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Abstract. Concurrent separation logics (CSLs) have come of age, and
with age they have accumulated a great deal of complexity. Previous
work on the Iris logic attempted to reduce the complex logical mecha-
nisms of modern CSLs to two orthogonal concepts: partial commutative
monoids (PCMs) and invariants. However, the realization of these con-
cepts in Iris still bakes in several complex mechanisms—such as weakest
preconditions and mask-changing view shifts—as primitive notions.

In this paper, we take the Iris story to its (so to speak) logical conclu-
sion, applying the reductionist methodology of Iris to Iris itself. Specifi-
cally, we define a small, resourceful base logic, which distills the essence
of Iris: it comprises only the assertion layer of vanilla separation logic,
plus a handful of simple modalities. We then show how the much fancier
logical mechanisms of Iris—in particular, its entire program specification
layer—can be understood as merely derived forms in our base logic. This
approach helps to explain the meaning of Iris’s program specifications
at a much higher level of abstraction than was previously possible. We
also show that the step-indexed “later” modality of Iris is an essential
source of complexity, in that removing it leads to a logical inconsistency.
All our results are fully formalized in the Coq proof assistant.

1 Introduction

In his paper The Next 700 Separation Logics, Parkinson [26] observed that “sep-
aration logic has brought great advances in the world of verification. However,
there is a disturbing trend for each new library or concurrency primitive to re-
quire a new separation logic.” He argued that what is needed is a general logic
for concurrent reasoning, into which a variety of useful specifications can be en-
coded via the abstraction facilities of the logic. “By finding the right core logic,”
he wrote, “we can concentrate on the difficult problems.”

The logic he suggested as a potential candidate for such a core concurrency
logic was deny-guarantee [12]. Deny-guarantee was indeed groundbreaking in its
support for “fictional separation”—the idea that even if threads are concurrently
manipulating the same shared piece of physical state, one can view them as oper-
ating on logically disjoint pieces of it and use separation logic to reason modularly
about those pieces. It was, however, far from the last word on the subject. Rather,
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it spawned a new breed of logics with ever more powerful fictional-separation
mechanisms for reasoning modularly about interference [11,16,29,9,30,27]. Sev-
eral of these also incorporated support for impredicative invariants [28,18,17,4],
which are needed if one aims to verify code in languages with semantically cyclic
features (such as ML or Rust, which support higher-order state).

Although exciting, the progress in this area has come at a cost: as these new
separation logics become ever more expressive, each one accumulates increasingly
baroque and bespoke proof rules, which are primitive in the sense that their
soundness is established by direct appeal to the also baroque and bespoke model
of the logic. As a result, it is difficult to understand what program specifications
in these logics really mean, how they relate to one another, or whether they can
be soundly combined in one reasoning framework. In short, we feel, it is high
time to renew Parkinson’s quest for “the right core logic” of concurrency.

Toward this end, Jung et al. [18,17] recently developed Iris, a higher-order
concurrent separation logic with the goal of simplification and consolidation. The
key idea of Iris is that even the fanciest of the interference-control mechanisms in
recent concurrency logics can be expressed by a combination of two orthogonal
ingredients: partial commutative monoids (PCMs) and invariants. PCMs enable
the user of the logic to roll their own type of fictional (or “logical” or “ghost”)
state, and invariants serve to tie that fictional state to the underlying physical
state of the program. Using just these two mechanisms, Jung et al. showed how
to take complex primitive proof rules from prior logics and derive them within
Iris, leading to the slogan: “Monoids and invariants are all you need.”

Unfortunately, that slogan does not tell the whole story. Although monoids
and invariants do indeed constitute the two main conceptual elements of Iris—
and they are arguably “canonical” in their simplicity and universality—the re-
alization of these concepts in Iris involves a number of interacting logical mech-
anisms, some of which are simple and canonical, others not so much:

— Ownership assertions, [ 9177 for logical (ghost) state.

— Named invariant assertions, L, asserting that ¢ is the name of an invariant
that enforces that P holds of some piece of the shared state. Invariants in
Iris are impredicative, which means that L can be used anywhere where
normal assertions can be used, e.g., in invariants themselves.

— A necessity modality, O P, which asserts that P holds persistently, as op-
posed to an assertion describing exclusive ownership of some resource.

