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This chapter presents general features of the dynamics of chains of aligned
balls. The dissipation and the dispersion of the kinetic energy at an impact
are studied, independently of any impact law. A dispersion index and a dis-
sipation index are defined, which will be used all through the next chapters.
Optimization under constraints is used to analyze the variations of these
two indices, where the constraints are imposed by the physics (momentum
conservation, energetic consistency, kinematic consistency). A 3-ball chain is
analyzed in detail.

2.1 Dynamics of a Chain of Aligned Balls

Let us consider a chain of N balls, each of which is constrained to move on
a frictionless straight line in order to ensure colinear collisions between the
balls, as illustrated in Figure 2.1. Each ball has a radius Ri and is located at
position xi. The number of contacts s in the chain equals N − 1. The balls
in the chain are indexed as 1, 2, ..., N and the contacts are indexed as 1, 2,
..., N − 1. Contact i is between balls i and i+1. Initially, the first ball moves
with a transitional velocity Vs and strikes the other balls that are at rest and
barely touch each other. According to Definition 1.1 this is a multiple impact
problem where the striked surface has codimension N − 1. Note that, due to
central collisions between balls, there is no rotation of the balls during the
impacts. A question that arises here is how we can determine the velocities
of the balls after impact. Despite the fact that a chain of balls is apparently
simple, the answer to the above question is not simple at all. In the following,
we will discuss how the multiple impact problem in a chain of balls can be
modeled.
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Fig. 2.1 A chain of balls

2.1.1 Lagrangian Dynamics

Let us describe the state of a chain of balls by a generalized coordinate vector:
q = [x1, x2, ..., xN ]T . This system is subjected to N−1 unilateral constraints:

gi(q) = xi+1 − xi − (Ri+1 +Ri) ≥ 0, ∀i = 1, 2, ..., N − 1. (2.1)

These unilateral constraints define the feasible region Φ:

Φ = {q ∈ IRN |gi(q) ≥ 0, ∀i = 1, 2, ..., N − 1} (2.2)

within which the system has to evolve. The right velocityu+=[V +
1 ,V

+
2 , ...,V

+
N ]T

is constrained to belong to the convex tangent cone TΦ(q) to the feasible re-
gion Φ at point q:

TΦ(q) = {u ∈ IRN |∇T giu ≥ 0, i = 1, 2, ..., N − 1}. (2.3)

The dynamics of the chain of balls under consideration is described by the
Lagrangian equation and the complementarity condition between the gap
function gi(q) and the contact force λi:�

Mq̈(t) = F ext(t) +Wλ(t)
0 ≤ gi(q) ⊥ λi(t) ≥ 0, i = 1, 2, ..., N − 1,

(2.4)

where:

• M is the mass matrix defined as:

M =

�����
m1 0 · · · 0
0 m2 · · · 0
...

...
. . .

...
0 0 · · · mN

����	
N×N

(2.5)

with mi being the mass of ball i;
• F ext is the external force applied to the system;
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• W is the gradient of the constraints defined in (2.1):

W = [∇g1, ∇g2, ...,∇gN−1] =

����������

−1 0 0 · · · 0
1 −1 0 · · · 0

0 1 −1
...

...
. . .

. . . 0
0 0 0 1 −1
0 0 0 0 1

���������	
N×(N−1)

(2.6)

• λ = [λ1, λ2, ..., λN−1]
T with λi being the normal force at contact i.

Remark 2.1. Chains of aligned balls are therefore a very particular type of
unilaterally constrained systems, where gradients of constraints and the mass
matrix are constant. Some assumptions usually done in impact mechanics
(like a constant position during the impacts, implying constant mass matrix
and constraints gradients) are consequently automatically fulfilled.

