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Abstract
As graphical summaries for topological spaces and maps, Reeb graphs are common objects in the
computer graphics or topological data analysis literature. Defining good metrics between these
objects has become an important question for applications, where it matters to quantify the extent
by which two given Reeb graphs differ. Recent contributions emphasize this aspect, proposing
novel distances such as functional distortion or interleaving that are provably more discriminative
than the so-called bottleneck distance, being true metrics whereas the latter is only a pseudo-
metric. Their main drawback compared to the bottleneck distance is to be comparatively hard
(if at all possible) to evaluate. Here we take the opposite view on the problem and show that
the bottleneck distance is in fact good enough locally, in the sense that it is able to discriminate
a Reeb graph from any other Reeb graph in a small enough neighborhood, as efficiently as the
other metrics do. This suggests considering the intrinsic metrics induced by these distances,
which turn out to be all globally equivalent. This novel viewpoint on the study of Reeb graphs
has a potential impact on applications, where one may not only be interested in discriminating
between data but also in interpolating between them.
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1 Introduction

In the context of shape analysis, the Reeb graph [26] provides a meaningful summary of a
topological space and a real-valued function defined on that space. Intuitively, it continuously
collapses the connected components of the level sets of the function into single points, thus
tracking the values of the functions at which the connected components merge or split. Reeb
graphs have been widely used in computer graphics and visualization – see [7] for a survey,
and their discrete versions, including the so-called Mappers [27], have become emblematic
tools of topological data analysis due to their success in applications [2, 3, 20, 23].

Finding relevant dissimilarity measures for comparing Reeb graphs has become an
important question in the recent years. The quality of a dissimilarity measure is usually

∗ This work was partially supported by ERC Grant Agreement No. 339025 GUDHI (Algorithmic Founda-
tions of Geometry Understanding in Higher Dimensions) and was carried out while the second author
was visiting the ICERM at Brown University.

© Mathieu Carrière and Steve Oudot;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 25; pp. 25:1–25:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


25:2 Local Equivalence and Intrinsic Metrics Between Reeb Graphs

assessed through three criteria: its ability to satisfy the axioms of a metric, its discriminative
power, and its computational efficiency. The most natural choice to begin with is to use
the Gromov-Hausdorff distance dGH [10] for Reeb graphs seen as metric spaces. The main
drawback of this distance is to quickly become intractable to compute in practice, even for
graphs that are metric trees [1]. Among recent contributions, the functional distortion distance
dFD [4] and the interleaving distance dI [15] share the same advantages and drawbacks as dGH,
in particular they enjoy good stability and discriminativity properties but they lack efficient
algorithms for their computation, moreover they can be difficult to interpret. By contrast, the
bottleneck distance dB comes with a signature for Reeb graphs, called the extended persistence
diagram [14], which acts as a stable bag-of-feature descriptor. Furthermore, dB can be
computed efficiently in practice. Its main drawback though is to be only a pseudo-metric, so
distinct graphs can have the same signature and therefore be deemed equal in dB.

Another desired property for dissimilarity measures is to be intrinsic, i.e. realized as the
lengths of shortest continuous paths in the space of Reeb graphs [10]. This is particularly
useful when one actually needs to interpolate between data, and not just discriminate between
them, which happens in applications such as image or 3-d shape morphing, skeletonization,
and matching [18, 21, 22, 28]. At this time, it is unclear whether the metrics proposed so far
for Reeb graphs are intrinsic or not. Using intrinsic metrics would not only open the door
to the use of Reeb graphs in the aforementioned applications, but it would also provide a
better understanding of the intrinsic structure of the space of Reeb graphs, and give a deeper
meaning to the distance values.

Our contributions. In the first part of the paper we show that the bottleneck distance can
discriminate a Reeb graph from any other Reeb graph in a small enough neighborhood, as
efficiently as the other metrics do, even though it is only a pseudo-metric globally. More
precisely, we show that, given any constant K ∈ (0, 1/22], in a sufficiently small neighborhood
of a given Reeb graph Rf in the functional distortion distance (that is: for any Reeb graph
Rg such that dFD(Rf ,Rg) < c(f,K), where c(f,K) > 0 is a positive constant depending
only on f and K), one has:

KdFD(Rf ,Rg) ≤ dB(Rf ,Rg) ≤ 2dFD(Rf ,Rg). (1)

The second inequality is already known [4], and it asserts that the bottleneck distance between
Reeb graphs is stable. The first inequality is new, and it asserts that the bottleneck distance
is discriminative locally, in fact just as discriminative as the other distances mentioned above.
Equation (1) can be viewed as a local equivalence between metrics although not in the usual
sense: firstly, all comparisons are anchored to a fixed Reeb graph Rf , and secondly, the
constants K and 2 are absolute.

The second part of the paper advocates the study of intrinsic metrics on the space of
Reeb graphs, for the reasons mentioned above. As a first step, we propose to study the
intrinsic metrics d̂GH, d̂FD, d̂I and d̂B induced respectively by dGH, dFD, dI and dB. While
the first three are obviously globally equivalent because their originating metrics are, our
second contribution is to show that the last one is also globally equivalent to the other three.

The paper concludes with a discussion and some directions for the study of the space of
Reeb graphs as an intrinsic metric space.