— A “later” modality, > P. To support impredicative higher-order quantifica-
tion and recursively defined assertions, the model of Iris employs the tech-
nique of step-indexing [2]. This is reflected in the logic in the form of > P,
which roughly asserts that P will be true after the next step of computation.

— Invariant masks, £, which are sets of invariant names, ¢. Masks are used to
track which invariants are enabled (i.e., currently satisfied by some piece of
shared state) at a given point in a program proof.

— Mask-changing view shifts, P €1=¢> Q. These describe a kind of logical
update operation, asserting (roughly) that, if the invariants in & hold, P
can be transformed to @, after which point the invariants in & hold. These
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view shifts are useful for expressing the temporary disabling and re-enabling
of invariants within the verification of an atomic step of computation.

— Weakest preconditions, wpg e {®}, which establish that e is safe to execute
assuming the invariants in € hold, and that if e computes to a value v, then
&(v) holds. Hoare triples are encodable in terms of weakest preconditions.

Associated with each of these logical mechanisms are a significant number of
primitive proof rules. For certain features, such as the [0 P modality, the rules
are mostly standard, and the model is very simple. In contrast, the primitive
proof rules for weakest preconditions and view shifts are non-standard, and the
model of these features is extremely involved, making the justification of the
primitive rules—not to mention the very meaning of Iris’s Hoare-style program
specifications—painfully difficult to understand or explain. Indeed, the previous
Iris papers [18,17] have avoided even attempting to present the formal model of
program specifications in any detail at all.

In the present paper, we rectify this situation by taking the Iris story to
its (so to speak) logical conclusion—that is, by applying the reductionist Iris
methodology to Iris itself! Specifically, we present a small, resourceful base logic,
which distills the essence—the minimal, primitive core—of Iris: it comprises only
the assertion layer of vanilla separation logic (i.e., including P x @ but not Hoare
triples) extended with O P, > P, and a simple, novel, monadic update modality,
B P. Using these basic mechanisms, the fancier mechanisms of mask-changing
view shifts and weakest preconditions—and their associated proof rules—can all
be derived within the logic. And by expressing the fancier mechanisms as derived
forms, we can now explain the meaning of Iris’s program specifications at a much
higher level of abstraction than was previously possible.

In §2, we begin by presenting from first principles the reduced base logic that
constitutes the primitive core of our new version of Iris (version 3.0). Then, in
83, we explain step-by-step how to encode weakest preconditions in the Iris 3.0
base logic. Next, in §4, we show how our base logic is sufficient to derive the
remaining mechanisms and proof rules of full Iris, including named invariants
and mask-changing view shifts.

On the negative side, there is one point of unfortunate complexity that Iris 3.0
inherits from earlier versions without simplification: the aforementioned “later”
modality, > P. The Iris rule for accessing an invariant L says that when we
gain control of the resource satisfying the invariant, we only learn > P, not P. It
has proven very difficult to explain to users of Iris the role of > here because it
boils down to “the model made me do it”: the > reflects a corresponding place
in the existing step-indexed model of Iris where the step-index is decreased to
ensure a well-founded construction. Moreover, > P is in general strictly weaker
than P, and experience working with Iris has shown that in certain cases this
weakness forces the user of the logic into painful workarounds. In §5, we show
that in the proof rule for accessing an invariant, the use of > (or something
like it) is in fact essential, because if > is removed from the rule, Iris becomes
inconsistent. This provides evidence that i is a kind of necessary evil.

Finally, in §6, we discuss related work, and in §7, we conclude.
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All results in this paper have been formalized in the Coq proof assistant [1].

2 The Iris 3.0 base logic

The goal of this section is to introduce the Iris 3.0 base logic, which is the core
logic that all of Iris rests on: all its program-logic mechanisms will be defined in
terms of just the primitive assertions of our base logic.

The Iris base logic is a higher-order logic with a couple of extensions, most
of which are standard. We will discuss each of these extensions in turn. The
primitive logical assertions are defined by the following grammar:

P,Q,R € Prop :=True |False |t =u | PANQ|PVQ|P=Q|Vx.P|3x. P
|P*Q| P —+Q|Own(a) | V() |OP| =P |pz. P|>P

Since the logic is higher-order, the full grammar of (multi-sorted) terms also
involves the usual connectives of the simply-typed lambda calculus. This is com-
mon practice; the full details are spelled out in the technical appendix [1].

