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Skew Reed-Muller Codes

We extend the classical Reed-Muller codes by using non-commutative iterated skew polynomial rings instead of classical commutative polynomial rings. This involves the construction of iterated skew polynomial rings and the definition of the notion of points and evaluation at those points for iterated skew polynomials. Our approach is based on the notion of a left module Gröbner basis in iterated skew polynomial rings.

Introduction

Let A be a ring and θ an automorphism of A. A θ-derivation is a map δ : A → A such that δ(a + b) = δ(a) + δ(b) and δ(ab) = δ(a)b + θ(a)δ(b) for all a and b in A. In the following we denote by A θ ⊂ A the fixed field of θ and we will also use the notation a θ for θ(a) and a δ for δ(a).

Consider a ring A, an automorphism θ of A and a θ-derivation on A. On the set {a n X n + . . . + a 1 X + a 0 | a i ∈ A and n ∈ N} we consider the usual addition of polynomials and define a multiplication by the basic rule X a = θ(a) X + δ(a) for a ∈ F q and extend this rule to all elements of R by associativity and distributivity. This defines the skew polynomial ring A[X; θ, δ] (see [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF]). The classical commutative polynomial ring corresponds to A commutative, θ = id and δ : a → 0. By repeating this construction we obtain the iterated skew polynomial ring R = (• • • (A[X 1 ; θ 1 , δ 1 ]) . . .)[X ; θ , δ ] in variables over A, which we simply note R = A[X 1 ; θ 1 , δ 1 ][X 2 ; θ 2 , δ 2 ] . . . [X ; θ , δ ]. For a finite field F q and an automorphism θ ∈ Aut(F q ) the univariate skew polynomial ring F q [X; θ] is a left and right euclidean ring (see [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF]). Definition 1.1 A code C of length n ∈ N over a finite commutative ring A is a nonempty subset of A n . The elements of C are called codewords. The code C is a linear code if it is an A-submodule of A n . If A is a finite field F q , then a linear code of length n and dimension k is a k-dimensional subspace of F n q . The Hamming distance between two vectors of F n q is defined as the number of coordinates at which the two vectors differ. The minimal distance d of a k-dimensional linear code C ⊂ F n q is defined to be the minimum Hamming distance between two distinct codewords of C. In this case we say that C is a code with parameters [n, k, d] q .
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The Reed-Solomon codes over F q that we will now define are examples of algebraic codes, whose construction and properties result from the algebraic structure of the code. Reed-Solomon codes are constructed using evaluation of polynomials in F q [X]. In order to construct a Reed-Solomon code C ⊂ F n q with parameters [n, k, n -k + 1] q (where n ≤ q) we start with the k-dimensional space of polynomials

k-1 i=0 b i X i ∈ F q [X] of degree < k and n distinct elements α 1 , . . . , α n of F q . The encoding of the message (b 0 , b 1 . . . , b k-1 ) of length k corre- sponding to the polynomial f = k-1 i=0 b i is the vector (f (α 1 ), f (α 2 ), . . . , f (α n )) ∈ C ⊂ F n q .
The minimal distance of this code is known to be best possible and the algebraic structure of the code can be used to efficiently correct up to < n-k+1 2 transmission errors. Note that the length of a Reed-Solomon code is bounded by the size q of the alphabet F q .

There exist two generalizations of Reed-Solomon codes to skew polynomial rings:

1. In [START_REF] Boucher | Linear codes using skew polynomials with automorphisms and derivations[END_REF] the evaluation of a skew polynomial f [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF]). This allows for a direct generalization of Reed-Solomon codes using univariate skew polynomial rings.

