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Abstract. We describe, in the general setting of closed cone fields, the set of causal functions
which can be approximated by smooth Lyaounov. We derive several consequences on causality
theory.

Dans le contexte général des champs de cones fermés, on décrit l’ensemble des fonctions
causales qui peuvent être approchées par des fonctions de Lyapounov lisses. On en déduit
quelques conséquence en théorie de la causalité.

1. Definitions and Results
With the recent results [3] on Lyapounov functions and the stable relation of closed cone fields the
question has appeared whether the stable relation is the smallest closed and transitive relation
K+ containing the causal relation of the cone field. The question was answered positively under
the assumption of an empty stably recurrent set in [10] for Lorentzian metrics and in [13] for a
class of closed cone fields slightly more restricted than the one considered here. A counterexample
was given in [8], see Example 6.

The stable relation is equal to K+ if every causal function, i.e. continuous and monotone
along causal curves, is approximated uniformly on compact sets by Lyapounov functions. It is
known that K+ is generated by the causal functions [2, 7]. In this article we will introduce a
subclass of causal functions (special causal) which are approximated by Lyapounov functions.
Further we discuss the consequences for causality theory of closed cone fields.

We work on a Riemannian manifold M . A convex cone of the vector space E is a convex
subset C ⊂ E such that tx ∈ C for each t > 0 and x ∈ C. The convex cone C is called regular if
it is not empty and contained in an open half-space, or equivalently if there exists a linear form
p on E such that p · v > 0 for each v ∈ C. The full cone C = E will be called the singular cone.

Definition 1. We say the C ⊂ E is a closed cone if it is a convex cone which is either singular
or regular and if C ∪ {0} is a closed subset of E.

Note that the empty set is a closed cone. We call it degenerate.
A cone field C on the manifold M is a subset of the tangent bundle TM such that

C(x) := TxM ∩ C is a convex cone for each x.

Definition 2. We say that C ⊂ TM is a closed cone field if it is a cone field such that C ∪ T0M
(the zero section) is a closed subset of TM and such that C(x) is a closed cone for each x.



The domain of C is the set of non degenerate points. It is denoted by D(C). The domain of a
closed cone field is closed. A cone field is called non degenerate if all points are non degenerate,
i.e. if D(C) = M . The set of singular points of a closed cone field is closed.

For a closed cone field C, recall from [3] that the curve γ : I −→ M is C-causal (or just
causal) if it is locally Lipschitz and if the inclusion γ̇(t) ∈ C(γ(t)) ∪ {0} holds for almost all
t ∈ I. The strictly causal future J ++

C (x) of x is the set of points y ∈M such that there exists a
non constant causal curve γ : [0, T ] −→ M with T > 0 satisfying γ(0) = x and γ(T ) = y. The
causal future J +

C (x) of x is the set J +
C (x) = J ++

C (x) ∪ {x}. The causal past J −C (x) is the set
of points x′ ∈ M such that x ∈ J +

C (x′). More generally, for each subset A ⊂ M , we denote by
J ±C (A) := ∪x∈AJ ±C (x) the causal future and past of A. We have the inclusion J +

C (y) ⊂ J +
C (x)

if y ∈ J +
C (x).

Definition 3. The function f : M → R is said to be causal if it is continuous, and has the
property that f(y) > f(x) for each y ∈ J +(x). We denote by C the set of causal functions.

Given a causal function f , the point x is said to be neutral if it is a singular point of C or if
there exists y ∈ J +(x)− {x} such that f(y) = f(x). Otherwise, x is said to be strict.

We say that a ∈ R is a neutral value of f if there exists a neutral point x such that f(x) = a.
Otherwise, a is called a strict value.

We say that f is a special causal function if it is causal, and if the set of strict values of f
is dense in R. We denote by S the set of special causal functions. It is classical in the Conley
theory of dynamical systems to consider this kind of hypothesis. The terminology neutral values
is taken from [5].

We say that τ is a Lyapounov function if it is smooth and satisfies dτx · v > 0 for each regular
point x of τ and each v ∈ C(x). We denote by L the set of Lyapounov functions. We have

L ⊂ S ⊂ C.

The first inclusion following from:

Lemma 4. Each Lyapounov function τ is special causal. Moreover, the set of neutral points of
τ is contained in the set of critical points of τ .

Proof. If τ is a Lyapounov function and γ is a causal curve, then the function τ ◦γ is Lipschitz
and satisfies (τ ◦ γ)′(t) > 0 almost everywhere, hence it is non-decreasing. This implies that the
function τ is causal. If there exists t > 0 such that τ ◦ γ(t) = τ ◦ γ(0), then τ ◦ γ is constant on
[0, t], which implies that γ(0) is a critical point of τ . We deduce that the neutral points of τ are
necessarily critical points, hence that neutral values are critical values. By Sard’s Theorem, the
set of regular values of τ is dense, which implies that the set of strict values is dense.