Related work. Interpolation between Reeb graphs is also the underlying idea of the edit
distance recently proposed by Di Fabio and Landi [16]. The problem with this distance, in its
current form at least, is that it restricts the interpolation to pairs of graphs lying in the same
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homeomorphism class. By contrast, our class of admissible paths is defined with respect to
the topology induced by the functional distortion distance, as such it allows interpolating
between distinct homeomorphism classes.

Interpolation between Reeb graphs is also related to the study of inverse problems
in topological data analysis. To our knowledge, the only result in this vein shows the
differentiability of the operator sending point clouds to the persistence diagram of their
distance function [17]. Our first contribution (1) sheds light on the operator’s local injectivity
properties over the class of Reeb graphs.

2 Background

Throughout the paper we work with singular homology with coefficients in the field Z2,
which we omit in our notations for simplicity. In the following, “connected” stands for
“path-connected”, and “cc” stands for “connected component(s)”. Given a map f : X → R
and an interval I ⊆ R, we write XI

f as a shorthand for the preimage f−1(I), and we omit
the subscript when the map is obvious from the context.

2.1 Morse-Type Functions
I Definition 1. A continuous real-valued function f on a topological space X is of Morse
type if:
(i) there is a finite set Crit(f) = {a1 < ... < an} ⊂ R, called the set of critical values, such

that over every open interval (a0 = −∞, a1), ..., (ai, ai+1), ..., (an, an+1 = +∞) there is
a compact and locally connected space Yi and a homeomorphism µi : Yi × (ai, ai+1)→
X(ai,ai+1) such that ∀i = 0, ..., n, f |

X(ai,ai+1) = π2 ◦ µ−1
i , where π2 is the projection onto

the second factor;
(ii) ∀i = 1, ..., n − 1, µi extends to a continuous function µ̄i : Yi × [ai, ai+1] → X [ai,ai+1];

similarly, µ0 extends to µ̄0 : Y0 × (−∞, a1] → X(−∞,a1] and µn extends to µ̄n : Yn ×
[an,+∞)→ X [an,+∞);

(iii) Each levelset f−1(t) has a finitely-generated homology.

Let us point out that a Morse function is also of Morse type, and that its critical values
remain critical in the definition above. Note that some of its regular values may be termed
critical as well in this terminology, with no effect on the analysis.

2.2 Extended Persistence
Let f be a real-valued function on a topological space X. The family {X(−∞,α]}α∈R of
sublevel sets of f defines a filtration, that is, it is nested w.r.t. inclusion: X(−∞,α] ⊆ X(−∞,β]

for all α ≤ β ∈ R. The family {X [α,+∞)}α∈R of superlevel sets of f is also nested but in the
opposite direction: X [α,+∞) ⊇ X [β,+∞) for all α ≤ β ∈ R. We can turn it into a filtration
by reversing the order on the real line. Specifically, let Rop = {x̃ | x ∈ R}, ordered by
x̃ ≤ ỹ ⇔ x ≥ y. We index the family of superlevel sets by Rop, so now we have a filtration:
{X [α̃,+∞)}α̃∈Rop , with X [α̃,+∞) ⊆ X [β̃,+∞) for all α̃ ≤ β̃ ∈ Rop.

Extended persistence connects the two filtrations at infinity as follows. First, replace
each superlevel set X [α̃,+∞) by the pair of spaces (X,X [α̃,+∞)) in the second filtration.
This maintains the filtration property since we have (X,X [α̃,+∞)) ⊆ (X,X [β̃,+∞)) for all
α̃ ≤ β̃ ∈ Rop. Then, let RExt = R∪{+∞}∪Rop, where the order is completed by α < +∞ < β̃

for all α ∈ R and β̃ ∈ Rop. This poset is isomorphic to (R,≤). Finally, define the extended
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filtration of f over RExt by:

Fα = X(−∞,α] for α ∈ R, F+∞ = X ≡ (X, ∅) and Fα̃ = (X,X [α̃,+∞)) for α̃ ∈ Rop,

where we have identified the space X with the pair of spaces (X, ∅) at infinity. The subfamily
{Fα}α∈R is the ordinary part of the filtration, while {Fα̃}α̃∈Rop is the relative part.

Applying the homology functor H∗ to this filtration gives the so-called extended persistence
module V of f , which is a sequence of vector spaces connected by linear maps induced by the
inclusions in the extended filtration. For functions of Morse type, the extended persistence
module can be decomposed as a finite direct sum of half-open interval modules – see e.g. [13]:
V '

⊕n
k=1 I[bk, dk), where each summand I[bk, dk) is made of copies of the field of coefficients

at every index α ∈ [bk, dk), and of copies of the zero space elsewhere, the maps between
copies of the field being identities. Each summand represents the lifespan of a homological
feature (cc, hole, void, etc.) within the filtration. More precisely, the birth time bk and death
time dk of the feature are given by the endpoints of the interval. Then, a convenient way to
represent the structure of the module is to plot each interval in the decomposition as a point
in the extended plane, whose coordinates are given by the endpoints. Such a plot is called
the extended persistence diagram of f , denoted Dg(f). The distinction between ordinary and
relative parts of the filtration allows us to classify the points in Dg(f) as follows:

p = (x, y) is called an ordinary point if x, y ∈ R;
p = (x, y) is called a relative point if x, y ∈ Rop;
p = (x, y) is called an extended point if x ∈ R, y ∈ Rop;

Note that ordinary points lie strictly above the diagonal ∆ = {(x, x) | x ∈ R} and relative
points lie strictly below ∆, while extended points can be located anywhere, including on ∆
(e.g. when a cc lies inside a single critical level, see Section 2.3). It is common to partition
Dg(f) according to this classification: Dg(f) = Ord(f)tRel(f)tExt+(f)tExt−(f), where
by convention Ext+(f) includes the extended points located on the diagonal ∆.