2.1.2 Impact Equation

The equation describing the impact dynamics can be derived by integrating
(2.4) over the impact period:
 t+

t−
Mq̈(t)dt =


 t+

t−
F ext(t)dt+


 t+

t−
Wλ(t)dt, (2.7)

where t− and t+ are the instants at the beginning and at the end of the
impact process. During the impact process, the contact force between the
colliding bodies is impulsive, it evolves highly over a very brief interval of
time. This is the reason why it is usually adopted in impact mechanics that
the contact force is predominant in comparison with other forces. Therefore,
the first term in the right-hand side of (2.7) is negligible compared to the
second term, thus can be neglected in (2.7). Finally, the impact equation is
obtained as:

M (u+ − u−) = Wp (2.8)

where p = [p1, p2, ..., pN−1]
T with pi being the impulse at contact i:

pi =


 t+

t−
λi(t)dt,

and u− and u+ are the pre- and post-impact velocities: u− = q̇(t−) and
u+ = q̇(t+), respectively. It can be noted that there are N equations in
(2.8), while there are 2N − 1 unknowns V +

1 , V +
2 ,..., V +

N and p1, p2,..., pN−1.
Consequently, one needs to supply N − 1 independent relations in order to
determine uniquely the post-impact velocities V +

i . This is done by an impact
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law. In fact, an impact law relates the post-impact velocity u+ to the pre-
impact velocity u−, and to the geometrical and mechanical properties of the
chain. Obtaining an impact law is, in general, a hard task and needs to do
some hypotheses that are only justified for some particular cases. The post-
impact velocity given by any impact law must satisfy the three following
consistencies:

• Kinematic consistency implies that the relative post-impact velocities
at all the contacts must be positive or equal to zero:

γ+i = V +
i+1 − V +

i ≥ 0, ∀i = 1, 2, ..., N − 1; (2.9)

• Kinetic consistency requires that the impulses at all the contacts must
be positive (compressive character):

pi ≥ 0, ∀i = 1, 2, ..., N − 1; (2.10)

• Energetic consistency requires that the post-impact kinetic energy T+

must be smaller or equal to the pre-impact one T−:

T+ =
N�
i=1

mi(V
+
i )2

2
≤ T− =

N�
i=1

mi(V
−
i )2

2
. (2.11)

Remark 2.2 (Energy loss during impact). There are several ways to express
the kinetic energy loss at an impact. Since we deal with chains of balls the
simplest expression is the sum of the individual energies, like in (2.11). In
a more general setting, one may start from generalized velocities u and the
mass matrix as in (2.8). This allows one to derive equivalent expressions for
the kinetic energy loss at an impact instant t:

TL(t)
Δ
= T (t+)− T (t−)

=
1

2
(u+)TMu+ − 1

2
(u−)TMu−

=
1

2
(u+ − u−)TM(u+ + u−)

=
1

2
(u+ + u−)TWp

=
1

2
(Wp+Mu−)TM−1(Wp+Mu−)− 1

2
(u−)TMu−

=
1

2
pTW TM−1Wp+ pTW Tu−. (2.12)

The symmetric matrix W TM−1W is called a Delassus’ matrix. If the con-
straints are independent, it is a full-rank matrix. The last expressions in
(2.12) combined with the condition TL(t) ≤ 0 yields an ellipsoid for the ad-
missible impulse p, which is similar to that obtained for the collision between
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two bodies [30]. Let γ
Δ
= W Tu be the vector of normal velocities at the con-

tact/impact points. Using (2.8) to get p = (W TM−1W )−1(γ+ − γ−) and
performing some manipulations one obtains:

TL(t) =
1

2
(γ+ − γ−)T (W TM−1W )−1(γ+ − γ−)

+ (γ+ − γ−)T (W TM−1W )−1γ−

=
1

2
(γ+ + γ−)Tp. (2.13)

The last expression is sometimes named the Thomson and Tail formula.
Many collision rules relate γ+ and γ−, so that the expression in (2.13) is
useful to study their energetical consistency. For instance, suppose that γ+ =
−Eγ− where matrix E is called restitution matrix. Then (2.13) is equivalently
rewritten as:

TL(t) =
1

2
(γ−)T (E + I)T (W TM−1W )−1(E − I)γ−

=
1

2
(γ−)T ET (W TM−1W )−1Eγ− − 1

2
(γ−)T (W TM−1W )−1γ−

− 1

2
(γ−)TET (W TM−1W )−1γ− +

1

2
(γ−)T (W TM−1W )−1Eγ−

=
1

2
(γ−)T ET (W TM−1W )−1Eγ− − 1

2
(γ−)T (W TM−1W )−1γ−

=
1

2
(γ−)T [ET (W TM−1W )−1E − (W TM−1W )−1]γ−. (2.14)