We define the stably recurrent set R as the intersection of the sets of critical points of
Lyapounov functions. This set is studied in [3]. In the present setting, it is proved there that:

Proposition 5. If x ∈ R, then either x is a singular point of C, or there exists y ∈ J +(x)−{x}
such that τ(y) = τ(x) for each τ ∈ L. As a consequence

R =
⋂
τ∈L

neut(τ) =
⋂
τ∈L

crit(τ).

Moreover, there exists a Lyapounov function τ0 such that

R = neut(τ0) = crit(τ0).

Our main result is:



Theorem 1. For each function f ∈ S and each ε > 0, there exists a Lyapounov function τ ∈ L
such that |τ − f |(x) < ε for each x, and which is regular outside of R.

To our knowledge, this statement is new even in the classical Lorentzian setting. See however
[4] for results on smoothing causal functions.

The following example, taken from Minguzzi [8, Example 5.1], illustrates that the set S could
not be replaced by C in the above statement.

Example 6. We consider the manifold M = S1 × R, and the constant cone field C(θ, x) =
[0,∞)× [0,∞). The function f(θ, x) on M is causal if and only if it is of the form f(θ, x) = g(x)
for some non decreasing function g : R −→ R. For such a causal function, all the values in the
interval g(R) are neutral. As a consequence, the function f is special causal if and only if it is
constant.

Obviously, S, and hence L, is not dense in C in this example.

Corollary 7. R =
⋂
f∈S neut(f)

Proof. Since L ⊂ S, we have the inclusion
⋂
f∈S neut(f) ⊂ R by Proposition 5. Conversely,

consider x ∈ R. If x is a singular point of C, then it is a neutral point for each causal function.
Otherwise, there exists y ∈ J +(x) − {x} such that τ(y) = τ(x) for each τ ∈ L. The density of
L in S then implies that f(y) = f(x) for each special causal function f , hence x is neutral for f .

In general the set of neutral points of a causal function can be a strict subset of R. We recall
some definitions before presenting an example. We say that f is a time function if it is a causal
function without neutral points. Obviously, time functions are special causal. Note that the
existence of a time function with our definitions prevents the presence of singularities of C. We
say that τ is a temporal function if it is a Lyapounov function without critical points.

Example 8. Consider M = S1 × R2 with coordinates (θ, x, z). Equip M with the cone field

C(θ, x, z) := {(vθ, vx, vz) : vx > 0 and vθvx > z2v2θ + v2z}.

We claim that ⋂
f∈C

neut(f) = S1 × R× {0} 6= R = M.

Proof. Under the embedding (θ, x) 7→ (θ, x, 0) of S1 × R into M the cone field C pulls back
to the cone field considered in Example 6. The coordinate function x : M → R is a causal, but
not a temporal, function of (M, C). As seen in Example 6 the set of neutral points of every
causal function includes S1×R×{0}. Further the neutral points of the function x are precisely
S1 × R× {0}. Therefore we have⋂

f∈C
neut(f) = S1 × R× {0} ⊂ R.

In particular, all Lyapounov functions are critical, hence constant, on S1 × R × {0}. The
curves (θ(t), x(t), z(t)) = (θ0 + t, x0 + 2t + (t0 + t)3 − t30, t0 + t) and (θ(t), x(t), z(t)) =
(θ0 + t, x0 + 2t + (t − t0)

3 + t30, t0 − t) are causal. This implies that for every p ∈ M we
have

J ±C (p) ∩ (S1 × R× {0}) 6= ∅.

As a consequence, all Lyapounov functions are constant on M , hence R = M .



Corollary 9. There exists a time function if and only if the stably recurrent set is empty.
Moreover, each causal function f can be uniformly approximated by temporal functions τ .

If f is a Cauchy time function, then so is the temporal function τ (in this case, C is globally
hyperbolic in the sense of [3]).

Proof. The first claim follows directly from the definition and Proposition 5.
Let us next consider a causal function f . Since R is empty, there exists a time function g′.

The function g := ε arctan ◦g′ is a time function taking values in ]− ε, ε[. The function f + g is
then a time function, hence it belongs to S. By Theorem 1, there exists a temporal function τ
such that |τ − (f + g)| < ε, hence |τ − f | < 2ε.

If f and g are two time functions such that f − g is bounded, and if f is Cauchy, then so is g.
Indeed, for each inextendible causal curve γ, we have sup(f ◦ γ) = +∞, hence sup(g ◦ γ) = +∞
and inf(f ◦ γ) = −∞, hence inf(g ◦ γ) =∞.

