being investigated, as is the case of the so-called
asymptotic numerical technique [7].

3.2.2. Consistent time discretization
Another important numerical issue is the discretization of the time derivative term in the variational formulation (18). If we

consider the components of L as the usual piecewise linear shape functions, and perform the integral∫
Ωt

LdLT dt,

the i th-row of the resulting matrix contains two non-zero entries: 1/2 at column i+ 1 and −1/2 at column i− 1. This is equivalent
(dividing by the time step ht) to the central finite difference which is not consistent with the physics (justifying the use of backward
time derivatives). As we are discretizing the space-time variational formulation we cannot apply backward finite difference, and for
this reason we propose to use an “upwind” Petrov–Galerkin formulation which leads to a backward time discretization. Thus, matrix
LdL is computed by considering L̃ instead of the usual L, which means that the test function T ∗ considered in the first term of the
variational formulation (18) is in fact approximated using other approximation functions than the ones used to approximate T, i.e.:∫

Ω

T̃ ∗ ∂T
∂t

dΩ+
∫
Ω

Grad T ∗ Grad T dΩ =
∫
Ω

T ∗f (x, y) dΩ. (45)

Thus, using the analogy with the upwind Petrov–Galekin formulation widely used to discretize advection operators, we obtain:

T (x, y, t) = [NTF1M
TG1L

THT
1 · · · NTFnM

TGnL
THT

n ]

⎡
⎢⎢⎣
α1

...

αn

⎤
⎥⎥⎦ , (46)

T ∗(x, y, t) = [NTF1M
TG1L

THT
1 · · · NTFnM

TGnL
THT

n ]

⎡
⎢⎢⎣
α∗

1
...

α∗
n

⎤
⎥⎥⎦ , (47)

and

T̃ ∗(x, y, t) = [NTF1M
TG1L̃

T
HT

1 · · · NTFnM
TGnL̃

T
HT
n

]

⎡
⎢⎢⎣
α∗

1
...

α∗
n

⎤
⎥⎥⎦ (48)

with

L̃ = L+ ht

2
dL. (49)

This leads to a matrix [
∫ tmax

0 L̃dLT dt] whose i th-row contains only two non-zero entries, at columns i (with a unit value) and i− 1
where it takes a value −1. Thus, the time discretization is now fully consistent.

3.3. Numerical example

We consider the 2D transient problem defined by

∂T

∂t
− �T = max(0, x5) × max(0, y5) + min(0, x5) × min(0, y5),

inΩ = Ωx ×Ωt =] − L,L[2×]0, tmax] withL = 3 and tmax = 2 and the boundary and initial conditions given by:T (x∈ ∂Ωx, t = 0)
and T (x, t = 0) = 0.
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Fig. 1. 2D Poisson problem (a) functions in the direction x (b) functions in the direction y (c) time functions and (d) final solution distribution.

Fig. 1 illustrates the different space and time 1D functions as well as the final space distribution of the solution T (x, t = tmax).
The width of each representation of the 1D approximation functions illustrates the weight of that function, which is given by the
corresponding α coefficient. The computed solution is in perfect agreement with the one obtained by using a classical finite element
method.

3.4. Convergence analysis

In order to conclude about the convergence rates of the proposed strategy we are considering a steady problem as well as a
transient one whose large time solution coincides with the solution of the steady problem.

The steady problem is defined by:

�T = −N
N∏
k=1

sin(xk) (50)

in Ω =] − π, π[N , with T (x∈ ∂Ω) = 0, whose exact solution reads:

T ex =
N∏
k=1

sin(xk). (51)

This problem is solved in different multidimensional spaces considering the separated representation and an increasing number of
nodes for the functional approximation in each dimension (for the sake of simplicity we are considering that all the one-dimensional
functional approximations are defined from the same number of nodes nn).

The error E is quantified from the norm:

E =
∫
Ω

(T num − T ex)2 dΩ

|Ω| . (52)
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Fig. 2. Convergence analysis for the multidimensional heat equation.

Fig. 2 depicts the error versus the size of the one-dimensional space discretization, that in this example results h = 2π/(nn − 1),
when different multidimensional spaces are considered. A convergence rate of 4 (slope in the log–log representation) is noticed, two
times higher than the quadratic one characteristic of piecewise linear approximations.

