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In this paper a Lagrangian formulation of the Natural Element Method (NEM) is proposed to solve shallow water inviscid flows. NEM is a particle-based method which revealed its capabilities in handling large distortion problems. Its main advantage is the interpolant character of its shape function and consequently the easiness of imposing Dirichlet boundary conditions. In this paper we use the NEM method in a collocation form and in a Lagrangian kinematic description. This formulation is found to be a finite volume methodology with flux computation on the Voronoï diagram of the standard triangular or quadrilateral meshes. The Shallow-Water equations are used as the mathematical model. Besides the Lagrangian behavior of the flow which is difficult to capture, these equations have discontinuous solutions. Thus, stabilization issues have been considered. Some inviscid bidimensional flows are used as preliminary benchmark tests. This kind of flows is similar to that of metal casting. Good results were found which promise an interesting future for this method in more complicated applications.

INTRODUCTION

The mathematical modelling of free surface flows in shallow domains is often achieved using the Eulerian kinematic description. The conservation equations are then solved using for instance the Finite Elements or the Finite Volumes methods. Several problems can be faced mainly to capture discontinuities and to handle moving boundaries. In this paper, a particle method (Natural Element method), is investigated to explore its capability to simulate free surface flows in a totally Lagrangian formulation. In the following, we will introduce briefly the natural element interpolation. Then, the application of the NEM for solving the shallow-water equations. We use a collocation form approach to evaluate the integrals. Preliminary results are shown on test cases presenting flows with discontinuities.

THE CONSTRAINED NATURAL ELEMENT METHOD

In NEM, the shape functions (the trial and test functions for Galerkin formulation) are constructed using the notion of natural neighbors. The natural neighbor co-ordinates are based on the well-known geometric concepts such as the Voronoï diagram and the Delaunay tessellation [1]. Sibson [START_REF] Sibson | Interpreting multivariate data[END_REF] introduced the notion of natural neighbor interpolation for data approximation. Further works on the construction and properties were carried out Farin [START_REF] Farin | [END_REF] and others. Recently, a new type of interpolation (nonsibsonian) similar to that of Sibson but less costly, was introduced by Belikov et al [4]. In fact, the non-Sibsonian interpolant requires the computation of Lebesgue measures of order k -1 in ℜ k to compute the shape functions, while for Sibson interpolant, a computation of areas (in 2D) or volumes (in 3D) is necessary.

Voronoï diagram and Delaunay tessellation

The Voronoï (or Dirichlet) diagram is a unique geometric construct obtained from a set of distinct nodes in an Euclidian space of dimension k. Let S be a set of N distinct nodes of a narrow domain Ω: S = n 1 , n 2 , ..., n N . The Voronoï diagram associated to the set S is the sub-division of the domain into regions V (n I ) so that each point in V (n I ) is closest to the node n I than to any other node n J ∈ S (I = J). The region V (n I ) (first order Voronoï cell) of the node n I is the convex polygon (polyhedron):

V (n I ) = {x ∈ ℜ k : d(x, x I ) < d(x, x J )∀J = I} ( 1 
)
where k is the space dimension and d is a Lebesgue measure defined on Ω The dual of Voronoï diagram is the Delaunay tessellation. The Delaunay triangles are constructed connecting the nodes whose Voronoï cells have common boundaries. It is important to notice that the Voronoï diagram is unique whether the Delaunay tessellation is not.

Sibsonian interpolants

The definition of the first order Voronoï diagram was introduced by the equation (1). By the same way, we can extend this definition to a higher order K > 1. Then, for instance in 2D, we define the Voronoï diagram of second order as [START_REF] Sibson | Interpreting multivariate data[END_REF]:

V IJ = {x ∈ ℜ 2 : d(x, x I ) < d(x, x J ) < d(x, x K )∀K = I, J} (2) 
The second order Voronoï diagram is, then, the subdivision od the plane (or the space) into domains V IJ so that V IJ is the locus of all points that have I as the closest node and J as the second closest node.

If a point P is to be inserted to the Delaunay tessellation, the shape function of type natural neighbor associated to P is defined as the fraction of the area of the second order Voronoï cell (A I ) by the total area of the first order Voronoï cell (A) associated to P:

φ I (x) = A I (x) A(x) , A(x) = n ∑ J=1 A J (x) (3) 
For more details and exhaustive studies of all characteristics of the Sibson interpolation, we refere to references [START_REF] Cueto | archives of computational methods in Engineering[END_REF] and [START_REF] Yvonnet | [END_REF].