Note that the last expression in (2.14) is obtained by using the symmetry of
the Delassus’ matrix, which gives:

(γ−)TET (W TM−1W )−1γ− = ((γ−)T ET (W TM−1W )−1γ−)T

= (γ−)T (W TM−1W )−1Eγ−.
(2.15)

These expressions can serve as a basis for the energetic consistency anal-
ysis. The last expression is the direct generalization of the single impact,
frictionless case (see for instance Equation (4.44) in [20]) to the multiple
impact case. It is clear that the energetical consistency will imply some
kind of smallness of the restitution matrix. However, the Delassus’ matrix
introduces some distortion compared to the single impact case in which
one concludes that the restitution coefficient must be less than or equal
to one. Actually, as noted in [6], even if E is a diagonal matrix with non-
negative entries ei, imposing 0 ≤ ei ≤ 1 is not sufficient to guarantee that
−ET (W TM−1W )−1E+(W TM−1W )−1 is positive semi definite. It is note-
worthy that the copositivity of this matrix is sufficient to guarantee that
TL ≤ 0 since γ− ≤ 0. Several criteria that guarantee kinetic energy loss
have been proposed in [21, 73, 133, 134]. For instance Propositions 7.1, 7.2
and 7.3 in [133] which characterize the positive definiteness of the product of
symmetric positive definite matrices, may be used in the first line of (2.14).
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2.1.3 Dissipation and Dispersion of Energy

The global energetic behavior of a chain after impact is described by the so-
called kinetic energy ratio: KER = T+/T−. The ratio KER is maximum
and equal to 1 when the system is conservative and is minimum when the
system is purely dissipative. To compute the minimum value of KER for a
chain of balls, we need to decompose the kinetic energy of the chain into part�T that is invariant during the impact process and part Trel of relative motion
as performed in [215]:

T =
1

2

m
V 2� �� ��T

+
1

2

N�
i=1

mi(Vi −
V )2� �� �
Trel

, (2.16)

where 
m =
�N

i=1mi and 
V is the velocity of the mass center of the chain:


V =
1
m N�

i=1

miVi =
1
m N�

i=1

miV
−
i , (2.17)

resulting from the conservation of linear momentum of the chain. One can
check that T in (2.16) is equal to

�N
i=1

1
2miV

2
i . When the chain is purely

dissipative, the kinetic energy of relative motion Trel is entirely dissipated.
As a result, the minimum value of KER is:

KERmin =
�T
T− =

1
m
��N

i=1miV
−
i

�2�N
i=1mi(V

−
i )2

. (2.18)

For the considered initial condition V −
1 = Vs, V

−
i = 0, ∀i = 2, 3, ..., N , we

obtain KERmin = m1/
m.
As mentioned previously, in addition to the principle of conservation of

momentum and the global energetic behavior, we need to know the disper-
sion effect of the chain, i.e. the way the kinetic energy is distributed in the
chain after impact. To describe the dispersion effect, we propose the following
dispersion measure that is similar to the coefficient of variation used in the
probability theory and statistics [86]:

CKE =
1

T
+

�
1

N

N�
i=1

(T+
i − T

+
)2, (2.19)

where T+
i is the post-impact kinetic energy of ball i (T+

i = mi(V
+
i )2/2), and

T
+
is the mean post-impact kinetic energy:

T
+
=

1

N

N�
i=1

T+
i . (2.20)
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According to (2.19), the higher the value of CKE is, the lower the dispersion
of energy is.

Minimum and Maximum Values of CKE

We will determine the minimum and the maximum values of CKE that a
given chain of balls can reach. We assume that the dissipative property of
the chain is unchanged. This means that the parameter KER is the same for
any possible impact outcome. For instance, when the chain is purely elastic,
any possible impact outcome must produce KER = 1. The minimum (resp.
maximum) value of CKE is obtained by solving the following minimization
(resp. maximization) problem:

minimize (maximize) CKE(V
+
1 , V +

2 , ..., V
+
N ), (2.21)

subjected to:�����������
h1 =

N�
i=1

miVi −m1Vs = 0

h2 =
N�
i=1

miV
2
i −KER(m1V

2
s ) = 0

fj = V +
j+1 − V +

j ≥ 0, ∀j = 1, 2, ..., N − 1.