Despite at present the code is not optimized, we have reported in Fig. 3 the CPU time associated to each solution. We can notice
that even in 100 dimensions and using 1000 degrees of freedom in each dimension (note that the size of the resulting model is of 105

when the separated representation is used instead of 10300 required in the framework of the finite element or any other grid method)
the CPU time remains in the order of 1000 s. A slope of two is noticed that seems independent of the space dimension. Thus, the
computing time increases in a power of two with respect to the number of nodes considered for the one-dimensional functional
approximations.

To check its dependence on the space dimension we depict in Fig. 4 the evolution of the CPU time versus the space dimension
for two meshes consisting of nn = 401 and nn = 1601 nodes (in each direction). The same slope of two is noticed proving that
the CPU time increases in a similar way with the space dimension and with the number of degrees of freedom considered for the
one-dimensional functional approximations.

Now, we are considering the associated transient model:

∂T

∂t
−�T = N

N∏
k=1

sin(xk) (53)

Fig. 3. Computing time against nodal density.
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Fig. 4. Computing time against space dimension.

defined in Ω = Ωx ×Ωt =] − π, π[N×]0, 1], with T (x∈ ∂Ωx, t) = 0 and T (x, t = 0) = 0, whose exact solution reads

T ex(x, t) = (1 − e−Nt)
N∏
k=1

sin(xk). (54)

The error E is quantified from the norm:

E =
∫
Ωt

∫
Ωx

(T num − T ex)2 dΩx dΩt

|Ω| . (55)

We solve the problem using a separated representation, with both the space dimension N and the number of nodes used in the space
interpolation nn fixed. In these solutions only the number of nodes involved in the time discretization is increased. The computed
error is reported in Fig. 5 which proves that the proposed strategy is second order in time (one order higher than the expected order).
We must notice that the usual stability conditions that apply in incremental solutions are no more concerned.

Finally we are summarizing the size of the problems to be solved as well as the memory needs associated with the application of
the proposed strategy.

In the solution procedure one needs solve J fully populated linear systems of size J (J being of the order of ten) as well as J
non-linear sparse systems of size N × nn within an iterative procedure. In the case of using an alternating directions scheme at

Fig. 5. Convergence analysis of time discretization.

11



each iteration of the non-linear solver N linear tri-diagonal systems of size nn must be solved. It can be noticed that the problem
complexity scales with N × nn. From the point of view of the memory needs, N × nn × J double precision numbers are needed to
represent the solution, that is, the J products of N functions each one represented from its nn nodal values.

4. Application to the time dependent 1D FENE dumbbell model

4.1. Model equations

We consider here the dimensionless form of the 1D FENE problem

∂Ψ

∂t
= − ∂

∂q

[(
Grad v q− 1

2
h(q)q

)
Ψ

]
+ 1

2

∂2Ψ

∂q2 , (56)

where Ψ = Ψ (x, q, t), v = v(x, t) and q is the dimensionless connector vector and the function h is given by

h(q) = 1

1 − q2/b
, (57)

where b is the dimensionless square of the maximum molecule stretch (see [3] for details). In addition, a normality condition is
associated to Eq. (56)∫

Ωq

Ψ (q, t) dq = 1, ∀t, (58)

where Ωq refers to the configuration space. Finally, the link between the statistical distribution of dumbbell configurations and the
polymer stress τp is provided, for the 1D molecular configuration considered in this section, by

τp = 〈h(q)q2〉 − 1 =
∫
Ψ (q)h(q)q2 dq− 1. (59)

Remark 3.

(i) Eq. (56) defines the time evolution of the molecule distribution function. An initial distribution must be prescribed. The
equilibrium state Ψ0 is defined for a null velocity gradient, being then solution of

0 = − ∂

∂q

[(
−1

2
h(q)q

)
Ψ0

]
+ 1

2

∂2Ψ0

∂q2 , (60)

given by

Ψ0(q) = h(q)−b/2∫
h(q)−b/2 dq

. (61)

Thus, a natural initial condition consists of Ψ (q, t = 0) = Ψ0(q).
(ii) The derivative ∂Ψ/∂t refers to the material derivative. In this paper, the proposed method will be illustrated in homogeneous

flows; the material derivative thus reduces to the partial derivative.