Non-Sibsonian or Laplace interpolation

Let S be a set of nodes to which is associated their Voronoï cells defined by the equation (1). If any point P with coordinates x ∈ ℜ 2 is introduced into the tessellation and if this point has n natural neighbors, then the Laplace shape function associated to the node I is [4], [7]:

φ I (x) = α I (x) ∑ n J=1 α J (x) , α J (x) = s J (x) h J (x) (4) 
where α J (x) is the Laplace weight function, s I (x) the length of the Voronoï edge associated to P and the node I and h I (x) is the Euclidian distance between points P and I. Thus, the test function based on an interpolation of type NEM is written as:

u h (x) = n ∑ I φ I (x)u I ( 5 
)
The derivative of the Laplace interpolation function is:

φ I, j (x) = α I, j (x) -φ I (x)α , j (x) α(x) (6) 
with α(x) = ∑ J α J (x). To overcome the difficulties related to handling non-convex domains, Yvonnet et al. [START_REF] Yvonnet | [END_REF] proposed an original solution based on the definition of the constrained Voronoï diagram. For more details about this definition of the constrained Voronoï diagram and consequently about the C-NEM, we refer to [START_REF] Yvonnet | [END_REF].

APPLICATION OF THE C-NEM TO FLOWS WITH SHOCKS

The shallow-water flows can be formulated by the use of the equations of St-Venant. These equations have discontinuous solutions (eg. shocks) and then need special handling which is known as stabilization. We refer to Ata et al. [8] for more details on this issue.

The inviscid shallow water equations in the non-conservative form when neglecting the bed slope and friction terms are given by:

Dh Dt + h∇.u = 0 (7) Du Dt + g∇h = 0 ( 8 
)
where h, u and g are, respectively, water height, depth-average velocity and gravity. D/Dt refers to the total derivative.

Mass conservation

While we use a Lagrangian formulation of the NEM, the mass is automatically conserved. In fact, the total mass of the fluid is divided into N particles, where N is the total nodes number. Each particle is affected to a node so that, in any time step, the mass (the volume for an incompressible medium) of each particle is conserved. The volume of a particle I is given by V I = A I h I where A I is the Voronoï cell area and h I is the averaged water depth on it. The new value of the depth h n+1 I at the time t n+1 = t n + δt is computed as following:

V n+1 I = h n+1 I A n+1 I = V n I = h n I A n I ⇔ h n+1 I = h n I A n I A n+1 I ( 9 
)
A n+1 I
is the area of Voronoï cell associated to the node I at the time t n+1 . A n+1 I is obtained after the time updating of the moving coordinates.

Momentum conservation

Using the divergence theorem and based on the idea of Chen et al. [9] in which these latter proposed a collocation finite difference schema of the NEM called "stabilized conforming nodal integration", we propose here an adaptation to the shallow water equations. Unlike Sukumar and Cueto use the terminology of finite difference, we prefer to use the terminology of finite volumes methods which consist on the use of averagedvalues of the flux on Voronoï diagram edges. For a node I located at x, the discrete nodal gradient can be approximated by [9]:

∂ u h ∂ x j = A I u h , j (x)dΩ A I = ∂ A I u h n j dΓ A I ( 10 
)
where u is the distribution to be derived, A I is the area and Γ is the boundary of the domain Ω. The Gauss's divergence theorem has been used in equation (10).

For the special case of a regular grid, we can approximate the integral using an average weighted-value of u h on each Voronoï edge [START_REF] Cueto | archives of computational methods in Engineering[END_REF]. The choice u h (x m ) = (u I + u J )/2 renders an exact result for a linear field u on a regular grid:

∂ u h ∂ x j = ∑ n J=1 (u I + u J )n J j s IJ 2A I , A I = 1 4 n ∑ J=1 s IJ h IJ (11)
where n J j is the j th component of the unit outward normal to the Voronoï edge common to nodes I and J and s IJ is its length. Applied to the shallow water problem, the flux term can be approximated by the pressure P = gh; and then equation (11) becomes

Du I Dt = - 1 2A I N ∑ J=1 (gh I + gh J )n J S IJ (12)
For an aim of stabilization, an artificial viscosity is introduced. For more details on the construction of the artificial viscosity we refer to [8]. The final form of momentum equation is given by:

Du I Dt = - 1 A I N ∑ J=1 (gh I + gh J ) + Π IJ n IJ s IJ (13)

NUMERICAL APPLICATIONS IN 2D

1. Case 1 -Rectangular channel: In this case, we achieved many simulations to see the h-effect and also the time step effect. The total number of nodes varied from 1000 to 30000 and the CFL number between 0.15 and 0.7. It was found that, a minimum number of 10000 nodes and a maximum CFL number of 0.5 are necessary to get a good precision. Figure (1) illustrates this case. 2. Case 2 -Channel with a varying section: The second case is a channel with a variable section. The variation is for now linear. Thus it could be a convergent or a divergent channel. The number of particles is about 10760 and the CFL max is less then 0.4. See figure (2). 3. Case 3 -Channel with a sudden section reduction: The third case, is a channel with a sudden reduction of the section. It will permit to deal with a more complicated geometry. The total number of nodes is 7590 and the CFL is limited to 0.3. This case is illustrated by figure [START_REF] Farin | [END_REF]. This case will be discussed deeply in further works. 
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 1 FIGURE 1. Water depth at t=30 s for a standard rectangular channel
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 23 FIGURE 2. Water depth at t=15s for a varying section channel