The problem (2.21) is a nonlinear optimization problem subjected to two
equality constraints and N−1 inequality constraints. The post-impact veloc-
ities of the balls V +

1 , V +
2 ,..., V +

N are optimization variables. The two equality
constraints h1 = 0 and h2 = 0 in (2.21) result from the conservation of mo-
mentum and the unchanged global energetic behavior of the chain. The N−1
inequality constraints f1, f2,...,fN−1 correspond to the kinematic consistency
for the impact outcome. Note that KER is bounded by 1 as the upper bound
and KERmin given by (2.18) as the lower bound. When KER is constant,
the problem (2.21) can be transformed to the following problem:

minimize (maximize) F(z1, z2, ..., zN ) =
N�
i=1

m2
i,1z

4
i , (2.22)

subjected to:�����������
h1 =

N�
i=1

mi,1zi − 1 = 0

h2 =
N�
i=1

mi,1z
2
i −KER = 0

fj = zj+1 − zj ≤ 0, ∀j = 1, 2, ..., N − 1,
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where mi,1 = mi/m1, and zi is the ball velocity normalized by the incident
velocity Vs: zi = V +

i /Vs. One can note that the objective function in (2.22) is
convex and the set of feasible solutions defined by the constraints in (2.22) is
a non-convex compact set. Moreover, the objective function F(z1, z2, ..., zN)
is bounded. As a result, the problem (2.22) admits at least one solution.

Proposition 2.3. When the dissipation of the system tends to the maximum
value, i.e. KER tends to the minimum value KERmin given by (2.18), the fi-
nal velocities of the balls tend to the same value V +

i = Vs/
m, ∀i = 1, 2, ..., N .
This means that when KER = KERmin, any impact law satisfying the en-
ergetic behavior of the system produces the same outcome.

Proof: Let us rewrite the set of constraints in (2.22) as:�����������

N�
i=1

mi,1(zi − a) = 0

N�
i=1

mi,1(zi − a)2 = KER−KERmin

zj+1 − zj ≤ 0, ∀j = 1, 2, ..., N − 1,

(2.23)

where a is the velocity of the mass center of the chain normalized by Vs:
a = 
V /Vs = 1/
m. As can be seen in (2.23), when KER tends to its minimum
value KERmin the set of feasible solutions zi tends to the point zi = a, ∀i =
1, 2, ..., N . Therefore, V +

i tends to Vs/
m for any i = 1, 2, ..., N . �
The optimization problem (2.22) can be properly solved with the Interior
Point Method [24] implemented in the solver fmincon available in Matlab
or with the global optimization method with polynomials [130] implemented
in the solver Glotipoly [87]. We have solved the problem with these two
methods and have found that they give very close results. We obtain the
minimum and the maximum values CKE,min and CKE,max as functions of
the mass ratios mi,1, ∀i = 1, 2, ..., N and the kinetic energy ratio KER.

The optimization problem (2.21) can supply some useful information when
designing chains of balls for some engineering purposes, for instance, for
transmitting or absorbing efficiently the energy induced by shocks. The zero-
dispersion of energy is desirable in the first purpose, whereas the optimal
dispersion of energy is desirable in the second one. The first thing we should
check in the design is whether or not the mass distribution in the chain
allows us to reach the zero or optimal dispersion. To check this, we solve
the optimization problem (2.22) with the mass distribution under consider-
ation to obtain the maximum and minimum values CKE,min and CKE,max.
If CKE,min = 0, the designed chain might exhibit the optimal dispersion
of energy, and if CKE,max corresponds to the zero-dispersion of energy, the
designed chain might exhibit the zero-dispersion of energy. Note that these
conditions are only the necessary conditions to obtain the optimal dispersion
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and the zero-dispersion of energy. To obtain these propertyies, we need to
adjust other parameters of the chain (for example, the contact stiffness).

