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Skew Reed Muller codes

Willi Geiselmann and Felix Ulmer

Abstract. We extend the classical Reed Muller codes by using non commu-
tative iterated skew polynomial rings instead of classical commutative polyno-

mial rings. This involves the construction of iterated skew polynomial rings
and the definition of the notion of points and evaluation at those points for it-

erated skew polynomials. Our approach is based on the notion of a left module

Gröbner basis in iterated skew polynomial rings.

1. Introduction

Let A be a ring with an automorphism θ, then a θ-derivation is a map δ : A→ A
such that δ(a+ b) = δ(a) + δ(b) and δ(ab) = δ(a)b+ θ(a)δ(b) for all a and b in A.
In the following we denote Aθ ⊂ A the fixed field of θ and we will also use the
notation aθ for θ(a) and aδ for δ(a).

Consider a ring A, an automorphism θ of A and a θ-derivation on A. On the
set {anXn + . . .+ a1X + a0 | ai ∈ A and n ∈ N} we consider the usual addition of
polynomials and define a multiplication by the basic rule X a = θ(a)X + δ(a)
for a ∈ Fq and extend this rule to all elements of R by associativity and dis-
tributivity. This defines the skew polynomial ring A[X; θ, δ] (see [8]). The clas-
sical commutative polynomial ring corresponds to A commutative, θ = id and
δ : a 7→ 0. By repeating this construction we obtain the iterated skew polynomial
ring R` = (· · · (A[X1; θ1, δ1]) . . .)[X`; θ`, δ`] in ` variables over A, which we simply
note R` = A[X1; θ1, δ1][X2; θ2, δ2] . . . [X`; θ`, δ`].

For a finite field Fq and an automorphism θ ∈ Aut(Fq) the univariate skew
polynomial ring Fq[X; θ] is a left and right euclidean ring (see [8]). There exists
two generalizations of Reed-Solomon codes (Reed-Muller codes in one variable) to
skew polynomial rings:

(1) In [2] the evaluation of a skew polynomial f ∈ Fq[X; θ] at a point b ∈ Fq
is defined as the remainder f(b) of a right division f = q(X − b) + f(b) of
f by X − b in Fq[X; θ] (cf. [7]). This allows for a direct generalization of
Reed-Solomon codes using univariate skew polynomial ring.

(2) Consider q = pm and θ : Fq → Fq; y 7→ yp the Frobenius morphism. The
map ϕ : Fq[X; θ]→ End(Fq),

∑m
i=0 aiX

i 7→
∑m
i=0 aiθ

i is a ring morphism.
One can define the evaluation of a skew polynomial f ∈ Fq[X; θ] at a point
b ∈ Fq as ϕ(f)(b), which corresponds to the evaluation of the linearized
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polynomial
∑m
i=0 aiX

qi at b. This evaluation code leads to “Gabidulin
codes” [6].

In both skew Reed-Solomon codes the lengths of the resulting code is smaller than
the length for the corresponding Reed-Solomon codes in the commutative case. For
Gabidulin codes this follows from the fact that the solution space of an operator∑m
i=0 aiθ

i is a vector space over Fp, therefore the evaluation points need to be
linearly independent over Fp. This reduces the number of possible evaluation points,
i.e. the length of the code. The vector space structure of the solution of an operator∑m
i=0 aiθ

i is also the reason why the notion of a rank distance is more appropriated
than the notion of a hamming distance, when dealing with Gabidulin codes. A futur
projet will be to generalize the notion of rank distance for the codes presented in
this paper.

The paper is organized in the following way: In the first section we give some
constructions of iterated skew polynomial rings. We then give a definition for
an evaluation of a multivariate skew polynomial using left module Gröbner basis
computations. In the third section we define skew Reed-Muller codes and provide
some examples. In section 4 we extend the notion of skew Reed-Muller code to
skew polynomial rings over chain rings.