Let us discuss the implications of our result in terms of causality relations. The stable (also
called Seifert) relation F+(x) is defined by

F+(x) := {y : τ(y) > τ(x) ∀τ ∈ L}

This relation can also be defined in terms of cone enlargements, see [3] for the present generality.
It is an obvious consequence of Theorem 1 that

F+(x) = {y : τ(y) > τ(x) ∀τ ∈ S}.

On the other hand, it is a general fact that

K+(x) = {y : τ(y) > τ(x) ∀τ ∈ C} ⊂ F+(x)

is the smallest transitive closed relation containing J +. This follows from the Auslander-Levin
Theorem, [2, 7], [1, Theorem 2], as was noticed in [11, Theorem 3].

In Example 6 we have K+(θ, x) = J +(θ, x) = S1×[x,∞) and F+(θ, x) = M for all (θ, x) ∈M .
This shows that equality does not hold in general between K+ and F+. In the case where R is
empty, however, we have by Corollary 9:

Proposition 10. If R is empty, K = F .

The equality K = F is proved in [10] in the classical Lorentzian setting, and very recently
[13, Theorem 85] under assumptions slightly stronger than the present ones.

Let us finally recover and slightly generalize some results of Minguzzi on the equivalence
between K-causality and stable causality. We say that the cone field is K-causal if K+(x) ∩
K−(x) = {x} for each x. K-causality implies the that for all x and all y ∈ J +(x) \ {x} there
exists f ∈ C with f(y) > f(x). Recall that the cone field is stably causal if R is empty. This
is equivalent to F-causality, that is to the property that F+(x) ∩ F−(x) = {x} for each x, as
follows from Proposition 5, see also [15, 6, 9, 3].

Proposition 11. The following properties are equivalent:

• The cone field C is stably causal.
• There exists a temporal function.
• There exists a time function.
• The cone field is K-causal.



Proof. We have already proved the equivalence of the three first points.
Since K+(x)∩K−(x) ⊂ F+(x)∩F−(x), any of the first three conditions implies the last point.
Conversely, let us consider the set C([0,1]) of causal functions taking values in [0, 1], endowed

with the topology of uniform convergence on compact sets. It is a separable metric space, as
a subset of the separable metric space of all continuous functions with the topology of uniform
convergence on compact sets. We consider a dense sequence fi ∈ C([0,1]) and f :=

∑
i>1 2−ifi,

which is an element of C. If the cone field is K-causal, then f is a time function. Indeed, if
y ∈ F+(x)− {x}, then fi(y) > fi(x) for each i, and there exists j such that fj(y) > fj(x). As a
consequence, we get that f(y) > f(x).

2. Proof of Theorem 1
We need more definitions from [3].

We say that E ⊂ TM is an open cone field if it is a cone field which is open as a subset of
TM . Then E(x) is an open cone for each x. We say that E is an open enlargement of C if it is
an open cone field containing C.

Given an open cone field E , we say that the curve γ : I −→M is E-timelike (or just timelike)
if it is piecewise smooth and if γ̇(t) ∈ E(γ(t)) for all t in I (at non smooth points, the inclusion
is required to hold for left and right differentials). The chronological future I+E (x) of x is the set
of points y ∈M such that there exists a non constant timelike curve γ : [0, T ] −→M satisfying
γ(0) = x and γ(T ) = y. The chronological past I−E (x) of x is the set of points x′ ∈ M such
that x ∈ I+E (x′). More generally, for each subset A ⊂ M , we denote by I±E (A) := ∪x∈AI±E (x)
the chronological future and past of A. The chronological future can also be defined using only
smooth timelike curves, see [3, Lemma 22].
Proposition 12. Let f be a special causal function, and let a ∈ R a strict value of f . Then for
each open interval ]a−, a+[3 a, there exists a Lyapounov function τ : M −→ [a−, a+] such that
τ(x) = a+ if f(x) > a+ and τ(x) = a− if f(x) 6 a− and all values in ]a−, a+[ are regular for τ .

Proof of Theorem 1 from Proposition 12: We fix a special causal function f and ε > 0.
For each k, there exists a Lyapounov function τk : M −→ [kε, (k + 1)ε] such that τk = (k + 1)ε
on {f > (k + 1)ε} and τk = kε on {f 6 kε}. The function τ which is equal to τk on the set
f−1([kε, (k + 1)ε]) for each k is a Lyapounov function, whose set of critical values is εZ, and
which satisfies |f − τ | < ε.

In order to control the critical set, we consider a Lyapounov function τ0 : M −→ [0, ε] which
is regular outside of R. Then τ + τ0 is regular outside of R and |f − (τ + τ0)| < 2ε.