Stability. An important property of extended persistence diagrams is to be stable in the
so-called bottleneck distance d∞b . Given two persistence diagrams D,D′, a partial matching
between D and D′ is a subset Γ of D × D′ where for every p ∈ D there is at most
one p′ ∈ D′ such that (p, p′) ∈ Γ, and conversely, for every p′ ∈ D′ there is at most
one p ∈ D such that (p, p′) ∈ Γ. Furthermore, Γ must match points of the same type
(ordinary, relative, extended) and of the same homological dimension only. The cost of Γ
is: cost(Γ) = max{max

p∈D
δD(p), max

p′∈D′
δD′(p′)}, where δD(p) = ‖p− p′‖∞ if p is matched to

some p′ ∈ D′ and δD(p) = d∞(p,∆) if p is unmatched – same for δD′(p′).

I Definition 2. The bottleneck distance between two persistence diagrams D and D′ is
dB(D,D′) = infΓ cost(Γ), where Γ ranges over all partial matchings between D and D′.

I Theorem 3 (Stability [14]). For any Morse-type functions f, g : X → R,

dB(Dg(f),Dg(g)) ≤ ‖f − g‖∞. (2)

2.3 Reeb Graphs
I Definition 4. Given a topological space X and a continuous function f : X → R, we define
the equivalence relation ∼f between points of X by x ∼f y if and only if f(x) = f(y) and
x, y belong to the same cc of f−1(f(x)) = f−1(f(y)). The Reeb graph Rf (X) is the quotient
space X/ ∼f . As f is constant on equivalence classes, there is a well-defined induced map
f̃ : Rf (X)→ R.
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Connection to extended persistence. If f is a function of Morse type, then the pair (X, f)
is an R-constructible space in the sense of [15]. This ensures that the Reeb graph is a
multigraph, whose nodes are in one-to-one correspondence with the cc of the critical level sets
of f . In that case, there is a nice interpretation of Dg(f̃) in terms of the structure of Rf (X).
We refer the reader to [4, 14] and the references therein for a full description as well as formal
definitions and statements. Orienting the Reeb graph vertically so f̃ is the height function,
we can see each cc of the graph as a trunk with multiple branches (some oriented upwards,
others oriented downwards) and holes. Then, one has the following correspondences, where
the vertical span of a feature is the span of its image by f̃ :

The vertical spans of the trunks are given by the points in Ext+
0 (f̃);

The vertical spans of the downward branches are given by the points in Ord0(f̃);
The vertical spans of the upward branches are given by the points in Rel1(f̃);
The vertical spans of the holes are given by the points in Ext−1 (f̃).

The rest of the diagram of f̃ is empty. These correspondences provide a dictionary to read
off the structure of the Reeb graph from the persistence diagram of the quotient map f̃ .
Note that it is a bag-of-features type of descriptor, taking an inventory of all the features
together with their vertical spans, but leaving aside the actual layout of the features. As
a consequence, it is an incomplete descriptor: two Reeb graphs with the same persistence
diagram may not be isomorphic. See the two Reeb graphs in Figure 1 for instance.

Notation. Throughout the paper, we consider Reeb graphs coming from Morse-type func-
tions, equipped with their induced maps. We denote by Reeb the space of such graphs. In
the following, we have Rf ,Rg ∈ Reeb, with induced maps f : Rf → R with critical values
{a1, ..., an}, and g : Rg → R with critical values {b1, ..., bm}. Note that we write f, g instead
of f̃ , g̃ for convenience. We also assume without loss of generality (w.l.o.g.) that Rf and Rg
are connected. If they are not connected, then our analysis can be applied component-wise.

2.4 Distances for Reeb graphs
I Definition 5. The bottleneck distance between Rf and Rg is:

dB(Rf ,Rg) := dB(Dg(f),Dg(g)). (3)

I Definition 6. The functional distortion distance between Rf and Rg is:

dFD(Rf ,Rg) := inf
φ,ψ

max
{

1
2D(φ, ψ), ‖f − g ◦ φ‖∞, ‖f ◦ ψ − g‖∞

}
, (4)

where:
φ : Rf → Rg and ψ : Rg → Rf are continuous maps,
D(φ, ψ) = sup {|df (x, x′)− dg(y, y′)| such that (x, y), (x′, y′) ∈ C(φ, ψ)} , where:
C(φ, ψ) = {(x, φ(x)) | x ∈ Rf} ∪ {(ψ(y), y) | y ∈ Rg},

df (x, x′) = min
π:x→x′

{
max
t∈[0,1]

f ◦ π(t)− min
t∈[0,1]

f ◦ π(t)
}
, where π : [0, 1] → Rf is a

continuous path from x to x′ in Rf (π(0) = x and π(1) = x′),

dg(y, y′) = min
π:y→y′

{
max
t∈[0,1]

g ◦ π(t)− min
t∈[0,1]

g ◦ π(t)
}
, where π : [0, 1] → Rg is a con-

tinuous path from y to y′ in Rg (π(0) = y and π(1) = y′).