The rules for the logical entailment? P @Q are displayed in Figure 1. Note
that P 4+ @ is shorthand for having both P+ Q and Q + P.

We omit the ordinary rules for intuitionistic higher-order logic with equality,
which are standard and displayed in the appendix [1]. The remaining connectives
and proof principles fall into two broad categories: those dealing with ownership
of resources (§2.1-§2.5) and those related to step-indexing (§2.6-§2.7).

2.1 Separation logic

The connectives * and — of bunched implications [25] make our base logic a
separation logic: they let us reason about ownership of resources. The key point
is that P * () describes ownership of a resource that can be separated into two
disjoint pieces, one satisfying P and one satisfying ). This is in contrast to PAQ,
which describes ownership of a resource satisfying both P and Q.

For example, consider the resources owned by different threads in a concur-
rent program. Because these threads operate concurrently, it is crucial that their
ownership is disjoint. As a consequence, separating conjunction is the natural
operator to combine the ownership of concurrent threads.

Together with separating conjunction, we have a second form of implication:
the magic wand P — Q. It describes ownership of “Q) minus P”, i.e., it describes
resources such that, if you (disjointly) add resources satisfying P, you obtain
resources satisfying Q.

2.2 Resource algebras

The purpose of the Own(a) connective is to assert ownership of the resource a.
Before we go on introducing this connective, we need to answer the following
question: what is a resource?

4 The full judgment is of the shape I' | P - Q, where I" assigns types to free variables.
However, since I" only plays a role in the rules for quantifiers, we omit it.
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Laws of (affine) bunched implications.

Truex P 4= P *-MONO —-INTRO —-ELIM
PxQ F QxP P =@ P F Q2 PxQFR P-Q =R
(PxQ)*R F Px(QxR) Prx Pyl Q1 Q2 PHQ =R P+xQFR

Laws for resources and validity.

OWN-OP OWN-UNIT OWN-CORE

Own(a) * Own(b) 4+ Own(a - b) True F Own(e) Own(a) - O Own(|al)
OWN-VALID VALID-OP VALID-ALWAYS
Own(a) - V(a) V(a-b) FV(a) V(a) FOV(a)

Laws for the basic update modality.

UPD-MONO
PrHQ UPD-INTRO UPD-TRANS UPD-FRAME
BPHBEQ PrpP El=Y = Q*xBEPFB(Qx*P)
UPD-UPDATE
a~ B

Own(a) - B3b € B.Own(b)

Laws for the always modality.

[J-MONO True = O True OPFOOP
PrQ O-ELIM OPAQFO(P+Q)  Va.OPFOVaP
OPFOQ OPFP OPAQFOP*Q Odz.PF3z.OP
Laws for the later modality.
D‘g?_Ng LOB Vz.>P >V, P >(P*xQ)I+->P*x>Q
—— (MP=P)FP >3z. P+ >False vV 3z. > P OsP—4->0OP
>PF>Q
Laws for timeless assertions.
>-TIMELESS >-OWN
> Pt > False V (> False = P) >Own(a) F 3b. Own(b) A>(a =b)

Fig. 1. Proof rules of the Iris 3.0 base logic.

The Iris base logic does not answer this question by fixing a particular set of
resources. Instead, the set of resources is kept general, and it is up to the user
of the logic to make a suitable choice. All the logic demands is that the set of
resources forms a unital resource algebra (uRA), as defined in Figure 2.

Resource algebras are similar to partial commutative monoids (PCMs), which
are often used to describe ownership in concurrent separation logics because:



6 Krebbers, Jung, Bizjak, Jourdan, Dreyer, Birkedal

A resource algebra (RA) is a tuple (M,V C M,|—|: M — M*,(-) : M x M — M)
satisfying:
Va,b,c.(a-b)-c=a-(b-c) Ya,b.a-b="5b-a
Va,b.(a-b) €V =>a€cV Va.la| € M = |a|-a=a
Va.|a| € M = ||a|| = |a| Va,b.lal e M ANa<b=|bl € M Ala| < b

where M'2Muw{l} with o -1L21.a"24d

axb&3ceMb=a-c

A

a~B2V ' eM.a-'eV=WeBb-c eV
a~b=2a~ {b}

A unital resource algebra (uRA) is a resource algebra M with an element ¢ satisfying:

eeV Voe M.e-a=a le| =€
Fig. 2. Resource algebras.