∈ F q [X; θ] at a point b ∈ F q is defined as the remainder f (b) of a right division f = q(X -b) + f (b) of f by X -b in F q [X; θ] (cf.
2. Consider q = p m and θ : F q → F q ; y → y p the Frobenius morphism. The map ϕ :

F q [X; θ] → End(F q ), m i=0 a i X i → m i=0 a i θ i is a ring morphism. One can define the evaluation of a skew polynomial f ∈ F q [X; θ] at a point b ∈ F q as ϕ(f )(b)
, which corresponds to the evaluation of the linearized polynomial m i=0 a i X q i at b. This evaluation leads to "Gabidulin codes" [START_REF] Gabidulin | Theory of codes with maximum rank distance[END_REF].

In both generalizations of Reed-Solomon codes the length of the resulting code is smaller than the length for the corresponding Reed-Solomon codes in the commutative case. For Gabidulin codes this follows from the fact that the solution space of an operator m i=0 a i θ i is a vector space over F p , therefore the evaluation points need to be linearly independent over F p . This reduces the number of possible evaluation points, i.e. the length of the code. The vector space structure of the solution of an operator m i=0 a i θ i is also the reason why the notion of a rank distance is more appropriated than the notion of a Hamming distance, when dealing with Gabidulin codes. A future project will be to generalize the notion of rank distance for the codes presented in this paper.

Reed-Muller codes are based on the evaluation of multivariate polynomials. A polynomial f ∈ F q [X 1 , . . . , X ] of total degree s < q -1 contains k = +s s coefficients (b 0 , . . . , b k-1 ). In order to construct a Reed-Muller code C ⊂ F n q we choose n ≤ q points a i = (α i,1 , . . . , α i, ) ∈ F q . The encoding of the message (b

0 , b 1 . . . , b k-1 ) of length k corresponding to the polynomial f ∈ F q [X 1 , . . . , X ] is the vector (f (a 1 ), f (a 2 ), . . . , f (a n )) ∈ C ⊂ F n q .
Reed-Muller codes, unlike Reed-Solomon codes, are not optimal with respect to the minimal distance. However, the maximal length of the code is n = q , so that the alphabet size q can be exponentially smaller than the length of the code.

The paper is organized in the following way: In the first section we give some constructions of iterated skew polynomial rings. We then give a definition for an evaluation of a multivariate skew polynomial using left module Gröbner basis computations. In the third section we define skew Reed-Muller codes and provide some examples. In Section 4, we extend the notion of skew Reed-Muller code to skew polynomial rings over chain rings.

Iterated skew polynomial rings

The construction of iterated skew polynomial rings is a difficult problem because little is known about the automorphism ring and the derivations of

R = (• • • (A[X 1 ; θ 1 , δ 1 ]) . . .)[X ; θ , δ ].
Classical examples are quantum Weyl algebras where the ground ring A is central ([6], Section 2.3.3), iterated skew polynomial rings of derivation type ( [START_REF] Gr | Derivations and Iterated Skew Polynomial Rings[END_REF]) and iterated skew polynomial rings whose variables commute ( [START_REF] Chaussade | Codes correcteurs avec les polynômes tordus[END_REF]). None of those examples turned out to be sufficiently general. In this paper, our examples will be built using inner automorphisms and inner derivations.

Example 2.1 Consider a ring A and an invertible element

ν in A. Then θ A ν : A → A; a → ν -1 aν is an inner automorphism of A. The automorphism θ A ν is the identity on A if and only if ν is a central invertible element in A. Example 2.2 Consider a ring A, an automorphism θ ∈ Aut(A) and an element β ∈ A. The map δ A,θ β : A → A; a → βa -a θ β is an inner θ-derivation on A.
It is well known that skew polynomial rings that differ by inner derivations or inner automorphisms are isomorphic (see [START_REF] Abramov | Univariate Ore polynomial rings in computer algebra[END_REF]), which explains why rings that differ by inner derivations or inner automorphisms will often lead to equivalent codes. A more general family of skew polynomial rings would probably lead to better codes.

Example 2.3 Consider F 4 = {0, 1, α, α 2 }, θ 1 : F 4 → F 4 ; y → y 2 the Frobenius automorphisms. We give an example of in iterated skew polynomial ring over F 4 constructed using inner automorphisms and inner derivations. The parameters used are random but meet Definition 3.2 allowing to later compute a Gröbner basis over this ring.