Bauer et al. [4] related these distances as follows:

I Theorem 7. The following inequality holds: dB(Rf ,Rg) ≤ 3 dFD(Rf ,Rg).

SoCG 2017
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Ext+0

Ord+0

Rel−1

Ext−1

Rf Rg
Dg(f ) = Dg(g)

Figure 1 Example of two different Reeb graphs Rf and Rg that have the same extended persistence
diagram Dg(f) = Dg(g). These graphs are at bottleneck distance 0 from each other, while their
functional distortion distance is positive.

This result can be improved using the end of Section 3.4 of [8], then noting that level set
diagrams and extended diagrams are essentially the same [11], and finally Lemma 9 of [6]:

I Theorem 8. The following inequality holds: dB(Rf ,Rg) ≤ 2 dFD(Rf ,Rg).

We emphasize that, even though Theorem 8 allows us to improve on the constants of our main
result – see Theorem 9, the reduction from 3 dFD(Rf ,Rg) in Theorem 7 to 2 dFD(Rf ,Rg) in
Theorem 8 is not fundamental for our analysis and proofs.

Since the bottleneck distance is only a pseudo-metric – see Figure 1, the inequality given
by Theorem 8 cannot be turned into an equivalence result. However, for any pair of Reeb
graphs Rf ,Rg that have the same extended persistence diagram Dg(f) = Dg(g), and that are
at positive functional distortion distance from each other, every continuous path in dFD from
Rf to Rg will perturb the points of Dg(f) and eventually drive them back to their initial
position, suggesting first that dB is locally equivalent to dFD – see Theorem 9 in Section 3,
but also that, even though dB(Rf ,Rg) = 0, the intrinsic metric d̂B(Rf ,Rg) induced by dB is
positive – see Theorem 17 in Section 4.

3 Local Equivalence

Let af = min1≤i≤n ai+1 − ai > 0 and ag = min1≤j≤m bj+1 − bj > 0. In this section, we show
the following local equivalence theorem:

I Theorem 9. Let K ∈ (0, 1/22]. If dFD(Rf ,Rg) ≤ max{af , ag}/(8(1 + 22K)), then:

KdFD(Rf ,Rg) ≤ dB(Rf ,Rg) ≤ 2dFD(Rf ,Rg).

Note that the notion of locality used here is slightly different from the usual one. On
the one hand, the equivalence does not hold for any arbitrary pair of Reeb graphs inside a
neighborhood of some fixed Reeb graph, but rather for any pair involving the fixed graph.
On the other hand, the constants in the equivalence are independent of the pair of Reeb
graphs considered. The upper bound on dB(Rf ,Rg) is given by Theorem 8 and always holds.
The aim of this section is to prove the lower bound.

Convention: We assume w.l.o.g. that max{af , ag} = af , and we let ε = dFD(Rf ,Rg).
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a

b

Rh Rh′

a

a

b

b

Figure 2 Left: effect of Mergea,b on a Reeb graph Rh. Right: Effect on its persistence diagram.

3.1 Proof of Theorem 9
Let K ∈ (0, 1/22]. The proof proceeds by contradiction. Assuming dB(Rf ,Rg) < Kε,
where ε = dFD(Rf ,Rg) < af/(8(1 + 22K)), we progressively transform Rg into some other
Reeb graph Rg′ (Definition 12) that satisfies both dFD(Rg,Rg′) < ε (Proposition 14) and
dFD(Rf ,Rg′) = 0 (Proposition 15). The contradiction follows from the triangle inequality.

3.1.1 Graph Transformation
The graph transformation is defined as the composition of the simplification operator from [4]
and the Merge operator1 from [12]. We refer the reader to these articles for the precise
definitions. Below we merely recall their main properties. Given a set S ⊆ X and a scalar
α > 0, we recall that Sα = {x ∈ X | d(x, S) ≤ α} denotes the α-offset of S.

I Lemma 10 (Theorem 7.3 and following remark in [5]). Given α > 0, the simplification
operator Sα : Reeb → Reeb takes any Reeb graph Rh to Rh′ = Sα(Rh) such that Dg(h′) ∩
∆α/2 = ∅ and dB(Rh,Rh′) ≤ 2 dFD(Rh,Rh′) ≤ 4α.

I Lemma 11 (Theorem 2.5 and Lemma 4.3 in [12]). Given a ≤ b, the merge operator
Mergea,b : Reeb→ Reeb takes any Reeb graph Rh to Rh′ = Mergea,b(Rh) such that Dg(h′) is
obtained from Dg(h) through the following snapping principle (see Figure 2 for an illustration):

(x, y) ∈ Dg(h) 7→ (x′, y′) ∈ Dg(h′) where x′ =
{

x if x /∈ [a, b]
a+b

2 otherwise
and similarly for y′.

I Definition 12. Let Rf be a fixed Reeb graph with critical values {a1, · · · , an}. Given
α > 0, the full transformation Fα : Reeb → Reeb is defined as Fα = Merge9α ◦ S2α, where
Merge9α = Mergean−9α, an+9α ◦ ... ◦Mergea1−9α, a1+9α. See Figure 3 for an illustration.