4.2. Problem discretization

In order to solve this problem using a separated representation, we can consider that the problem is defined in a 2D space, where
the first dimension corresponds to the molecular stretch q and the second one to the time t, leading toΨ (q, t) with (q, t) ∈Ωq ×Ωt =
Ω =] − √

b,
√
b[×]0, tmax]. The use of the variable separation strategy requires null boundary and initial conditions. The molecular

conformation distributionΨ verifies naturallyΨ (q = ±√
b, t) = 0, however the initial condition cannot be set to zero. If for example

we assume a system evolving from the equilibrium state, the initial condition is given by: Ψ (q, t = 0) = Ψ0(q). In order to define a
problem with homogeneous boundary and initial conditions, we introduce the following change of variable:

Ψ (q, t) = ψ(q, t) + Ψ0(q), (62)

where ψ(q = ±√
b, t) = 0 and ψ(q, t = 0) = 0.

12



Fig. 6. Difference between computed solution at t = tmax and analytical steady state solution: (top-left) after one enrichment; (top-right) two enrichments; (middle-left)
three enrichments; (middle-right) four enrichments; (bottom-left) five enrichments and (bottom-right) six enrichments.
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Fig. 7. 1D FENE model consisting of one spring (N = 1), We = 1 and b = 50.
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The introduction of Eq. (62) into the Fokker–Planck Eq. (56) results in:

∂ψ

∂t
+ f (q)ψ + e(q)

∂ψ

∂q
− 1

2

∂2ψ

∂q2 = −f (q)Ψ0 − e(q)
∂Ψ0

∂q
+ 1

2

∂2Ψ0

∂q2 , (63)

where

f (q) = ∂

∂q

(
Grad v q− 1

2
h(q)q

)
,

e(q) =
(

Grad v q− 1

2
h(q)q

)
.

The weighted residual formulation (before integrating by parts) is given by:

∫
Ω

ψ∗ ∂ψ
∂t

dΩ+
∫
Ω

ψ∗f (q)ψ dΩ+
∫
Ω

ψ∗e(q)
∂ψ

∂q
dΩ−

∫
Ω

1

2
ψ∗ ∂2ψ

∂q2 dΩ =
3∑
h=1

∫
Ω

ψ∗ah(q) dΩ, (64)

Fig. 8. 1D FENE model consisting of one spring (N = 1), We = 5 and b = 10.
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where functions ah(q) are defined by:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a1(q) = −Ψ0(q)f (q),

a2(q) = −∂Ψ0(q)

∂q
e(q),

a3(q) = 1

2

∂2Ψ0(q)

∂q2 .

(65)

Integrating by parts (with respect to q) the last term of the left-hand-side of Eq. (64), we obtain:

∫
Ω

ψ∗ ∂ψ
∂t

dΩ+
∫
Ω

ψ∗f (q)ψ dΩ+
∫
Ω

ψ∗e(q)
∂ψ

∂q
dΩ+

∫
Ω

1

2

∂ψ∗

∂q

∂ψ

∂q
dΩ =

3∑
h=1

∫
Ω

ψ∗ah(q) dΩ, (66)

where the nullity of ψ∗ on ∂Ωq (ψ∗(q = ±√
b, t)) has been accounted.

Due to both, the parabolic and convective character of Eq. (66), suitable stabilizations are required. For this purpose, we introduce
an extra-diffusion to stabilize the advection term by analogy with the usual SUPG procedure (that was also considered in [3])
as well as the time derivative upwinding previously described in Section 3.2.2 for accounting for the parabolic character of the
Fokker–Planck equation:

∫
Ω

ψ̃∗ ∂ψ
∂t

dΩ+
∫
Ω

ψ∗f (q)ψ dΩ+
∫
Ω

ψ∗e(q)
∂ψ

∂q
dΩ+

∫
Ω

βe(q)hq
2

∂ψ∗

∂q

∂ψ

∂q
dΩ+

∫
Ω

1

2

∂ψ∗

∂q

∂ψ

∂q
dΩ =

3∑
h=1

∫
Ω

ψ∗ah(q) dΩ,

(67)

Fig. 9. MBS model consisting of N = 1 spring, We = 0.4
√
N and b = 20/N.
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Fig. 10. MBS model consisting of N = 3 springs, We = 0.4
√
N and b = 20/N.
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where hq is the size of discretization in the configuration space and β is calculated from