— Ownership of different threads can be composed using the - operator.

— Composition of ownership is associative and commutative, reflecting the as-
sociative and commutative semantics of parallel composition.

— Combinations of ownership that do not make sense are ruled out by partiality,
e.g., multiple threads claiming to have ownership of an exclusive resource.

However, there are some differences between RAs and PCMs:

1. Instead of partiality, RAs use walidity to rule out invalid combinations of
ownership. Specifically, there is a subset V of valid elements. As shown pre-
viously [17], this take on partiality is necessary when defining higher-order
ghost state, which we will need for modeling invariants in §4.3.

2. Instead of having one “unit” that acts as the identity for every element, RAs
have a partial function |—| assigning the (duplicable) core |a| to each element
a. The core of an RA is a strict generalization of the unit of a PCM: the core
can be different for different elements, and since the core is partial, there can
actually be elements of the RA for which there is no identity element.

Although the Iris base logic is parameterized by a uRA (that is, an RA with
a single, global unit), we do not demand that every RA have a unit because we
typically compose RAs from smaller parts. Requiring all of these “intermediate”
RAs to be unital would render many of our compositions impossible [17].

Let us now give some examples of RAs; more appear in §3.3 and §4.2.

Exclusive. Given a set X, the task of the ezclusive RA Ex(X) is to make sure
that one party exclusively owns a value z € X. (We are using a datatype-like
notation to declare the possible elements of EX(X).)

EX(X) £ ex(x: X) | 4 V£ {ex(z)|r € X} lex(z)] & L
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Composition is always undefined (using the invalid dummy element 4) to en-
sure that ownership is exclusive, i.e., exactly one party has full control over the
resource. This RA does not have a unit.

Finite partial function. Given a set of keys K and an RA M, the finite partial

function uRA K 00 AL is defined by lifting the core and the composition operator
pointwise, and by defining validity as the conjunction of pointwise validities. The
unit ¢ is defined to be the empty partial function §.

2.3 Resource ownership

Having completed the discussion of RAs, we now come back to the base logic and
its connective Own(a), which describes ownership of the RA element a. It forms
the “primitive” form of ownership in our logic, which can then be composed
into more interesting assertions using the previously described connectives. The
most important fact about ownership is that separating conjunction “reflects”
the composition operator of RAs into the logic (own-oP).

Besides the Own(a) connective, we have the primitive connective V(a), which
reflects validity of RA elements into the logic. Note that ownership is connected
to validity: the rule owN-vaLID says that only valid elements can be owned.

2.4 Resource updates

So far, resources have been static: the logic provides assertions to reason about
resources you own, the consequences of that ownership, and how ownership can
be disjointly separated. The (basic) update modality B P, however, lets you talk
about what you could own after performing an update to what you do own.
Updates to resources are called frame-preserving updates and can be per-
formed using the rule uppD-uPDATE. We can perform a frame-preserving update
a ~ B if for any resource (called a frame) a¢ such that a - af € V, there exists
a resource b € B such that b-as € V. If we think of those frames as being the
resources owned by other threads, then a frame-preserving update is guaranteed
not to invalidate the resources of concurrently-running threads. By doing only
frame-preserving updates, we know we will never “step on anybody else’s toes”.
Before discussing how frame-preserving updates are reflected into the logic,
we give some examples of frame-preserving updates. Since ownership in the ex-
clusive RA is exclusive, there is nobody whose assumptions could be invalidated
by changing the value of the resource. To that end, we have ex(z) ~» ex(y) for

any x and y. The updates for the finite partial functions K A0, A are as follows:

FPFN-UPDATE FPFN-ALLOC
a~y B a€eV K infinite
fliz=a] ~ {f[i:=b]|b € B} 0~ {[i:=a]|i € K}

The first rule witnesses pointwise lifting of updates on M. The second rule is
more interesting: it allows us to allocate a fresh slot in the finite partial function.
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This is always possible because only finitely many indices ¢ € K will be used at
any given point in time.

The update modality reflects frame-preserving updates into the logic, in the
sense that B P asserts ownership of resources that can be updated to resources
satisfying P. The rule upp-UPDATE witnesses this relationship, while the remain-
ing proof rules essentially say that B is a strong monad with respect to sepa-
rating conjunction [19,20].