In the ring

R 1 = F 4 [X 1 ; θ, δ F4,θ 1
] we have the commutation relation

X 1 α = θ(α)X 1 + δ F4,θ 1 (α) = α 2 X 1 + (1 • α -θ(α) • 1) = α 2 X 1 + 1.

In the ring

R 2 = R 1 [X 2 ; θ R1 α , δ R1,θ R 1 α X1+α ] we have the above commutation relation X 1 α = α 2 X 1 + 1 together with X 2 α = θ R1 α (α)X 2 + δ R1,θ R 1 α X1+α (α) = αX 2 + ((X 1 + α)α -α 2 (X 1 + α)) = αX 2 + X 1 + 1, X 2 X 1 = θ R1 α (X 1 )X 2 + δ R1,θ R 1 α X1+α (X 1 ) = α 2 X 1 αX 2 + (X 1 + α)α -α 2 X 1 α(X 1 + α)) = α 2 X 1 X 2 + αX 2 + αX 2 1 + αX 1 .
3. In the ring

R 3 = R 2 [X 3 ; θ R2 α , δ R2,θ R 2 α αX1
] we have the above commutation relations together with

X 3 α = θ R2 α (α)X 3 + δ R2,θ R 2 α αX1 (α) = αX 3 + αX 1 + α, X 3 X 1 = θ R2 α (X 1 )X 3 + δ R2,θ R 2 α αX1 (X 1 ) = α 2 X 1 X 3 + αX 3 , X 3 X 2 = θ R2 α (X 2 )X 3 + δ R2,θ R 2 α αX1 (X 2 ) = X 2 X 3 + (αX 1 + α)X 3 + (α 2 X 1 + α 2 )X 2 + α 2 X 2 1 + α 2 X 1 .
3 Left ideal Gröbner bases and skew Reed-Muller codes

In order to generalize Reed-Muller codes we need to define the evaluation of an element of an iterated skew polynomial ring. The evaluation of a classical polynomial f ∈ F q [X 1 , . . . , X ] at the point (α 1 , . . . , α ) can be seen as the remainder of successive divisions of f by X 1 -α 1 , . . . , X -α , i.e.:

f = q 1 (X 1 -α 1 ) + . . . + q (X -α ) + f (α 1 , . . . , α ).
The result is independent of the order of the division, which corresponds to the fact that {X 1 -α 1 , . . . , X -α } is a Gröbner basis for the ideal generated by this set. We refer to [START_REF] Adams | An Introduction to Gröbner Bases[END_REF] for the definition of a Gröbner basis and a reduced Gröbner basis.

There exist several generalizations of the notion of Gröbner basis to various types of iterated skew polynomial rings in the literature [START_REF] Zhao | A signature-based algorithm for computing Gröbner-Shirshov bases in skew solvable polynomial rings[END_REF][START_REF] Zhang | Algorithms for Noncommutative Differential Operators[END_REF].

We refer to [START_REF] Zhao | A signature-based algorithm for computing Gröbner-Shirshov bases in skew solvable polynomial rings[END_REF] for the classical definition of a monomial ordering < on N m . Classically a monomial ordering induces an ordering ≺ on the set of monomials

M = {X α = X α1 1 X α2 2 • • • X αm m | α i ∈ N} (note
that the variables need to be in a precise order when dealing with a non-commutative ring) via X α ≺ X β if and only if α < β. For any expression f = α∈N m c α X α where only finitely many constants c α are nonzero, the monomial X γ = max{X α |c α = 0} is the leading monomial of f and c α is the leading coefficient of f , denoted respectively by lm(f ) and lc(f ). Then the least common multiple of X α and X β is defined as lcm(X α , X β ) = X γ where γ i = max(α i , β i ). We will be interested in left ideals