3.1.2 Properties of the transformed graph
Let Rf ,Rg ∈ Reeb such that dB(Rf ,Rg) < Kε where ε = dFD(Rf ,Rg) < af/(8(1 + 22K)).
Letting Rg′ = FKε(Rg), we want to show both that dFD(Rg,Rg′) < 22Kε < ε and
dFD(Rf ,Rg′) = 0, which will lead to a contradiction as mentioned previously.

Let B∞(·, ·) denote balls in the `∞-norm.

1 Strictly speaking, the output of our Merge is the Reeb graph of the output of the Merge from [12].

SoCG 2017
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ai

ai+1

ai+1 − 9α

ai+1 + 9α

ai − 9α

ai + 9α

S2α Merge9α

ai−1

ai−1 − 9α

ai−1 + 9α

Figure 3 Illustration of Fα.

I Lemma 13. Let Rh = S2Kε(Rg). Under the above assumptions, one has

Dg(h) ⊆
⋃

τ∈Dg(f)
B∞(τ, 9Kε). (5)

Proof. Since dB(Rf ,Rg) < Kε, we have Dg(g) ⊆
⋃
τ∈Dg(f)B∞(τ,Kε) ∪∆Kε. Since Rh =

S2Kε(Rg), it follows from Lemma 10 that dB(Dg(h),Dg(g)) ≤ 8Kε. Moreover, since every
persistence pair in Dg(g) ∩∆Kε is removed by S2Kε, it results that:

Dg(h) ⊆
⋃
τ∈Dg(g)\∆KεB∞(τ, 8Kε) ⊆

⋃
τ∈Dg(f)B∞(τ, 9Kε). J

Now we bound dFD(Rg′ ,Rg). Recall that, given an arbitrary Reeb graph Rh, with critical
values Crit(h) = {c1, ..., cp}, if C is a cc of h−1(I), where I is an open interval such that
∃ci, ci+1 s.t. I ⊆ (ci, ci+1), then C is a topological arc, i.e. homeomorphic to an open interval.

I Proposition 14. Under the same assumptions as above, one has dFD(Rg,Rg′) < 22Kε.

Proof. Let Rh = S2Kε(Rg). We have dFD(Rg′ ,Rg) ≤ dFD(Rg′ ,Rh) + dFD(Rh,Rg) by
the triangle inequality. It suffices therefore to bound both dFD(Rg′ ,Rh) and dFD(Rh,Rg).
By Lemma 10, we have dFD(Rh,Rg) < 4Kε. Now, recall from (5) that the points of
the extended persistence diagram of Rh are included in

⋃
τ∈Dg(f)B∞(τ, 9Kε). Moreover,

since Rg′ = Merge9Kε(Rh), Rg′ and Rh are composed of the same number of arcs in each
[ai + 9Kε, ai+1 − 9Kε]. Hence, we can define explicit continuous maps φ : Rh → Rg′ and
ψ : Rg′ → Rh as depicted in Figure 4. More precisely, since Rh and Rg′ are composed of
the same number of arcs in each [ai + 9Kε, ai+1 − 9Kε], we only need to specify φ and ψ
inside each interval (ai − 9Kε, ai + 9Kε) and then ensure that the piecewise-defined maps
are assembled consistently. Since the critical values of Rh are within distance less that 9Kε
of the critical values of f , there exist two levels ai − 9Kε < αi ≤ βi < ai + 9Kε such that
Rh is only composed of arcs in (ai − 9Kε,αi] and [βi, ai + 9Kε) for each i (dashed lines
in Figure 4). For any cc C of h−1((ai − 9Kε, ai + 9Kε)), the map φ sends all points of
C ∩ h−1([αi, βi]) to the corresponding critical point yC created by the Merge in Rg′ , and
it extends the arcs of C ∩ h−1((ai − 9Kε,αi]) (resp. C ∩ h−1([βi, ai + 9Kε))) into arcs of
(g′)−1([ai − 9Kε, ai]) (resp. (g′)−1([ai, ai + 9Kε])). In return, the map ψ sends the critical
point yC to an arbitrary point of C. Then, since the Merge operation preserves connected
components, for each arc A′ of (g′)−1((ai − 9Kε, ai + 9Kε)) connected to yC , there is at
least one corresponding path A in Rh whose endpoint in h−1(ai − 9Kε) or h−1(ai + 9Kε)
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φ : Rh → Rg′

ψ : Rg′ → Rh

9Kε

9Kε

ai

ai

αi

αi

βi

Rh Rg′ Rh Rg′

Rh Rg′ Rh Rg′

Figure 4 The effects of φ and ψ around a specific critical value ai of f . Segments are matched
according to their colors (up to reparameterization).

matches with the one of A′ (see the colors in Figure 4). Hence ψ sends A′ to A and the
piecewise-defined maps are assembled consistently.