This gives rise to an alternative interpretation of the basic update modality:
we can think of 2 P as a thunk that captures some resources in its environment
and that, when executed, will “return” resources satisfying P. The various proof
rules then let us perform additional reasoning on the result of the thunk (upp-
MONO), create a thunk that does nothing (UPD-INTRO), compose two thunks into
one (UrD-TRANS), and add resources to those captured by the thunk (UPD-FRAME).

2.5 The always modality

The intuition for the always modality O P is that P holds without asserting
any exclusive ownership. This is useful because an assumption [J P can be used
arbitrarily often, i.e., it cannot be “used up”. In particular, while P — @ is a
“linear implication” and can only be applied once, O(P — Q) can be applied
arbitrarily often. We use this in the encoding of Hoare triples in §3.2.

We call an assertion P persistent if proofs of P can never assert exclusive
ownership, which formally means it enjoys P - [0 P. As soon as either P or Q) is
persistent, their separating conjunction (P * () and normal conjunction (P A Q)
coincide, thus enabling one to use “normal” intuitionistic reasoning.

Under which circumstances is Own(a) persistent? RAs provide a flexible an-
swer to this: the core |a| defines the duplicable part of a, and hence Own(|a|) does
not assert any exclusive ownership, which is reflected into the logic using the rule
OWN-CORE. In §4.2, we will consider an example of an RA with a non-trivial core,
and we will make use of the fact that Own(|a|) is persistent.

2.6 The later modality and guarded fixed-points

Although RAs provide a powerful way to instantiate our logic with the user’s
custom type of resources, they have an inherent limitation: the user-chosen RA
must be defined a priori. But what if the user wants to define their resources in
terms of the assertions of the logic? In prior work [17], we called this phenomenon
higher-order ghost state, and showed how to incorporate it into the Iris 2.0 logic.
Iris 3.0 inherits higher-order ghost state from Iris 2.0 without change.

The challenge of supporting higher-order ghost state is that the user-chosen
RA depends on the type of propositions of our logic, which in turn depends
on the user-chosen RA. In Iris 2.0, we showed how to cut this circularity using
a novel algebraic structure called a CMRA (“camera”), which synthesizes the
features of an RA together with a step-indexed structure [2]. Since a proper
understanding of CMRAs is not needed in order to appreciate the contribution
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of the present paper, we refer the reader to the Iris 2.0 paper [17] for details, and
instead focus briefly here on how the presence of higher-order ghost state affects
our base logic. (We will see a concrete instance of higher-order ghost state in
§4.2, where we use it to encode impredicative invariants.)

The step-indexing aspect of CMRAs is internalized into the logic by adding
a new modality: the later modality, > P [23,3]. Intuitively, > P asserts that P
holds “at the next step-index” (or “one step later”). In the definition of weakest
preconditions in §3.3, we connect > to computation steps, allowing one to think
of > P as saying that P holds at the next step of computation.

Beyond higher-order ghost state, step-indexing allows us to include a fixed-
point operator px. P into the logic, which can be used to define recursive pred-
icates without any restriction on the variance of the recursive occurrences of x
in P. Instead, all recursive occurrences must be guarded: they have to appear
below a later modality . In §3, we will show how guarded recursion is used for
defining weakest preconditions. Moreover, as shown in [28], guarded recursion is
useful to define specifications for higher-order concurrent data structures.

A crucial proof rule for > is L6B, which facilitates proving properties about
fixed-points: we can essentially assume that the recursive occurrences are already
proven correct (as they are under a later). Note that many of the usual rules for
later, such as introduction (P t > P) and commutativity with other operators
(>(P A Q) 4->P A>Q) are derivable from the rules in Figure 1.

2.7 Timeless assertions

There are some occasions where we inevitably end up with hypotheses below a
later. An example is the Iris rule for accessing invariants (wp-1Nv in §4). Although
one can always introduce a later, one cannot just eliminate a later, so the later
may make certain reasoning steps impossible. However, as we will prove in §5,
it is crucial for logical consistency that the later is present in wp-1nv.