2. Iterated skew polynomial rings

The construction of iterated skew polynomial rings is a difficult problem be-
cause little is known on the automorphism ring and the derivations of

R` = (· · · (A[X1; θ1, δ1]) . . .)[X`; θ`, δ`].

Classical examples are quantum Weyl algebras where the ground ring A is central
([5], section 2.3.3), iterated skew polynomial rings of derivation type ([11]) and
iterated skew polynomial rings whose variables commute ([4]). None of those ex-
amples turned out to be sufficiently general. In this paper our examples will be
build using inner automorphisms and inner derivatives.

Example 2.1. Consider a ring A and an invertible element ν in A. Then
θAν : A → A; a 7→ ν−1aν is an inner automorphism of A. The automorphism θAν is
the identity on A if and only if ν is a central invertible element in A.

Example 2.2. Consider a ring A, an automorphism θ ∈ Aut(A) and an element

β ∈ A. The map δA,θβ : A→ A; a 7→ βa− aθβ is an inner θ-derivation on A.

It is well known that skew polynomial rings that differ by inner derivations or
inner automorphisms are isomorphic (see [1]), which explains why many different
rings will lead to equivalent codes. A more general family of skew polynomial rings
would probably lead to better codes.

Example 2.3. Consider F4 = {0, 1, α, α2}, θ1 : F4 → F4; y → y2 the Frobenius
automorphisms. We give an example of in iterated skew polynomial ring over F4

constructed using inner automorphisms and inner derivations. The parameters used
are random but meet the definition 3.2 allowing to later compute a Gröbner basis
over this ring.

(1) In the ring R1 = F4[X1; θ, δF4,θ
1 ] we have the commutation relation

X1α = θ(α)X1 + δF4,θ
1 (α) = α2X1 + (1 · α− θ(α) · 1) = α2X1 + 1.
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(2) In the ring R2 = R1[X2; θR1
α , δ

R1,θ
R1
α

X1+α
] we have the above commutation

relation X1α = α2X1 + 1 together with

X2α = θR1
α (α)X2 + δ

R1,θ
R1
α

X1+α
(α) = αX2 + ((X1 + α)α− α2(X1 + α))

= αX2 +X1 + 1

X2X1 = θR1
α (X1)X2 + δ

R1,θ
R1
α

X1+α
(X1)

= α2X1αX2 + (X1 + α)α− α2X1α(X1 + α))

= α2X1X2 + αX2 + αX2
1 + αX1

(3) In the ring R3 = R2[X3; θR2
α , δ

R2,θ
R2
α

αX1
] we have the above commutation

relations together with

X3α = θR2
α (α)X3 + δ

R2,θ
R2
α

αX1
(α) = αX3 + αX1 + α

X3X1 = θR2
α (X1)X3 + δ

R2,θ
R2
α

αX1
(X1) = α2X1X3 + αX3

X3X2 = θR2
α (X2)X3 + δ

R2,θ
R2
α

αX1
(X2)

= X2X3 + (αX1 + α)X3 + (α2X1 + α2)X2 + α2X2
1 + α2X1

3. Left ideal Gröbner bases and skew Reed-Muller codes

In order to generalize Reed-Muller codes we need to define the evaluation of an
element of an iterated skew polynomial ring. The evaluation of a classical polyno-
mial f ∈ Fq[X1, . . . , Xn] at the point (α1, . . . , αn) can be seen as the remainder of
successive divisions of f by X1 − α1, . . . , Xn − αn, i.e.:

f = q1(X1 + α1) + . . .+ qn(Xn + αn) + f(α1, . . . , αn).

The result is independent of the order of the division, which corresponds to the fact
that {X1 −α1, . . . , Xn −αn} is a Gröbner basis for the ideal generated by this set.

There exists several generalizations of the notion of Gröbner basis to various
types of iterated skew polynomial rings in the litterature.