Let us now illustrate what has been discussed above with three different
chains of 7 balls: a tapered chain where the mass of the balls is progressively
decreased as mi = (1 − q)mi−1 with 0 ≤ q < 1 being the tapering factor;
an anti-tapered chain where the mass of balls is progressively increased as
mi = (1+ q)mi−1 with q > 0 being the anti-tapering factor; and a decorated
chain where the mass of balls is distributed as m1 = m3 = m5 = m7 = m
and m2 = m4 = m6 = αm with α > 0 being the decorating factor. Figure 2.2
shows CKE,min and CKE,max for the three considered chains with different
mass distributions. Note that for a chain of 7 elastic balls, the zero-dispersion
corresponds to CKE =

√
6 ≈ 2.45. It can be seen that it is possible to obtain

the zero-dispersion with the decorated chain for any value of α. However,
this is not possible for the tapered and the anti-tapered chains except when
q = 0 (a monodisperse chain). As a consequence, the tapered and anti-tapered
chains are not suitable for transmitting the energy induced by shocks. On the
contrary, the tapered chain might be suitable for absorbing shocks because
it is possible to obtain the optimal dispersion (CKE = 0) with this kind of
chain for some values of the tapering factor q (for example, q ≈ 0.4, 2.6 etc).
However, this is not the case for the anti-tapered and the decorated chains.

Remark 2.4. A chain of balls might exhibit the zero-dispersion phenomenon
when the last ball takes all the energy of the chain and the other balls stop
moving after impact. This phenomenon is also called dispersion-free in [89,
193]). In this case, the value of CKE is equal to

√
N − 1 where N is the

number of balls. In terms of wave propagation, in this situation, there is a
solitary wave traveling in the chain without any tail left. We will illustrate
such wave propagation in Chapter 6.

2.2 Impact Geometry of a 3-Ball Chain

A 3-ball chain may be considered as the simplest case of a granular chain
involving multiple impacts. For this kind of chains, Equation (2.8) can be
rewritten as: ���m1(V

+
1 − V −

1 ) = −p1
m2(V

+
2 − V −

2 ) = p1 − p2
m3(V

+
3 − V −

3 ) = p2.
(2.24)

Let γ+1 = V +
2 −V +

1 and γ+2 = V +
3 −V +

2 denote post-impact relative velocities
at the left and right contacts, respectively. Using the conservation of momen-
tum, one can always obtain the post-impact velocity of each ball from the
relative velocities at the two contact points as follows:
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CKE,min

Fig. 2.2 Maximum and minimum values of CKE for chains of 7 balls: (a) for a
tapered chain with different values of q, (b) an anti-tapered chain with different
values of q and (c) for a decorated chain with different values of α.

�����������
V +
1 =

m1V
−
1 +m2V

−
2 +m3V

−
3 − (m2 +m3)γ

+
1 −m3γ

+
2

m1 +m2 +m3

V +
2 =

m1V
−
1 +m2V

−
2 +m3V

−
3 +m1γ

+
1 −m3γ

+
2

m1 +m2 +m3

V +
3 =

m1V
−
1 +m2V

−
2 +m3V

−
3 +m1γ

+
1 + (m2 +m3)γ

+
2

m1 +m2 +m3
.

(2.25)

Consequently, we can represent the post-impact state of a 3-ball chain in
terms of post-impact relative velocities γ+1 and γ+2 .

At various places in this book, we will consider a quantity named kinetic
angle which is used to describe the coupling between unilateral constraints.
It is known to play a significant role in the dynamics of systems with unilat-
eral constraints. In particular, it has a strong influence on the continuity of
trajectories with respect to initial data [4,10,64,173]. A detailed definition of
the kinetic angle is given in Appendix A.1 (see (A.4)). For a 3-ball chain, the
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kinetic angle θ12 is related to mass ratiosm2/m1 andm2/m3 by the following
relation:

θ12 = arccos

�
1�

1 +
m2

m1

�
1 +

m2

m3

�
. (2.26)

As can be seen in (2.26), the kinetic angle θ12 <
π

2
for any m1, m2, m3. We

have
θij →

π

2
when

m2

m1
→ ∞ or

m2

m3
→ ∞,

and
θ12 → 0 when

m2

m1
→ 0 and

m2

m3
→ 0.

The last property means that if the middle ball is big enough with respect
to the two lateral balls, the kinetic angle θ12 is near to π/2. In this case,
the two unilateral constraints are orthorgonal (in the sense of the kinetic
metric) and the dynamics of the chain is completely decoupled because the
Delassus’ matrix (defined in Section 2.1.2) is diagonal (see more details in
Appendix A.1). Consequently, what happens at one contact does not affect
what happens at the other contact. Otherwise, the coupling between two
contacts in the chain should be taken into account.