Still, for many assertions, their semantics is independent of step-indexing, so
adding a > in front of them does not really “change” anything. When accessing
an invariant containing such an assertion, we thus do not want the later to be
in the way. Ideally, for such assertions, we would like to have > P - P. However,
that does not work: indeed, at step-index 0, > P trivially holds and, consequently,
does not imply P. Instead, we say that an assertion P is timeless when > P - oP,
where the modality ¢ is defined by P £ PV False. We call this new ¢ modality
“except 0”: it states that the given assertion holds at all step-indices greater
than 0. Under this modality, we can strip away a later from a timeless assertion,
i.e., given a timeless P, to prove > P F o(Q), it is sufficient to prove P F <Q.

Using the rules for timeless assertions in Figure 1, we can prove that some
frequently occurring assertions are timeless. In particular, if a CMRA is dis-
crete—i.e., if it degenerates to a plain RA that ignores the step-indexing struc-
ture, as is the case for many types of resources—then equality, ownership and
validity of such resources are timeless. Furthermore, most of the connectives of
our logic (not including >) preserve timelessness.
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2.8 Consistency

Logical consistency is usually stated as True I/ False, i.e., from a closed context
one cannot prove a contradiction. However, when building a program logic within
our base logic, we wish to prove that the postconditions of our Hoare triples
actually represent program behavior (§4.6), so we need a stronger statement:

Theorem 2.1 (Soundness of first-order interpretation). Given a first-
order proposition ¢ (not involving ownership, higher-order quantification, nor
any of the modalities) and True - (B>)™ ¢, then the “standard” (meta-logic)
interpretation of ¢ holds. Here, (B>)" is notation for nesting B> n times.

The proposition ¢ should be a first-order predicate to ensure it can be used
both inside our logic and at the meta-level. Furthermore, the theorem makes
sure that even when reasoning below any combination of modalities, we cannot
prove a contradiction. Consistency, i.e., True I/ False, is a trivial consequence of
this theorem: just pick ¢ = False and n = 0.

Theorem 2.1 is proven by defining a suitable semantic domain of assertions,
interpreting all connectives into that domain, and proving soundness of all proof
rules. For further details, we refer the reader to [17,1].

3 Weakest preconditions

This section shows how to encode a program logic in the Iris base logic. Usu-
ally, program logics are centered around Hoare triples, but instead of directly
defining Hoare triples in the base logic, we first define the notion of a weakest
precondition. There are two reasons for defining Hoare triples in terms of the
weakest precondition connective: First, weakest preconditions are more primi-
tive and, as such, more natural to encode. Second, weakest preconditions are
more convenient for performing interactive proofs with Iris [21].

We will first give some intuition about weakest preconditions and how to work
with them. After that, we present the encoding of weakest preconditions in three
stages, gradually adding support for reasoning about state and concurrency. For
simplicity, we use a concrete programming language in this section. The version
including all features of Iris for an arbitrary language is given in §4.

3.1 Programming language

For the purpose of this example, we use a call-by-value A-calculus with references
and fork. The syntax and semantics are given in Figure 3.

Head-reduction (e,o) — (¢,0',€f) is defined on pairs (e, o) consisting of
an expression e and a shared heap o (a finite partial map from locations to
values). Moreover, € is a list of forked off expressions, which is used to define
the semantics of fork {e}. The head-reduction is lifted to a per-thread reduction
(e,0) = (¢/,0',€r) using evaluation contexts. We define an expression e to be
reducible in a shared heap o, and we note red(e, ), if it can make a thread-local
step. The thread-pool reduction (T,0) —, (I7,0') is an interleaving semantics
where the thread-pool T denotes the existing threads as a list of expressions.
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Syntaz: ve Valu= ()| 4] dze
e € Ezpr:=v|z|ei(e2) | fork {e} | ref(e) |le| el + ez
KeClz:=e|K(e) |v(K)|ref(K) |'K | K+ e|v+ K

Head reduction: Thread-local reduction:
((A\z.€)v,0) —n (e[v/a],0,¢€) (e,0) = (e, o', &)
(14,0) —=n (v,0,¢€) ifo(f) =v (Kle],0) = (K[}, o', &)
0+ w,0) =n (), 0[l:=w],e) ifo(l)=v Thread-pool semantics:
(ref(v),0) =n (L,o[l:=v],e) ifo(l)=1 (e;0) = (0", ;)
(fork {e},0) =n ((),0,€) (T1: € T2, 0) =i (Tri€’s T €y, 07)

Fig. 3. Lambda calculus with references and fork.