β = coth(Pe) − 1

Pe
. (68)

Here the Peclet number defined by

Pe = e(q)hq. (69)

The solution is now searched in the form:

ψ(q, t) =
∞∑
j=1

αjFj(q)Gj(t), (70)

using the procedure described previously. The resulting non-linear system

U(R, S) +K(R, S)

[
R

S

]
= V (R, S), (71)

must be solved subject to the normality of Ψ (Eq. (58)), which implies∫
Ωq

ψ(q, t) dq = 0, ∀t, (72)

Fig. 11. MBS model consisting of N = 5 springs, We = 0.4
√
N and b = 20/N.
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Fig. 12. MBS model consisting of N = 7 springs, We = 0.4
√
N and b = 20/N.
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that is∫ q=√
b

q=−√
b

ψ(q, t) dq = 0, ∀t ∈ ]0, tmax], (73)

which is immediately verified by imposing∫ q=√
b

q=−√
b

R(q) dq = 0, (74)

using a Lagrange multiplier.

4.3. Extension to 1D multi-bead-spring models

The technique described above can be applied for simulating the Multi-Bead-Spring models of polymer chains. The MBS chain
consists of N + 1 beads connected by N springs. The bead serves as an interaction point with the solvent and the spring contains
the local stiffness information depending on local stretching (see [5] for more details). In the case of a 1D physical description
(all springs are located in a 1D physical space), the problem is described in a N-dimensional configuration space and time by the
following dimensionless Fokker–Planck equation:

∂Ψ

∂t
+ ∂

∂q
[(Grad v q− Ag(q))Ψ ] − 1

4

∂

∂q

(
A
∂Ψ

∂q

)
= 0. (75)

Fig. 13. MBS model consisting of N = 2 springs, validation of the 2D case.
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Here q is the configuration vector q = (q1, q 2, . . . , qN ) and the components of g are given by:

gk = 1
4 qk h(qk), (76)

where A is the matrix

Akl =

⎧⎪⎨
⎪⎩

2, if k = l

−1, if k = l± 1

0, otherwise

.

Eq. (75) can be solved using a separated representation.

5. Numerical results

The first example concerns a transient FENE problem consisting of a single dumbbell (N = 1) with We = du/dx = 1, b = 50
discretized by using 200 nodes in the configuration space and 40 in the time interval ]0, tmax = 20] (at tmax the steady state is almost
reached). Fig. 6 shows the influence of the enrichment on the computed solution at tmax.

Fig. 7 shows the involved functions allowing to reconstruct the distribution function Ψ after adding ψ0 to the solution ψ. The
polymer stress can then be calculated as a function of time using Eq. (59).

Fig. 14. Transient 2D FENE model. Space and time reduced approximation functions: (top-left) first space approximation function; (top-right) second space
approximation function; (bottom-left) third space approximation function and (bottom-right) time functions.
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In the second example (Fig. 8), we perform the simulation reported in [2]. The sharpness of the space evolution can be accurately
reproduced using the proposed separated representation. In this exampleWe = 5, b = 10, tmax = 1 and we use 600 and 20 elements
in the configuration and time coordinates, respectively.

Figs. 9–12 depict the solutions related to the multi-dumbbell models defined by We = 0.4
√
N, b = 20/N for N = 1, 3, 5

and 7, respectively. The case of N = 2 can be observed in Fig. 13 and compared to the steady state simulation done in
[3].

When richer physical spaces are considered, two difficulties are found: (i) the molecular conformation function is defined in a
bounded domain (not necessary a hyper-cube); and (ii) in the case of MBS (multi-bead-spring) models the advection terms related
to each spring cannot be separated as a product of terms involving each one of the physical space directions. In this case, a suitable
approximation consists of:

ψ(q
1
, . . . , q

S
, t) =

n∑
j=1

αj(F1j(q1
) × · · · × FNj(qS) ×Gj(t)), (77)

where S is the number of spring connectors. The approximation of each function F is built in a space of the same dimension than
that of the physical space, that is, in the ball of radius

√
b. These functions can be accurately represented using spherical coordinates

or rectangular coordinates combined with a penalty technique as considered in [3].
This technique was successfully applied in [3] for solving the steady state of multidimensional chain models involving both

orientation and extension in the conformation space. We must mention that the direct computation of the steady state is an issue
for stochastic simulation techniques. However, the deterministic technique based on a separated representation can be applied for
solving both transient and steady state problems.