Let us bound the three terms in the max{· · · } in (4) with this choice of maps φ, ψ:
We first bound ‖g′− h ◦ψ‖∞. Let x ∈ Rg′ . Either g′(x) ∈

⋃
i∈{1,...,n−1}[ai + 9Kε, ai+1−

9Kε], and in this case we have g′(x) = h(ψ(x)) by definition of ψ; or, there is i0 ∈ {1, ..., n}
such that g′(x) ∈ (ai0 − 9Kε, ai0 + 9Kε) and then h(ψ(x)) ∈ (ai0 − 9Kε, ai0 + 9Kε). In
both cases |g′(x)− h ◦ ψ(x)| < 18Kε. Hence, ‖g′ − h ◦ ψ‖∞ < 18Kε.
Since the previous proof is symmetric in h and g′, one also has ‖h− g′ ◦ φ‖∞ < 18Kε.
We now bound D(φ, ψ). Let (x, φ(x)), (ψ(y), y) ∈ C(φ, ψ) (the cases (x, φ(x)), (x′, φ(x′))
and (ψ(y), y), (ψ(y′), y′) are similar). Let πg′ : [0, 1] → Rg′ be a continuous path from
φ(x) to y which achieves dg′(φ(x), y).

Assume h(x) ∈
⋃
i∈{1,...,n−1}[ai+9Kε, ai+1−9Kε]. Then one has ψ◦φ(x) = x. Hence,

πh := ψ ◦ πg′ is a valid path from x to ψ(y). Moreover, since ‖g′ − h ◦ψ‖∞ < 18Kε, it
follows that

max im(h ◦ πh) < max im(g′ ◦ πg′) + 18Kε,
min im(h ◦ πh) > min im(g′ ◦ πg′)− 18Kε.

(6)
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Hence, one has

dh(x, ψ(y)) ≤ max im(h ◦ πh)−min im(h ◦ πh) < dg′(φ(x), y) + 36Kε,
−dh(x, ψ(y)) ≥ min im(h ◦ πh)−max im(h ◦ πh) > −dg′(φ(x), y)− 36Kε.

This shows that |dh(x, ψ(y))− dg′(φ(x), y)| < 36Kε.
Assume that there is i0 ∈ {1, ..., n} such that h(x) ∈ (ai0 − 9Kε, ai0 + 9Kε). Then, by
definition of φ, ψ, we have g′(φ(x)) ∈ (ai0−9Kε, ai0 +9Kε), and, since φ and ψ preserve
connected components, there is a path π′h : [0, 1]→ Rh from x to ψ ◦ φ(x) within the
interval (ai0 − 9Kε, ai0 + 9Kε), which itself is included in the interior of the offset
im(g′ ◦πg′)18Kε. Let now πh be the concatenation of π′h with ψ◦πg′ , which goes from x

to ψ(y). Since ‖g′−h◦ψ‖ < 18Kε, it follows that im(h◦ψ ◦πg′) ⊆ int im(g′ ◦πg′)18Kε,
and since im(h ◦ πh) = im(h ◦ π′h) ∪ im(h ◦ ψ ◦ πg′) by concatenation, one finally has
im(h ◦ πh) ⊆ int im(g′ ◦ πg′)18Kε. Hence, the inequalities of (6) hold, implying that
|dh(x, ψ(y))− dg′(φ(x), y)| < 36Kε.

Since these inequalities hold for any couples (x, φ(x)) and (ψ(y), y), we deduce that
D(φ, ψ) ≤ 36Kε.

Thus, dFD(Rh,Rg) < 4Kε and dFD(Rh,Rg′) ≤ 18Kε, so dFD(Rg′ ,Rg) < 22Kε as desired. J

Now we show that Rg′ is isomorphic to Rf (i.e. it lies at functional distortion distance 0).

I Proposition 15. Under the same assumptions as above, one has dFD(Rf ,Rg′) = 0.

Proof. First, recall from (5) that the points of the extended persistence diagram of Rh are
included in

⋃
τ∈Dg(f)B∞(τ, 9Kε). Since Rg′ = Merge9Kε(Rh), it follows from Lemma 11

that Crit(g′) ⊆ Crit(f). Hence, both Rg′ and Rf are composed of arcs in each (ai, ai+1).
Now, we show that, for each i, the number of arcs of (g′)−1((ai, ai+1)) and f−1((ai, ai+1))

are the same. By the triangle inequality and Proposition 14, we have:

dFD(Rf ,Rg′) ≤ dFD(Rf ,Rg) + dFD(Rg,Rg′) < (1 + 22K)ε. (7)

Let φ : Rf → Rg′ and ψ : Rg′ → Rf be optimal continuous maps that achieve dFD(Rf ,Rg′).
Let i ∈ {1, ..., n − 1}. Assume that there are more arcs of f−1((ai, ai+1)) than arcs of
(g′)−1((ai, ai+1)). For every arc A of f−1((ai, ai+1)), let xA ∈ A such that f(xA) = ā =
1
2 (ai+ai+1). First, note that φ(xA) must belong to an arc of (g′)−1((ai, ai+1)). Indeed, since
‖f−g′ ◦φ‖∞ < (1+22Kε), one has g′(φ(xA)) ∈ (ā− (1+22K)ε, ā+(1+22K)ε) ⊆ (ai, ai+1).
Then, according to the pigeonhole principle, there exist xA, xA′ such that φ(xA) and φ(xA′)
belong to the same arc of (g′)−1((ai, ai+1)).

Since xA and xA′ do not belong to the same arc, we have df (xA, xA′) > af/2.
Now, since ‖f − g′ ◦ φ‖∞ < (1 + 22K)ε and φ(xA), φ(xA′) belong to the same arc of
(g′)−1((ai, ai+1)), we also have dg′(φ(xA), φ(xA′)) < 2(1 + 22K)ε (see Figure 5).