Proof of Proposition 12: Let a ∈ R be a strict value of the special causal function
f : M → R. Then U := {f > a} is open with J ++(U) ⊂ U and ∂U consists only of regular
points of C. Especially there exists a neighborhood of ∂U consisting only of regular points of C
since the singular set of C is closed. Recall from [3] the definition of a trapping domain:
Definition 13. An open set A ⊂M is a trapping domain for the open cone field E if I+E (A) ⊂ A.
A is a trapping domain for the closed cone field C if it is a trapping domain for some open
enlargement E of C. We say that the domain is locally trapping at a point x ∈ ∂A if there exists
an open neighborhood U of x such that A ∩ U is a trapping domain for C|U .

We proved in [3, Lemma 35] that a domain is trapping if and only if it is locally trapping at
each point of its boundary.
Proposition 14. Let U be an open set such that J ++(Ū) ⊂ U and assume that ∂U consists
only of regular points of C. Further let Fi be a closed set contained in U , and let Fe be a closed
set disjoint from Ū . Then there exists a trapping domain A such that Fi ⊂ A and Fe is disjoint
from Ā.



Proof of Proposition 14: Set W := M \ Ū . For an open cone field E denote with EW the
open cone field which is equal to E on W and empty on Ū . We denote by ∂−I+EW (y) the part
of the boundary of I+EW (y) which is contained in W . Note that the open set I+EW (y) is locally
trapping at each point of ∂−I+EW (y) and I+EW (y) ⊂W .

Lemma 15. For each x ∈ ∂U , there exists yx ∈ W ∩ J −(x) and an enlargement Ex such that
Vx := I+ExW (yx) is bounded in M and disjoint from Fe.

Proof of Lemma 15: Let us fix x ∈ ∂U . We consider a bounded open neighborhood V of x
in M , which is disjoint from Fe and does not contain any singular point of C. We furthermore
assume that there exists a temporal function τ on V , which satisfies dτz ·v > 2|v|z for each z ∈ V
and v ∈ C(z). We will prove that there exists yx ∈ W ∩ J −(x) and an open enlargement Ex of
C such that I+ExW (yx) ⊂ V . Since V is bounded so is I+ExW (yx). Further I+ExW (yx) is disjoint from
Fe because V is.

We consider a nested sequence of open enlargements En with C ⊂ En ⊂ E and ∩nEn = C.
The existence of such a sequence is proved in [3, Lemma 20]. We set L = d(x, ∂V )/2 where d
denotes the distance with respect to the Riemannian metric.

We first prove the existence of a C-causal curve η : [−δ, 0], parametrized by arclength, such that
η(0) = x and η(t) ∈ W for each t ∈ [−δ, 0[. For this, we consider a sequence ηn : [−L, 0] −→ V
of En-timelike curves parametrized by arclength. At the limit (possibly along a subsequence),
we obtain a curve η̃ : [−L, 0] −→ V , which is C causal according to the limit curve Lemma [3,
Lemma 23].

Since ∩En = C, the curves ηn satisfy dτηn(t) · η̇n(t) > |η̇n(t)| = 1 for each t ∈ [−L, 0] when n
is large enough, hence τ ◦ ηn(−t) 6 τ ◦ ηn(0)− t for each t ∈ [0, L]. At the limit, we deduce that
the curve η̃ is not constant. We parametrize it by arclength and get η. Since J ++(Ū) ⊂ U and
η(0) 6∈ U , we obtain that η(t) ∈W for t < 0.

We now consider a sequence yn ∈ J −(x)∩W converging to x. These points can be taken on
the curve η. We claim that I+EnW (yn) is contained in V when n is large enough. If we assume the
contrary, there exists for each n large enough a smooth En-timelike curve γn : [0, L] −→ V ∩W
parametrized by arclength and starting at yn. As above, these curves converge uniformly to a
non constant limit γ : [0, L] −→ W which satisfies γ(0) = x. The fact that γ(L) belongs to
W = M \U is in contradiction with the hypothesis J ++(x) ⊂ U . Last W = M \U follows from
the assumption that a is astrict value of f .

In order to finish the proof of Proposition 12 we invoke two propositions from [3]:

Proposition 16. Let A be a trapping domain, let Fi be a closed set contained in A, let Fe be a
closed set disjoint from Ā, and let θ be a point in the boundary of A.

Then there exists a smooth (near D(C)) trapping domain A′ which contains Fi, whose boundary
contains θ, and whose closure is disjoint from Fe.

Proposition 17. Let A be smooth trapping domain, then there exists a (smooth) Lyapounov
function τ ′ : M −→ [−1, 1] such that A = {τ ′ > 0} and all values in ] − 1, 1[ are regular values
of A (hence ∂A = {τ ′ = 0}).

If Fi and Fe are closed sets contained in A and disjoint from Ā, respectively, we can moreover
impose that τ ′ = 1 on Fi and τ ′ = −1 on Fe.

Here we consider Fi := {f > a+} and Fe := {f 6 a−}. The claimed Lyapounov function τ is
defined as

τ :=
1

2
[(a+ − a−)τ ′ + (a+ + a−)].
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