3.2 Proof rules

Before coming to the actual contribution of this section—which is the encoding
of weakest preconditions using our base logic in §3.3—we give some idea of how
to reason using weakest preconditions by discussing its proof rules. These proof
rules are inspired by [15], but presented in weakest precondition style.

Given a predicate @ : Val — Prop, called the postcondition, the connective
wp e {P} gives the weakest precondition under which all executions of e are safe,
and all return values v of e satisfy the postcondition @(v). For an execution to
be safe, we demand that it does not get stuck, which in the case of our language
means the program must never access invalid locations.

Figure 4 shows some rules of the wp e {®} connective. To reason about state,
we use the well-known points-to assertion £ — v, which states that we exclusively
own the location ¢, and that it currently stores value v. As part of defining
weakest preconditions, we will also have to define the points-to assertion.

As usual in a weakest precondition style system [10], the postcondition of the
conclusion of each rule involves an arbitrary predicate @. For example, imagine
we want to prove £ — v P+ wp (£ < w) {®}. The rule wr-sTorE tells us what
we have to show about @ for this to hold:

Pxl—wkd()

PELl—w—d()
b—svxPHL—= vxp(l— w — D())
= vx PEwp(f+ w){d}

—-INTRO
#-MONO, >-INTRO

WP-STORE

Here, we use *-MoNoO to show that we own the location ¢ — this should not be
surprising; in a separation logic, we have to demonstrate ownership of a location
to access it. Furthermore, using our remaining resources P we have to prove
£ — w — &(). It does not matter what @ says for values other than (), which
corresponds to the fact that the store expression terminates with ().

Notice the end-to-end effect of applying this little derivation: we had to show
that we own ¢ — v, and it got replaced in our context with ¢ — w. However, this
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WP-MONO WP-FRAME WP-VAL WP-BIND
V. P(v) F ¥ (v) Pxwpe{P} D(v) wpe{v.wp K[v]{®}}
wpe{P}+wpe{¥} wp e {P % &} wp v {P} wp K[e] {®}
WP-FORK WP-A WP-LOAD
>®() x>wp e {v. True} >wp e[v/z] {P} L= vx>(l— v - P(v))
wp fork {e} {P} wp (Az.e)v {P} wp £ {D}
WP-STORE WP-ALLOC
L= vxp(f— w = P()) (VL. £ — v = §({))
wp (£ w) {P} wp ref(v) {P}

Fig. 4. Rules for weakest preconditions.

was all expressed in the premise of wp-sTorE (and similarly for the other rules),
with the conclusion applying to an arbitrary postcondition . We could have
equivalently written the rule as £ — v — wp (£ « w) {¢ — w}, but applying rules
in such a style requires using the rules of framing (wr-rrRAME) and monotonicity
(wp-MonoO) for every instruction. We thus prefer the style of rules in Figure 4.

Hoare triples. Traditional Hoare triples can be defined in terms of weakest
preconditions as {P}e{®} = (P — wpe{®}). The [J modality ensures that
the triple asserts no exclusive ownership, and as such, can be used multiple times.

3.3 Definition of weakest preconditions

We now discuss how to define weakest preconditions using the Iris base logic,
proceeding in three stages of increasing complexity.

First stage. To get started, let us assume the program we want to verify makes
no use of fork or shared heap access. The idea of wp e {®@} is to ensure that given
any reduction (e,0) — - -+ — (en, 0y), either (e,,0,,) is reducible, or the program
terminated, i.e., e, is a value v for which we have @(v). The natural candidate
for encoding this is using the fixed-point operator pz. P of our logic. Consider
the following:

wpe{®} £ (e € ValAd(e)) (return value)
V(e ¢ Val AVo. red(e, o) (safety)
A > (Vea,09. (€,0) — (e2,02,€) —~ wpey{P}) (preservation) )
Weakest precondition is defined by case-distinction: either the program has al-
ready terminated (e is a value), in which case the postcondition should hold.

Alternatively, the program is not a value, in which case there are two require-
ments. First, for any possible heap o, the program should be reducible (called
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program safety). Second, if the program makes a step, then the weakest precon-
dition of the reduced program e must hold (called preservation).

Note that the recursive occurrence wp e; {®} appears under a >-modality, so
the above can indeed be defined using the fixed-point operator p. In some sense,
this “ties” the steps of the program to the step-indices implicit in the logic, by
adding another > for every program step.