Hence, D(φ, ψ) ≥ |df (xA, xA′) − dg′(φ(xA), φ(xA′))| > af/2 − 2(1 + 22K)ε, which is
greater than 2(1 + 22K)ε because ε < af/(8(1 + 22K)). Thus, dFD(Rf ,Rg′) > (1 + 22K)ε,
which leads to a contradiction with (7). This means that there cannot be more arcs in
f−1((ai, ai+1)) than in (g′)−1((ai, ai+1)). Since the proof is symmetric in f and g′, the
numbers of arcs in (g′)−1((ai, ai+1)) and in f−1((ai, ai+1)) are actually the same.

Finally, we show that the attaching maps of these arcs are also the same. In this particular
graph setting, this is equivalent to showing that corresponding arcs in Rf and Rg′ have the
same endpoints. Let ai be a critical value. Let A−f,i and A

+
f,i (resp. A

−
g′,i and A

+
g′,i) be the sets

of arcs in f−1((ai−1, ai)) and f−1((ai, ai+1)) (resp. (g′)−1((ai−1, ai)) and (g′)−1((ai, ai+1))).
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φ(xA′)

ai+1

ai

xA′

Rf Rg′

2(1 + 22K)ε

φ(xA)

ai+1

ai

xA

f(xA) = f(xA′) = ā

Figure 5 Any path between xA and xA′ must contain the red segments, and the blue segment is
a particular path between φ(xA) and φ(xA′ ).

ai x y

φ(x)

φ(y)

2(1+22K)ε

Rf Rg′

Figure 6 Any path from x to y must go through an entire arc, hence df (x, y) ≥ af . On the
contrary, there exists a direct path between φ(x) and φ(y), hence dg′ (φ(x), φ(y)) < 2(1 + 22K)ε.

Morevover, we let ζif and ξif (resp. ζig′ and ξig′) be the corresponding attaching maps that
send arcs to their endpoints in f−1(ai) (resp. (g′)−1(ai)). Let A,B ∈ A−f,i. We define an
equivalence relation ∼f,i between A and B by: A ∼f,i B iff ζif (A) = ζif (B), i.e. the endpoints
of the arcs in the critical slice f−1(ai) are the same. Similarly, C,D ∈ A+

f,i are equivalent if
and only if ξif (C) = ξif (D). One can define ∼g′,i in the same way. To show that the attaching
maps of Rf and Rg′ are the same, we need to find a bijection b between the arcs of Rf and
Rg′ such that A ∼f,i B ⇔ b(A) ∼g′,i b(B) for each i.

We will now define b then check that it satisfies the condition. Recall from (7) that
dFD(Rf ,Rg′) < (1 + 22K)ε. Hence there exists a continuous map φ : Rf → Rg′ such that
‖f − g′ ◦ φ‖∞ < (1 + 22K)ε. This map induces a bijection b between the arcs of Rf

and Rg′ . Indeed, given an arc A ∈ A−f,i, let x ∈ A such that f(x) = ā = 1
2 (ai−1 + ai).

We define b(A) as the arc of A−g,i that contains φ(x). The map b is well-defined since
g′◦φ(x) ∈ [ā− (1 + 22K)ε, ā+ (1 + 22K)ε] ⊆ (ai−1, ai), hence φ(x) must belong to an arc of
(g′)−1((ai−1, ai)). Let us show that b(A) ∼g′,i b(B)⇒ A ∼f,i B. Assume there exist A,B ∈
A−f,i (the treatment of A,B ∈ A+

f,i is similar) such that A 6∼f,i B and b(A) ∼g′,i b(B). Let
x = ζif (A) and y = ζif (B). Then we have df (x, y) ≥ af while dg′(φ(x), φ(y)) < 2(1 + 22K)ε
(see Figure 6). Hence |df (x, y) − dg′(φ(x), φ(y))| > af − 2(1 + 22K)ε > 2(1 + 22K)ε, so
dFD(Rf ,Rg′) > (1 + 22K)ε, which leads to a contradiction with (7). The same argument
applies to show that A ∼f,i B ⇒ b(A) ∼g′,i b(B). J

4 Induced Intrinsic Metrics

In this section we leverage the local equivalence given by Theorem 9 to derive a global
equivalence between the intrinsic metrics d̂B and d̂FD induced by dB and dFD. Note that we
already know d̂FD to be equivalent to d̂GH and d̂I since dFD is equivalent to dGH and dI. To
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the best of our knowledge, the question whether dFD, dI or dGH is intrinsic on the space of
Reeb graphs has not been settled, although dGH itself is known to be intrinsic on the larger
space of compact metric spaces – see e.g. [19].

Convention. In the following, whatever the metric d : Reeb× Reeb→ R+ under considera-
tion, we define the class of admissible paths in Reeb to be those maps γ : [0, 1]→ Reeb that
are continuous in dFD. This makes sense when d is either dFD itself, dGH, or dI, all of which
are equivalent to dFD and therefore have the same continuous maps γ : [0, 1]→ Reeb. In the
case d = dB our convention means restricting the class of admissible paths to a strict subset
of the maps γ : [0, 1]→ Reeb that are continuous in d (by Theorem 8), which is required by
some of our following claims.