We refer to [9] for the classical definition of a monomial ordering < on Nm.
Classically a monomial ordering induces an ordering ≺ on the set of monomials
M = {Xα = Xα1

1 Xα2
2 · · ·Xαm

m |αi ∈ N} (note that the variables need to be in
a precise order when dealing with a non commutative ring) via Xα ≺ Xβ if and
only if α < β. For any expression f =

∑
α∈Nm cαX

α where only finitely many
constants cα are nonzero, the monomial Xγ = max{Xα|cα 6= 0} is called the leading
monomial of fand cα is called the leading coefficient of f , denoted respectively by
lm(f) and lc(f). Then the least common multiple of Xα and Xβ is defined as
lcm(Xα, Xβ) = Xγ where γi = max(αi, βi). We will be interested in left ideals I
of skew polynomial rings R

A Gröbner basis can be computed in Poincaré-Birkhoff-Witt extension (PBW)
(see also [9], definition 1.2):

Definition 3.1. (see [10], definition 3.2.1) Let A and R be two associative
rings with A ⊂ R. The ring R is called a (finite) Poincaré-Birkhoff-Witt PBW
extension (PBW extension) of A if there exist X1, X2, . . . , Xn in R such that

(1) the monomials Xi1
1 X

i1
2 · · ·Xin

n form a base for R as a free left A-module,
where i1, . . . , in are in N;

(2) Xia− aXi = [Xi, a] ∈ A for each i ∈ {1, . . . , n} and any a ∈ A;
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(3) XiXj −XjXi = [Xi, Xj ] ∈ A+AX1 + · · ·+AXn for all i, j in {1, . . . , n}.
We write R = A < X1, . . . , Xn >.

In [9, 10] algorithms are given for computing Gröbner bases of a left ideal I
in solvable polynomial algebras and skew solvable polynomial rings. We will work
with the following slight generalization of the last definition

Definition 3.2. Let R` = (· · ·A[X1; θ1, δ1]) . . .)[Xn; θn, δn] be an iterative
skew polynomial ring in n ∈ N. We call the ring left-lex-solvable, for the lexico-
graphical order 1 ≺ X1 ≺ . . . ≺ Xn, if

(1) for any a ∈ A and any i ∈ {1, . . . , n}, Xia = bXi + pi,a where b ∈ A and
pi,a ∈ Ri−1;

(2) for all j < i in {1, . . . , n}, XiXj = bXjXi + pi,j where b ∈ A and all
monomials in pi,j are ≺ XiXj .

Suppose now that R is a left-lex-solvable iterated polynomial ring in the (non
commuting) variables X1 . . . , Xm. We say that Xα ∈M is divisible by Xβ if Xα =
lm(XωXβ) for some Xω ∈M (note that XωXβ may no longer be a monomial, but
that the non leading monomials of XωXβ are ≺ Xα).

We follow the definition of an S-polynomial of ([9], definition 2.5). If Xγ =
lm(lcm(XαXβ)), tf = Xγ−α and tg = Xγ−β , then

SPoly(f, g) = tf f − c tg g, where c =
lc(tf f)

lc(tg g)

If the iterative skew polynomial ring R` is left-lex-solvable, then, according
to ([9], section 2.2) the classical Buchberger algorithm, applied to the above S-
polynomials using a lexicographic order X1 ≺ . . . ≺ X`, produces a left Gröbner
basis of any left ideal I ⊂ R. For a given Gröbner basis G of a left ideal I ⊂
R we denote rem(f,G) the unique polynomial r ∈ R in the decomposition f =(∑

j qj · gi
)

+ r.

Definition 3.3. Let F be a field, R an left-finitely generated algebra over F
and < an admissible ordering on R. We call a left Gröbner basis BI = {g1, . . . , gk}
of a left ideal I ⊂ R an evaluation base if

(1) I = (g1, . . . , gk) 6= {1} (we exclude the “always zero” evaluation which is
of no interest for Reed-Muller type codes).

(2) the right reduction f = rem(f,BI) of any f ∈ R by BI belongs to F .