So, how useful is this definition? The rules wpr-varL and wp-\ are almost
trivial, and using LO6B induction we can prove WP-MONO, WP-FRAME and WP-BIND.
We can thus reason about programs that do not fork or make use of the heap.

But unfortunately, this definition cannot be used to verify programs involving
heap accesses: the states o and oo are universally quantified and not related to
anything. The program must always be able to proceed under any heap, so we
cannot possibly prove the rules of the load, store and allocation constructs.

The usual way to proceed in constructing a separation logic is to define the
pre- and post-conditions as predicates over states, but that is not the direction
we take. After all, our base logic already has a notion of “resources that can be
updated”—i.e., a notion of state—built in to its model of assertions. Of course
we want to make use of this power in building our program logic.

Second stage: Adding state. We now consider programs that access the
shared heap but still do not fork. To use the resources provided by the Iris base
logic, we have to start by thinking about the right RA. An obvious candidate

would be to use Loc 22 EX(Val) (which is isomorphic to finite partial functions
with composition being disjoint union) and define ¢ — v as Own([¢:=ex(v)]).
However, that leaves us with a problem: how do we tie those resources to the
actual heap that the program executes on? We have to make sure that from
owning £ — v, we can actually deduce that ¢ is allocated in o.

To this end, we will actually have two heaps in our resources, both elements of

Loc I Ex(Val). The authoritative heap e o is managed by the weakest precon-
dition, and tied to the physical state occurring in the program reduction. There
will only ever be one authoritative heap resource, i.e., we want eo - e ¢’ to be
invalid. At the same time, the heap fragments oo will be owned by the program
itself and used to give meaning to £ — v. These fragments can be composed the
usual way (o c-00’ = o (cWo’)). Finally, we need to tie these two pieces together,
making sure that the fragments are always a “part” of the authoritative state:
if g - 00’ is valid, then ¢’ < o should hold.

This is called the authoritative RA, AUTH(Loc fin, EX(Val)) [18]. Before we
explain how to define the authoritative RA, let us see why it is useful in the
definition of weakest preconditions. The new definition is (changes are in red):

wpe{d} 2 (e € ValA 2d(e))
V(e ¢ ValAVo.Own(e o) — = red(e, o)
A > (Yeg,03. (€,0) = (e2,02,€) = = Own(eoy) xwp ez {P}))
£+ v 2 Own(o[l:=1])
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The difference from the first definition is that the second disjunct (the one cov-
ering the case of a program that can still reduce) requires proving safety and
preservation under the assumption that the authoritative heap e o matches the
physical one. Moreover, when the program makes a step to some new state o,
the proof must be able to produce a matching authoritative heap. Finally, the
basic update modality permits the proof to perform frame-preserving updates.

To see why this is useful, consider proving wp-LoAD, the weakest precondition
of 4. After picking the right disjunct and introducing all assumptions, we can
combine the assumptions made by the rule, £ — v, with the assumptions pro-
vided by the definition of weakest preconditions to obtain Own(e o -0 [¢:=v]). By
OWN-VALID, we learn that this RA element is valid, which (as discussed above)
implies [¢{:=v] < 0, so ¢(¢) = v. In other words, because the RA ties the author-
itative heap and the heap fragments together, and because weakest precondition
ties the authoritative heap and the physical heap used in program reduction
together, we can make a connection between £ — v and the physical heap.

Completing the proof of safety and progress now is straightforward. Since all
possible reductions of ! £ do not change the heap, we can produce the authorita-
tive heap e o2 by just “forwarding” the one we got earlier in the proof. In this
case, we did not even make use of the fact that we are allowed to perform frame-
preserving updates. This is, however, necessary to prove weakest preconditions
of operations that actually change the state (like allocation or storing), because
in these cases, the authoritative heap needs to be changed likewise.

Authoritative RA. To complete the definition, we need to define the author-
itative RA [18]. We can do so in general (i.e., the definition is not specific to
heaps), so assume we are given some uRA M and let:

AUTH(M) £ Ex(M)" x M
VA [(Lb)|be V}U{(ex(a),b) ‘a eVAb<a)}

(21,b1) - (x2,b2) = (w1 - T2, b2 - b)
|(2,b)|