I of skew polynomial rings R = A[X 1 ; θ 1 , δ 1 ][X 2 ; θ 2 , δ 2 ] . . . [X ; θ , δ ].
A Gröbner basis can be computed in a Poincaré-Birkhoff-Witt extension (PBW) (see also [START_REF] Zhao | A signature-based algorithm for computing Gröbner-Shirshov bases in skew solvable polynomial rings[END_REF], Definition 1.2): Definition 3.1 (see [START_REF] Zhang | Algorithms for Noncommutative Differential Operators[END_REF], Definition 3.2.1) Let A and B be two associative rings with

A ⊂ B. The ring B is called a (finite) Poincaré-Birkhoff-Witt PBW extension (PBW extension) of A if there exist X 1 , X 2 , . . . , X in B such that 1. the monomials X i1 1 X i1 2 • • • X i form
a basis for B as a free left A-module, where i 1 , . . . , i are in N;

2. X i a -aX i = [X i , a] ∈ A for each i ∈ {1, . . . , n} and any a ∈ A;

3. X i X j -X j X i = [X i , X j ] ∈ A + AX 1 + • • • + AX for all i, j in {1, . . . , n}.
We write B = A X 1 , . . . , X .

In [START_REF] Zhao | A signature-based algorithm for computing Gröbner-Shirshov bases in skew solvable polynomial rings[END_REF][START_REF] Zhang | Algorithms for Noncommutative Differential Operators[END_REF] algorithms are given for computing Gröbner bases of a left ideal I in solvable polynomial algebras and skew solvable polynomial rings. We will work with the following slight generalization of the last definition

Definition 3.2 Let R = (• • • A[X 1 ; θ 1 , δ 1 
]) . . .)[X ; θ , δ ] be an iterative skew polynomial ring in n ∈ N. We call the ring left-lex-solvable, for the lexicographical order 1 ≺ X 1 ≺ . . . ≺ X , if 1. for any a ∈ A and any i ∈ {1, . . . , n}, X i a = bX i + p i,a where b ∈ A and p i,a ∈ R i-1 ;

2. for all j < i in {1, . . . , n}, X i X j = bX j X i + p i,j where b ∈ A and all monomials in p i,j are ≺ X i X j .

Suppose now that R is a left-lex-solvable iterated skew polynomial ring in the (non commuting) variables X 1 . . . , X m . We say that X α ∈ M is divisible by X β if X α = lm(X ω X β ) for some X ω ∈ M (note that X ω X β may no longer be a monomial, but that the non leading monomials of X ω X β are ≺ X α ).

We follow the definition of an S-polynomial given in ([10], Definition 2.5).

If X γ = lm(lcm(X α X β )), t f = X γ-α and t g = X γ-β , then SPoly(f, g) = t f f -c t g g, where c = lc(t f f ) lc(t g g) .
If the iterative skew polynomial ring R is left-lex-solvable, then, according to ([10], Section 2.2) the classical Buchberger algorithm, applied to the above Spolynomials using a lexicographic order X 1 ≺ . . . ≺ X , produces a left Gröbner basis of any left ideal I ⊂ . For a given Gröbner basis G = {g 1 , . . . , g s } of a left ideal I ⊂ R , the right reduction of f by G is the unique polynomial f G ∈ R in the decomposition f = s j=1 q j • g i + f G with the property that no leading monomial of any g i ∈ G divides any monomial of f G .

Definition 3.3 Let F be a field, B a left-finitely generated algebra over F and ≺ an admissible monomial ordering on B. We call a left Gröbner basis B I = {g 1 , . . . , g s } of a left ideal I ⊂ R an evaluation base if 1. I = (g 1 , . . . , g s ) = {1} (we exclude the "always zero" evaluation which is of no interest for Reed-Muller type codes).

2. the right reduction f B I of any f ∈ B by B I belongs to F . Proposition 3.4 Let F be a field, R a left-lex-solvable skew polynomial ring over F generated by X 1 , . . . , X and ≺ an admissible monomial ordering. If the ordering ≺ is a well ordering, then any reduced evaluation basis

B I is of the form {X 1 -α 1 , X 2 -α 2 , . . . , X -α }
where α i ∈ F .