Proposition 3.4. Let F be a field, R a skew solvable polynomial ring over F
generated by X1, . . . , Xn and < an admissible monomial ordering. If the ordering <
is a well ordering, then any reduced evaluation base BI is of the form

(X1 − α1, X2 − α2, . . . , Xn − αn)

where αi ∈ F .

Proof. For an evaluation base BI each generator Xi must reduce to αi ∈ F :
Xi = (

∑
gi∈BI higi) + αi ∈ F . Therefore Xi − αi = (

∑
gi∈BI higi) ∈ I. Assume

that X1 < · · · < Xn and proceed by induction on i:

(1) Since < is a well ordering and 1 6∈ BI , the monomial X1 is minimal among
the leading monomials in BI and therefore X1 − α1 must belong to the
Gröbner basis BI .
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(2) Suppose that X1−α1, . . . Xi−αi belongs to BI . A reduced evaluation base
BI cannot contain any other monomial divisible byX1, . . . , Xi, andXi+1 is
a minimal leading monomial among the other polynomials of BI . Suppose
that Xj ∈ {X1, . . . , Xi} divides the monomial Xi+1, then Xi+1 = MXi

for some monomial M which must contain a variable in {Xi+1, . . . , Xn}.
Reordering the variables in MXi we obtain a leading term containing Xi

and therefore a contradiction. Therefore Xi+1 − αi+1 belongs to BI .
Therefore BI contains X1 − α1, . . . , Xn − αn. Since the base is reduced it can only
contain those polynomials, showing that for a lexicographic order a reduced Gröbner
basis of an evaluation ideal is always of the form (X1−α1, X2−α2, . . . , Xn−αn). �

Example 3.5. In example 2.3 we constructed the iterate skew polynomial ring

R3 = F4[X1; θ, δF4,θ
1 ][X2; θR1

α , δ
R1,θ

R1
α

X1+α
][X3; θR2

α , δ
R2,θ

R2
α

αX1
]

For this ring and the lexicographic order X3 > X2 > X1 only 28 ideals of the form
(X1 − α1, X2 − α2, X3 − α3) are distinct from (1) = R3. For example (X1, X2, X3)
is a Gröbner basis, but for (X1, X2, X3 − 1) the Gröbner basis turns out to be (1)
since (α2X3 + α)X1 + (αX1 + 1)(X3 − 1) = 1.

Definition 3.6. Fq Consider an iterated skew polynomial ring

R` = Fq[X1; θ1, δ1][X2; θ2, δ2] . . . [X`; θ`, δ`]

over a finite field Fq, and < an admissible ordering on R and a list BI1 , . . . ,BIn of
Gröbner basis I which are evaluation bases for R`. If the space W of polynomials
of order less than a given bound is of dimension r, then a skew Reed Muller
encoding of length n of f ∈W is given by

(red(f,BI1), . . . , red(f,BIn)) ∈ Fnq .

The resulting code is a linear code with parameters [n, r]

In order to verify that this gives an Fq-linear code we need to show that

C = {(rem(f,BI1), . . . , rem(f,BIn)) | f ∈W}

is a subspace of Fnq . In order to see this we note that for all s in {1, . . . , `}, for all f

in R` with f = (
∑
gi∈BIs

higi) + rem(f̃ ,BIs), all f̃ in R` with f̃ = (
∑
gi∈BIs

h̃igi) +

rem(f̃ ,BIs) and all λ in Fq we have:

λf = (
∑

gi∈BIs

λhigi) + λ · rem(f,BIs)(3.1)

f̃ + f = (
∑

gi∈BIs

(h̃i + hi)gi) + rem(f̃ ,BIs) + rem(f,BIs).(3.2)

The result now follows from the uniqueness of the reduction by a Gröbner basis.
We note that, even if the evaluation map is a ring homomorphism

R` → Fq; f 7→ rem(f̃ ,BIs),

the fact that we obtain a linear code over Fq relies only on the fact that the map