Fig. 15. Transient 2D FENE model: (top-left) final distribution function before introducing the initial condition; (top-right) real final distribution function; (bottom-left)
shear stress evolution and (bottom-right) evolution of the first normal stress difference.
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The last example that we are considering in the present work concerns the transient 2D FENE model in a starting shear flows.
The problem is characterized by the following parameters We = 2 and b = 20. We consider the simple separated representation

ψ(q, t) =
J∑
j=1

αj(Fj(q) ×Gj(t)). (78)

FunctionsFj(q) are approximated on a coarse mesh consisting of 1600 nodes. The accurate approximation of the distribution function
only requires of 3 space-time functions Fj(q) ×Gj(t), allowing us to write:

ψ(q, t) =
3∑
j=1

αj(Fj(q) ×Gj(t)). (79)

Fig. 14 depicts the three 2D space functions Fj(q) as well as the three associated time functions.
Finally, the distribution function ψ can be reconstructed by multiplying each space function by its corresponding time function,

and then performing the sum of these products. The actual distribution function is then computed from Ψ = ψ + Ψ0, from which
one computes the moments defining the stresses.

Fig. 15 depicts the reconstructed distribution functions at the final timeψ(q, t = tmax) andΨ (q, t = tmax), as well as the evolution
of both the shear stress and the first normal stress difference.

6. Conclusions and perspectives

This paper proves the ability of the proposed strategy to compute transient solutions of multidimensional parabolic PDE’s with
homogeneous boundary conditions admitting a separated representation.

The novelty of the proposed technique justifies that many questions remain open: (i) the treatment of non-linear Fokker–Planck
equations; (ii) optimal basis enrichment; (iii) analysis of complex flows involving non-homogeneous solution in the physical space;
(iv) general initial conditions; (v) convergence analysis; (vi) stabilization of advection operators; . . ..

The first point concerning the treatment of non-linear Fokker–Planck equations does not involve major difficulties. One could
proceed by linearizing, and then apply the procedures proposed in [3] in the steady case, or the one just proposed for transient
simulations. In a recent work [12] the separated representation was applied for treating the non-linear Fokker–Planck models related
to advanced reptation models of polymer melts.

The second point concerns the optimal choice of the number of degrees of freedom to be used in the discretization of each
dimension. The use of a wavelet approximation, could offer an optimal refinement via the multiresolution properties of wavelets
(additional degrees of freedom are only required in regions where the wavelets coefficients are not small enough).

This procedure can be applied easily in complex flows simulations involving non-homogenous solutions in the physical space, by
considering a micro–macro approach in the context of a splitting solution of the FP equation (see review [10]). For this purpose we
consider that each node used in the discretization of the physical domain moves along its flow trajectory, allowing the integration of
the advection operator of the Fokker–Planck equation using the method of characteristics. Then, from the just computed distribution,
the conformation part of the FP equation is solved using the procedure described here during the time step used in the flow kinematics
solution. The final distribution allows the calculation of the extra-stress tensor at each nodal position that will be used in the flow
kinematics updating. The only remaining difficulty lies in the fact that nodes are assumed moving with the flow, which leads to highly
distorted elements if one uses the finite element method (FEM) for solving momentum and mass balance equations. One possibility
to circumvent this difficulty consists in using a meshless natural element method (NEM) [11] instead usual finite elements, because
the accuracy of the NEM does not require any geometrical quality of the nodal distribution. Other fixed mesh techniques can be
used, as the ones based on the characteristics-Galerkin scheme.

In the case of general initial conditions, we can compute a separated representation of that initial condition (as the sum of a
product of terms involving the different coordinates) using for example an alternating least squares technique [4].

At present the stabilization of the advection operators has been performed by considering a SUPG technique. The results obtained
in 2D or 3D simulations have been compared with the ones computed with more usual stabilized techniques in finite elements of
finite differences, proving the ability of the proposed stabilization for accounting dominant advection effects. However, a deeper
analysis remains to be performed.
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