Proof. For an evaluation basis B I each generator X i must reduce to α i ∈ F :

X i = ( gi∈B I h i g i ) + α i ∈ F . Therefore X i -α i = ( gi∈B I h i g i ) ∈ I.
We suppose that X 1 ≺ • • • ≺ X and proceed by induction on i:

1. Since ≺ is a well ordering and 1 ∈ B I , the monomial X 1 is minimal among the leading monomials in B I and therefore X 1 -α 1 must belong to the Gröbner basis B I .

2. Suppose that X 1 -α 1 , . . . X i -α i belongs to B I . A reduced evaluation basis B I cannot contain any other monomial divisible by X 1 , . . . , X i , and X i+1 is a minimal leading monomial among the other polynomials of B I . Suppose that X j ∈ {X 1 , . . . , X i } divides the monomial X i+1 , then X i+1 = M X j for some monomial M which must contain a variable in {X i+1 , . . . , X }.

Reordering the variables in M X j using (2) in Definition 3.2, we obtain a leading term containing X j and therefore a contradiction. As a result, X i+1 -α i+1 belongs to B I .

Therefore B I contains X 1 -α 1 , . . . , X -α . Since the basis is reduced it can only contain those polynomials, showing that for a lexicographic order a reduced Gröbner basis of an evaluation ideal is always of the form (X 1 -α 1 , X 2α 2 , . . . , X -α ).

Example 3.5 In Example 2.3 we constructed the iterate skew polynomial ring

R 3 = F 4 [X 1 ; θ, δ F4,θ 1 ][X 2 ; θ R1 α , δ R1,θ R 1 α X1+α ][X 3 ; θ R2 α , δ R2,θ R 2 α αX1
].

For this ring and the lexicographic order

X 3 > X 2 > X 1 only 28 ideals of the form (X 1 -α 1 , X 2 -α 2 , X 3 -α 3 ) are distinct from (1) = R 3 . For example (X 1 , X 2 , X 3 ) is a Gröbner basis, but for (X 1 , X 2 , X 3 -1) the Gröbner basis turns out to be (1) since (α 2 X 3 + α)X 1 + (αX 1 + 1)(X 3 -1) = 1.
Definition 3.6 F q Consider an iterated skew polynomial ring

R = F q [X 1 ; θ 1 , δ 1 ][X 2 ; θ 2 , δ 2 ] . . . [X ; θ , δ ]
over a finite field F q , and ≺ an admissible monomial ordering on R and a list B I1 , . . . , B In of Gröbner bases which are evaluation bases for R over F q . If an F q -subspace W of polynomials of R is of dimension k, then a skew Reed-Muller encoding of length n of f ∈ W is given by

f B I 1 , . . . , f B In ∈ F n q .
The resulting code is a linear code with parameters [n, k].

In order to verify that this gives an F q -linear code we need to show that

C = f B I 1 , . . . , f B In | f ∈ W is a subspace of F n q .
In order to see this we note that for all s in {1, . . . , }, for all f in R with f = ( gi∈B Is h i g i )+f

B Is , all f in R with f = ( gi∈B Is hi g i )+ f B Is and all λ in F q we have:

λf = ( gi∈B Is λh i g i ) + λ • f B Is (1) f + f = ( gi∈B Is ( hi + h i )g i ) + f B Is + f B Is . (2) 
2. The ring homomorphism θ 2 : A → A defined by a → a 2 and z → αz is an automorphism of order 2 of A. In the ring R 2,2 = A[X 1 ; θ][X 2 ], we have the commutation relation

X 1 α = θ 2 (α)X 1 = α 2 X 1 ; X 1 z = θ 2 (z)X 1 = αzX 1
and X 2 is a central element.