R` → Fq; f 7→ rem(f̃ ,BIs) ist an Fq-linear map.
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Example 3.7. In example 2.3 we constructed the iterate skew polynomial ring

R3 = F4[X1; θ, δF4,θ
1 ][X2; θR1

α , δ
R1,θ

R1
α

X1+α
][X3; θR2

α , δ
R2,θ

R2
α

αX1
]

While classical Reed-Muller codes are of length 64, for this ring and the lexico-
graphic order X3 > X2 > X1 we obtain 28 evaluation points with Gröbner bases of
the form (X1−α1, X2−α2, X3−α3) distinct from (1) = R3 (the indicated distance
is the hamming distance):

(1) Considering the vector space of all polynomials of degree 1 we obtain a
[28, 4, 12]4.

(2) Considering the vector space of all polynomials of degree 2 we obtain a
[28, 10, 6]4.

(3) Considering the vector space of all polynomials of degree 3 we obtain a
[28, 17, 3]4.

4. Skew Reed-Muller codes over finite chain rings

In order to define skew Reed-Muller codes over finite chain rings we need to
define the notion of a Gröbner basis to finite chain rings. We do that by following [3].
In a finite chain ring A the unique maximal ideal is generated by an element ω of
nilpotency index ` (i.e. ` is the smallest integer such that ω` = 0) any element a can
be written in the form µaω

`a where 0 ≤ `a ≤ ` − 1 and µa is a invertible element
of A, unique modulo ω`−`a .

Example 4.1. The ring A = F4[z]/(z2) is a chain ring of order 16. The unique
maximal ideal of A is (z) whose nilpotency index is ` = 2. The invertible elements
of A are

{α, z + α, αz + α, α2z + α, 1, z + 1, αz + 1, α2z + 1, α2, z + α2, αz + α2, α2z + α2}
We can construct an iterated skew polynomial ring using inner automorphisms and
inner derivations in the same way than in example 2.3. Two simple examples that
we will use later are

(1) The ring homomorphism θ3 : A→ A defined by a 7→ a and z 7→ α2z is an
automorphism of order 3 of A. In the ring R2,3 = A[X1; θ3][X2] we have
the commutation relation

X1α = θ3(α)X1 = αX1; X1z = θ3(z)X1 = α2zX1

and X2 is a central element.
(2) The ring homomorphism θ2 : A→ A defined by a 7→ a2 and z 7→ αz is an

automorphism of order 2 of A. In the ring R2,2 = A[X1; θ][X2] we have
the commutation relation

X1α = θ2(α)X1 = α2X1; X1z = θ2(z)X1 = αzX1

and X2 is a central element.

We follow the definition of an S-polynomial in ([3], definition 3.4). Suppose
now that R is a left-lex-solvable iterated polynomial ring in the (non commut-
ing) variables X1 . . . , Xm over a finite commutative chain ring A. Recall that
lcm(Xα, Xβ) = Xγ where γi = max(αi, βi) and that Xα ∈ M is divisible by Xβ

if Xα = lm(XωXβ) for some Xω ∈M (note that the product of monomial XωXβ

may no longer be a monomial, but that the non leading monomials of XωXβ are
≺ Xα in a left-lex-solvable iterated polynomial ring).
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Adapting ([3], definition 3.2) to the non commutative situation we define that
the polynomial g reduces the monomial µfω

`fXα if

(1) lm(g) = Xβ with β < α.
(2) if lc(Xα−βg) = µgω

`g with `g < `f .