Proposition 2.5. The impact dynamics in a 3-ball chain is equivalent to that
of a particle striking an acute angle if the angle between the two walls is equal
to the kinetic angle of the chain.

The proof can be found in Appendix A.1. In fact, the problem of a particle
striking a frictionless corner is a good example to study the behavior of a
system with several unilateral constraints near singularites (the corner of
the angle constitues a singularity). This problem has been analyzed in [101,
172, 173]. It has been shown that the trajectory of the particle is complex,
depending on several parameters: the angle between two walls, the incident
angle and the dissipative features at the contacts between particle and walls.
In particular, the trajectory may be discontinuous with respect to the initial
condition. As a consequence, one can expect that the multiple impact problem
in a 3-ball chain possesses all the properties mentioned above.

2.2.1 CKE,max and CKE,min

Let us now determine the maximum and minimum values CKE,max and
CKE,min of the dispersion measure for a 3-ball chain by solving the opti-
mization problem (2.21). From Proposition 2.3, one can obtain that when
KER tends to its minimum value, CKE must tend to the following value:

lim
KER→KERmin

CKE =

�
2(m2

1 +m2
2 +m2

3 −m1m2 −m1m3 −m2m3)
m .

(2.27)
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Figures 2.3 and 2.4 show respectively CKE,max and CKE,min versus m2,1

and m3,1 for KER = 1 and KER = 0.75. The right-panel of each figure
corresponds to a cut-off of the left-panel at the two planes m2,1 = 1 and
m2,1 = 3. It can be seen that CKE,max and CKE,min depend significantly
on the mass distribution and on the energetic behavior of the chain. The
highest value of CKE is

√
2 (1.4142, approximately), which corresponds to

the zero-dispersion of energy. For KER = 1 (for a conservative chain), the
zero-dispersion may be reached when the mass ratio m3,1 = 1, whatever
the mass ratio m2,1. More interestingly, a dissipative chain may also exhibit
the zero-dispersion. For instance a chain with KER = 0.75 may exhibit the
zero-dispersion when the mass ratio m3,1 ≈ 1.3, whatever the mass ratio
m2,1. As shown in Figure 2.4, the lowest value of CKE is 0, corresponding to
the outcome T+

1 = T+
2 = T+

3 = T+/3 (the three balls have the same post-
impact kinetic energy). In this case, the chain under consideration exhibits the
uniform dispersion of energy after the shock. This property is very desirable
when we want to design a chain of balls that is able to absorb efficiently the
energy induced by shocks. Note that one might obtain the uniform dispersion
of energy (CKE = 0) even with purely elastic chains (KER = 1) if the mass
of the balls is suitably distributed, for instance, if m2,1 = 3 and m3,1 = 1 (see
the right panel of Figure 2.4).

Figure 2.5 shows the relations of CKE,min and CKE,max to KER for a dec-
orated 3-ball chain (m1 = m3) with different values of m2/m1. It can be seen
that CKE,max increases, in general, withKER except for the casem2/m1 = 5
where a decrease in CKE,max for small values of KER is observed. CKE,min

may decrease when KER increases. The domain of admissible values of CKE

tends to be reduced when KER tends to KERmin. It should be noted that
obtaining CKE,min = 0) when changing the dissipative property (KER) is
possible for some but not all mass distributions. As can be seen in Figure
2.5, CKE,min = 0 when m2/m1 = 1 and KER = 1/3 (minimum value of
KER for a monodisperse 3-ball chain) or when m2/m1 = 5 and KER ≈ 0.6.
It is worth noting that the dissipation of energy (characterized by KER) is
independent of the dispersion of energy (characterized by CKE), however the
latter is somehow affected by the former.

As mentioned previously, information on the dispersion of energy of the
system is needed in addition to its global energetic behavior in order to
determine the impact outcome of a 3-ball chain. The following conjecture is
made on the dispersion of energy of the system in order to get an admissible
impact outcome without introducing any supplementary parameters. It may
be seen as an implicit formulation of impact laws through an optimization
problem.