We follow the definition of an S-polynomial in ( [START_REF] Hashemi | Applying Buchberger's criteria for computing Gröbner bases over finite-chain rings[END_REF], Definition 3.4). Suppose now that R is a left-lex-solvable iterated polynomial ring in the (non commuting) variables X 1 . . . , X m over a finite commutative chain ring A. Recall that lcm(X α , X β ) = X γ where γ i = max(α i , β i ) and that X α ∈ M is divisible by X β if X α = lm(X ω X β ) for some X ω ∈ M (note that the product of monomial X ω X β may no longer be a monomial, but that the non leading monomials of X ω X β are X α in a left-lex-solvable iterated polynomial ring).

Adapting ([4], Definition 3.2) to the non-commutative situation we define that the polynomial g reduces the monomial µ

f ω m f X α if 1. lm(g) = X β with β < α; 2. if lc(X α-β g) = µ g ω mg with m g < m f .
The corresponding reduction step is the result of

µ f ω m f X α -µ f µ -1 g ω m f -mg X α-β g.
We say that a polynomial g reduces a polynomial f if g reduces lt(f ). Let f and g be two non zero polynomials whose leading monomials are X α and X β . If X γ = lm(lcm(X α , X β )), a f = lc(X γ-α f ) = µ f ω m f , b g = lc(X γ-β g) = µ g ω mg and m f,g = max{m f , m g }. We follow the definition of an S-polynomial of ( [START_REF] Hashemi | Applying Buchberger's criteria for computing Gröbner bases over finite-chain rings[END_REF], Definition 3.4):

SPoly(f, g) = µ -1 f ω m f,g -m f X γ-α f -µ g -1 ω m f,g -mg X γ-β g.
According to [START_REF] Hashemi | Applying Buchberger's criteria for computing Gröbner bases over finite-chain rings[END_REF] we also need the notion of an A-polynomial. Consider f with lc(f ) = µ a ω ma with m a > 0 (i.e. a non invertible zero divisor):

APoly(f ) = ω m-ma f
A basis of an ideal is a Gröbner basis if all S-polynomials between the elements of the basis and all A-polynomials of the elements of the basis reduce to zero.

Similarly to Z[X] where (X, 2) is a maximal ideal, the maximal ideals in an iterated skew polynomial ring are no longer all of the form (X 1 -α 1 , . . . , X -α ).

Example 4.2 Consider

A = F 4 [z]/(z 2 ) and R 2,2 = A[X 1 ; θ 2 ][X 2 ]
as defined in Example 4.1. With lex order X 2 > X 1 there are 88 evaluation points with Gröbner bases of the form (X 1 -α 1 , X 2 -α 2 ) and 12 additional evaluation points with Gröbner bases (X 1 -α 1 , X 2 -α 2 , z). For example the Gröbner basis of (X

1 -1, X 2 -z) is (X 1 -1, X 2 , z).
Using only the 88 evaluation points whose Gröbner bases are of the special form (X 1 -α 1 , X 2 -α 2 ), we obtain the following skew Reed-Muller codes (the indicated distance is the hamming distance):

1. Considering the evaluation of all |A| 3 polynomials of total degree 1, we obtain a linear code of length 88 over A which maps, using the mapping A → F 2 4 given by (α 1 + α 2 z) → (α With lex order X 2 > X 1 there are 112 evaluation points with Gröbner basis of the form (X 1 -α 1 , X 2 -α 2 ) and 12 additional evaluation points with Gröbner bases of the form (X 1 -α 1 , X 2 -α 2 , z). For example the points (X 1 -a, X 2 -a, z) or (X 1 -1, X 2 , z). Using only the 112 evaluation points with Gröbner bases of the form (X 1 -α 1 , X 2 -α 2 ), we obtain the following skew Reed-Muller codes (the indicated distance is the hamming distance):

1. Considering the evaluation of all |A| 3 polynomials of total degree 1, we obtain a linear code of length 112 over A which, under the mapping A → F 