The corresponding reduction step is the result of

µfω
`fXα − µfµ−1g ω`f−`gXα−βg

We say that a polynomial g reduces a polynomial f if g reduces lt(f).
Let f and g be two non zero polynomials whose leading monomials are Xα

and Xβ . If Xγ = lm(lcm(Xα, Xβ)), af = lc(Xγ−αf) = µfω
`f , bg = lc(Xγ−βg) =

µgω
`g and `f,g = max{`f , `g}. We follow the definition of an S-polynomial of ([3],

definition 3.4):

SPoly(f, g) = µ−1f ω`f,g−`fXγ−αf − µg−1ω`f,g−`gXγ−βg

According to [3] we also need the notion of an A-polynomial. Consider f with
lc(f) = µaω

`a with `a > 0 (i.e. a non invertible zero divisor):

APoly(f) = ω`−`af

A base of an ideal is a Gröbner basis if all S-polynomials between the elements
of the base and all A-polynomials of the elements of the base reduce to zero.

Similarly to Z[X] where (X, 2) is a maximal ideal, the maximal ideals in an
iterated skew polynomial ring are no longer all of the form (X1 −α1, . . . , X` −α`).

Example 4.2. Consider A = F4[z]/(z2) and R2,2 = A[X1; θ2][X2] as de-
fined in example 4.1. With lex order X2 > X1 there are 88 evaluation points
with Gröbner bases of the form (X1 − α1, X2 − α2) and 12 additional evaluation
points with Gröbner bases (X1 − α1, X2 − α2, z). For example the Gröbner basis
of (X1 − 1, X2 − z) is (X1 − 1, X2, z).
Using only the 88 evaluation points whose Gröbner bases are of the special form
(X1 − α1, X2 − α2) we obtain the following skew Reed-Muller codes (the indicated
distance is the hamming distance):

(1) Considering the left A-module of all polynomials of degree 1 we obtain
a [88, 3] code over A which maps, using the mapping A → F2

4 given by
(α1 + α2z) 7→ (α2, α1 + α2), to a [176, 6, 88]4 code.

(2) Considering the left A-module of all polynomials of degree 2 we obtain a
[88, 6] code over A which maps to a [176, 12, 16]4 code.

(3) Considering the left A-module of all polynomials of degree 3 we obtain a
[88, 9] code over A which maps to a [176, 18, 8]4 code.

Using all 96 evaluation points, including those with Gröbner bases of the form
(X1 − α1, X2 − α2, z) we obtain the following skew Reed-Muller codes (the indi-
cated distance is the hamming distance):

(1) Considering the left A-module of all polynomials of degree 1 we obtain a
[96, 3] code over A which maps, under the above mapping, to a [192, 6, 96]4
code.

(2) Considering the left A-module of all polynomials of degree 2 we obtain a
[96, 6] code over A which maps to a [192, 12, 16]4 code.

(3) Considering the left A-module of all polynomials of degree 3 we obtain a
[96, 9] code over A which maps to a [192, 18, 8]4 code.
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Example 4.3. Consider A = F4[z]/(z2) and R2,3 = A[X1; θ3][X2] as defined
in example 4.1. With lex order X2 > X1 there are 112 evaluation points with
Gröbner basis of the form (X1 − α1, X2 − α2) and 12 additional evaluation points
with Gröbner bases of the form (X1 − α1, X2 − α2, z). For example the points
(X1 − a,X2 − a, z) or (X1 − 1, X2, z). Using only the 112 evaluation points with
Gröbner bases of the form (X1 − α1, X2 − α2) we obtain the following skew Reed-
Muller codes (the indicated distance is the hamming distance):

(1) Considering the vector space of all polynomials of degree 1 we obtain a
[112, 3] code over A which, under the mapping A→ F2

4 with (α1 +α2z) 7→
(α2, α1 + α2), map to a [224, 6, 96]4 code.

(2) Considering the vector space of all polynomials of degree 2 we obtain a
[112, 6] code over A which under the mapping A→ F2

4 with (α1 +α2z) 7→
(α2, α1 + α2), map to a [224, 12, 64]4 code.

(3) Considering the vector space of all polynomials of degree 3 we obtain a
[112, 10] code over A which under the mapping A→ F2

4 with (α1+α2z) 7→
(α2, α1 + α2), map to a [224, 20, 32]4 code.
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