Conjecture 2.6. Given a 3-ball chain with a fixed global energetic behavior,
the multiple impact occurs in this system in such a way that it maximizes
(or minimizes) the dispersion of energy.
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(a)

(b)

Fig. 2.3 Maximum value of CKE versus mass ratios m2/m1 and m3/m1 for two
values of KER: KER = 1 and KER = 0.75
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(a)

(b)

Fig. 2.4 Minimum value of CKE versus mass ratios m2/m1 and m3/m1 for two
values of KER: KER = 1 and KER = 0.75
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Fig. 2.5 Dependence of CKER,min and CKE,max on KER for different values of
m2/m1 while m1 = m3

Applying this conjecture to a monodisperse elastic 3-ball chain (KER = 1),
one can determine the impact outcome by minimizing (or maximizing) the
dispersion measure of CKE defined in (2.19). One gets either the outcome
V +
1 = −1/3Vs, V

+
2 = V +

3 = 2/3Vs that is the minimizer of CKE (CKE,min =√
2/3) or the outcome V +

1 = V +
2 = 0, V +

3 = Vs that is the maximizer
of CKE (CKE,max =

√
2). We will see later in Sections 3.1, 3.2 and 3.4

that the first outcome is also the solution given by impact models of type
”simultaneous collisions”, while the second is also given by models of type
“sequential collisions”. Clearly Conjecture 2.6 is, in general, not satisfied and
even contradicted by experiments.

In fact, the wave effect highly affects the dispersion behavior as can be ob-
served in two experiments on 3-ball monodisperse chains presented in [178],
which can be considered as benchmarks to analyze the multiple impact prob-
lem. They are described as follows:

• Experiment No 1: the balls are all made of a highly elastic steel. The
first ball strikes with a velocity Vs = 25 mm/s the two other stationary
balls that are in contact. After impact, the velocities of the balls are
V +
1 ≈ −0.0605Vs, V

+
2 ≈ 0.1049Vs, V

+
3 ≈ 0.9978Vs.

• Experiment No 2: this experiment is similar to the experiment No 1 except
that a thick coat of grease is applied on both contacts in order to dissipate
the energy of relative motion at the contact points by means of viscosity
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of the grease. In this case, the balls are stuck together and move with the
same velocity after impact, i.e. V +

1 = V +
2 = V +

3 = Vs/3.

We can see that the dispersion is very small in the first experiment: the kinetic
energy is almost entirely transmitted to the last ball. In this case, we obtain
CKE = 1.38 that is very close to the maximum value of

√
2. In fact, many

authors have shown that for a chain of identical elastic balls, a very little
but non zero dispersion of energy is always present after impact [90,100]. For
this kind of granular chain, the wave effect is so high that a soliton is formed
and propagates [164, 166], leading to a low value of the dispersion of energy.
In the second experiment, the wave is highly damped by the viscosity of the
grease so the kinetic energy is distributed uniformly through all the balls,
and we obtain the maximum dispersion effect (CKE = 0).

2.2.2 Characterization of the Impact Geometry

In the following, we will characterize the impact geometry for a 3-ball chain
using the kinetic energy ratio KER et the dispersion measure CKE . It should
be noted that, for a 3-ball chain, if an outcome satisfies the kinematic con-
sistency, it satisfies the kinetic consistency. Consequently, the kinematic and
energetic consistencies (2.9) and (2.11) define the admissible domain for the
final velocities of the balls. A point in the admissible domain is accessed from
the values of KER and CKE . Figure 2.6 shows the impact geometry for a
monodisperse 3-ball chain with the initial condition V −

1 = Vs, V
−
2 = V −

3 = 0.
The global energetic behavior is represented by isolines of KER, and the dis-
persion effect is represented by isolines of CKE . As a result, the isolines of
KER describe the impact intensity, and the isolines of CKE describe the
impact topology. The isolines of KER span from left to right with increasing
values from 1/3 to 1, while the isolines of KER span from bottom to top
with increasing values from 0 to

√
2.