Example 4 . 3

 43 Consider A = F 4 [z]/(z 2 ) and R 2,3 = A[X 1 ; θ 3 ][X 2 ] as defined in Example 4.1.

  2 , α 1 + α 2 ), to a [176, 6, 88] 4 code. 2. Considering the evaluation of all |A| 6 polynomials of total degree 2, we obtain a linear code of length 88 over A which maps to a [176, 12, 16] 4 code. 3. Considering the evaluation of all |A| 9 polynomials of total degree 3, we obtain a linear code of length 88 over A which maps to a [176, 18, 8] 4 code. Using all 96 evaluation points, including those with Gröbner bases of the form (X 1 -α 1 , X 2 -α 2 , z), we obtain the following skew Reed-Muller codes (the indicated distance is the hamming distance): 1. Considering the evaluation of all |A| 3 polynomials of total degree 1, we obtain a linear code of length 96 over A which maps, under the above mapping, to a [192, 6, 96] 4 code. 2. Considering the evaluation of all |A| 6 polynomials of total degree 2, we obtain a linear code of length 96 over A which maps to a [192, 12, 16] 4 code. 3. Considering the evaluation of all |A| 9 polynomials of total degree 3, we obtain a linear code of length 96 over A which maps to a [192, 18, 8] 4 code.
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 2 with (α 1 + α 2 z) → (α 2 , α 1 + α 2 ), map to a [224, 6, 96] 4 code. 2. Considering the evaluation of all |A| 6 polynomials of total degree 2, we obtain a linear code of length 112 over A which under the mapping A → F 2 4 with (α 1 + α 2 z) → (α 2 , α 1 + α 2 ), map to a [224, 12, 64] 4 code. 3. Considering the evaluation of all |A| 9 polynomials of total degree 3, we obtain a linear code of length 112 over A which under the mapping A → F 2

with (α 1 + α 2 z) → (α 2 , α 1 + α 2 ), map to a [224, 20, 32] 4 code.

The result now follows from the uniqueness of the reduction by a Gröbner basis. We note that, even if the evaluation map is a ring homomorphism

the fact that we obtain a linear code over F q relies only on the fact that the map R → F q ; f → f B Is is an F q -linear map.

Example 3.7 In Example 2.3 we constructed the iterate skew polynomial ring

].

While classical Reed-Muller codes are of length 64, for this ring and the lexicographic order X 3 > X 2 > X 1 we obtain 28 evaluation points with Gröbner bases of the form

1. Considering the vector space of all polynomials of degree 1 we obtain a [28, 4, 12] 4 .

2. Considering the vector space of all polynomials of degree 2 we obtain a [28, 10, 6] 4 .

3. Considering the vector space of all polynomials of degree 3 we obtain a [28, 17, 3] 4 .

Skew Reed-Muller codes over finite chain rings

A finite commutative ring with identity 1 = 0 is called a finite chain ring if its ideals are linearly ordered by inclusion. In order to define skew Reed-Muller codes over finite chain rings we need to define the notion of a Gröbner basis to finite chain rings. We do that by following [START_REF] Hashemi | Applying Buchberger's criteria for computing Gröbner bases over finite-chain rings[END_REF]. In a finite chain ring A the unique maximal ideal is generated by an element ω of nilpotency index m (i.e. m is the smallest integer such that ω m = 0) any element a can be written in the form µ a ω ma where 0 ≤ m a ≤ m -1 and µ a is a invertible element of A, unique modulo ω m-ma .

Example 4.1 The ring

) is a chain ring of order 16. The unique maximal ideal of A is (z) whose nilpotency index is m = 2. The invertible elements of A are

We can construct an iterated skew polynomial ring using inner automorphisms and inner derivations in the same way than in Example 2.3. Two simple examples that we will use later are 1. The ring homomorphism θ 3 : A → A defined by a → a and z → α 2 z is an automorphism of order 3 of A. In the ring R 2,3 = A[X 1 ; θ 3 ][X 2 ], we have the commutation relation

and X 2 is a central element.