There are three particular points on the outcome domain. The points A and
B correspond to the points A and B shown in Figure 1.2, at which the energy
is conserved during the impact (KER = 1). The point A corresponds to the
outcome V +

1 = V +
2 = 0, V +

3 = Vs so the dispersion of energy is zero at this
point (CKE takes its maximum value of

√
2 when KER = 1). Consequently,

the point A is called the dispersion-free point. On the other hand, the point
B corresponds to the outcome V +

1 = −Vs/3, V +
2 = V +

3 = 2Vs/3, hence the
dispersion of energy at this point is maximum for the elastic behavior (CKE

takes its minimum value of
√
2/3 when KER = 1) . It can be noted that, for

an elastic monodisperse 3-ball chain, the impact outcome spans the isoline of
KER = 1 between the extreme points A and B. The point O at the origin
corresponds to the outcome V +

1 = V +
2 = V +

3 = Vs/3 (the three balls are
stuck together after impact) so the dissipation and the dispersion of energy
at this point are maximum (CKE = 0 and KER = 1/3). This is the impact
outcome for a purely dissipative monodisperse 3-ball chain.
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For a 3-ball chain, one might observe three motion patterns of the balls
after impact. The motion pattern I corresponds to the case when the first ball
rebounds, while the two last balls move forward after impact. The motion
pattern II corresponds to the case when all the balls moves forward after the
impact. For the motion pattern III, the two first balls rebound backward,
while the last ball moves forward. It is easy to prove that, for a monodisperse
3-ball chain, there exist only the motion patterns I and II. As can be seen in
Figure 2.6, the whole admissible impact outcome domain for a monodisperse
3-ball chain can be subdivided into two regions corresponding to the motion
patterns I and II. On the whole, the motion pattern I is dominant when
the chain is highly elastic, i.e. KER > 0.5, while the motion pattern II
is dominant when the chain is highly dissipative. One can remark that a
highly elastic behavior can exhibit the pattern II when the dispersion effect
is low. The zero dispersion and dissipation point constitutes a limit between
the patterns I and II, while the maximum dissipation point belongs to the
pattern II.

The method of characterizing the impact geometry presented above is
similar to that introduced in [72, §5.5], in which the impact topology is char-
acterized by the impulse ratio p2/p1 (see also Figure 16.2 in [74]). It is worth
noting that this method is no longer valid for a chain of N ≥ 4 balls because
the two parameters KER and CKE are no longer sufficient to determine
uniquely the post-impact velocity of the balls.

Remark 2.7. KER and CKE isolines shown in Figure 2.6 will be used in
the sequel for several other similar figures. For the sake of simplicity of the
presentation, their associated values are displayed only in Figures 2.6 and
5.1.

After having described the geometry of impact, we are now going to address
another question: how can the impact outcome be determined for a given
monodisperse 3-ball chain? In other words, which point in the admissible
domain shown in Figure 2.6 corresponds to the chain under consideration?
An impact law is aimed at answering this question. In order to determine
the right impact outcome, an impact law should model well the energetic be-
haviour (parameter KER) and the wave effect (parameter CKE). Generally,
an impact law must possess the following properties [138]:

(1) The outcome given by the impact law must respect the kinematic, kinetic,
and energetic consistencies. Moreover, it must be able to span the whole
admissible domain of the outcome.

(2) The parameters considered in the impact law must possess clear physical
meanings. They should be related to geometrical and material character-
istics of the system. Moreover, they should be properly identified from
independent experiments.

(3) The outcome given by the impact must be close to the experimental
observation.
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Fig. 2.6 Impact geometry for a monodisperse chain of three balls with the initial
condition V −

1 = Vs, V
−
2 = V −

3 = 0. Moreau’s line shown in this figure will be
explained in Section 3.2.

(4) The impact law must be numerically tractable. In other words, it must
be solved by efficient numerical schemes.

Some of these statements may need to be refined. For instance, the notion
of closeness in item (3) is vague. Depending on the application, some results
may be considered as being close enough to experiments, or as being quite in-
accurate. Consider, for example, a monodisperse conservative chain of aligned
balls that is collided at one end by another identical ball. Classically, the last
ball of the chain will take about 98% of the kinetic energy. Any simplified
collision rule which assigns 100% of the energy to this last ball and neglects
the post-impact motion of the other balls, may be considered as good (if the
motion of the other balls after the impact does is not of interest), or bad
(if the dispersion of the energy within the chain is a crucial matter for the
application under consideration). See Section 4.2.9 for further arguments. As
mentioned previously, several impact laws have been proposed to solve the
multiple impact problem. In the next chapter, we will analyze in details some
of them for a 3-ball chain.
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