I Definition 16. Let d : Reeb× Reeb→ R+ be a metric on Reeb. Let Rf ,Rg ∈ Reeb, and
γ : [0, 1]→ Reeb be an admissible path such that γ(0) = Rf and γ(1) = Rg. The length of γ
induced by d is defined as Ld(γ) = supn,Σ

∑n−1
i=0 d(γ(ti), γ(ti+1)) where n ranges over N and

Σ ranges over all partitions 0 = t0 ≤ t1 ≤ ... ≤ tn = 1 of [0, 1]. The intrinsic metric induced
by d, denoted d̂, is defined by d̂(Rf ,Rg) = infγ Ld(γ) where γ ranges over all admissible
paths γ : [0, 1]→ Reeb such that γ(0) = Rf and γ(1) = Rg.

The following result is, in our view, the starting point for the study of intrinsic metrics
over the space of Reeb graphs. It comes as a consequence of the (local or global) equivalences
between dB and dFD stated in Theorems 8 and 9. The intuition is that integrating two locally
equivalent metrics along the same path using sufficiently small integration steps yields the
same total length up to a constant factor, hence the global equivalence between the induced
intrinsic metrics2.

I Theorem 17. d̂B and d̂FD are globally equivalent. Specifically, for any Rf ,Rg ∈ Reeb,

d̂FD(Rf ,Rg)/22 ≤ d̂B(Rf ,Rg) ≤ 2 d̂FD(Rf ,Rg). (8)

Proof. We first show that d̂B(Rf ,Rg) ≤ 2 d̂FD(Rf ,Rg). Let γ be an admissible path and let
Σ = {t0, ..., tn} be a partition of [0, 1]. Then, by Theorem 8,

n−1∑
i=0

dFD(γ(ti), γ(ti+1)) ≥ 1
2

n−1∑
i=0

dB(γ(ti), γ(ti+1)).

Since this is true for any partition Σ of any finite size n, it follows that

LdFD(γ) ≥ 1
2LdB(γ) ≥ 1

2 d̂B(Rf ,Rg).

Again, this inequality holds for any admissible path γ, so d̂B(Rf ,Rg) ≤ 2d̂FD(Rf ,Rg).
We now show that d̂FD(Rf ,Rg)/22 ≤ d̂B(Rf ,Rg). Let γ be an admissible path and Σ =
{t0, ..., tn} a partition of [0, 1]. We claim that there is a refinement of Σ (i.e. a partition
Σ′ = {t′0, ..., t′m} ⊇ Σ for some m ≥ n) such that dFD(γ(t′j), γ(t′j+1)) < max{ct′

j
, ct′

j+1
}/16

for all j ∈ {0, ...,m − 1}, where ct > 0 denotes the minimal distance between consecutive
critical values of γ(t). Indeed, since γ is continuous in dFD, for any t ∈ [0, 1] there exists
δt > 0 such that dFD(γ(t), γ(t′)) < ct/16 for all t′ ∈ [0, 1] with |t − t′| < δt. Consider the
open cover {(max{0, t− δt/2},min{1, t+ δt/2})}t∈[0,1] of [0, 1]. Since [0, 1] is compact, there

2 Provided the induced metrics are defined using the same class of admissible paths, hence our convention.
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exists a finite subcover containing all the intervals (ti − δti/2, ti + δti/2) for ti ∈ Σ. Assume
w.l.o.g. that this subcover is minimal (if it is not, then reduce the δti as much as needed).
Let then Σ′ = {t′0, ..., t′m} ⊇ Σ be the partition of [0, 1] given by the midpoints of the
intervals in this subcover, sorted by increasing order. Since the subcover is minimal, we have
t′j+1 − t′j < (δt′

j
+ δt′

j+1
)/2 < max{δt′

j
, δt′

j+1
} hence dFD(γ(t′j), γ(t′j+1)) < max{ct′

j
, ct′

j+1
}/16

for each j ∈ {0,m− 1}. It follows that

n−1∑
i=0

dFD(γ(ti), γ(ti+1)) ≤
m−1∑
j=0

dFD(γ(t′j), γ(t′j+1)) by the triangle inequality since Σ′ ⊇ Σ

≤ 22
m−1∑
j=0

dB(γ(t′j), γ(t′j+1)) by Theorem 9 with K = 1/22

≤ 22LdB(γ).

Since this is true for any partition Σ of any finite size n, it follows that

d̂FD(Rf ,Rg) ≤ LdFD(γ) ≤ 22LdB(γ).

Again, this inequality is true for any admissible path γ, so d̂FD(Rf ,Rg) ≤ 22 d̂B(Rf ,Rg). J

Theorem 17 implies in particular that d̂B is a true metric on Reeb graphs, as opposed to dB
which is only a pseudo-metric. Moreover, the simplification operator defined in Section 3.1.1
makes it possible to continuously deform any Reeb graph into a trivial segment-shaped graph
then into the empty graph. This shows that Reeb is path-connected in dFD. Since the length
of such continuous deformations is finite if the Reeb graph is finite, d̂FD and d̂B are finite
metrics. Finally, the global equivalence of d̂FD and d̂B yields the following:

I Corollary 18. The metrics d̂FD and d̂B induce the same topology on Reeb, which is a
refinement of the ones induced by dFD or dB.

I Remark. Note that the first inequality in (8) and, consequently, Corollary 18, are wrong if
one defines the admissible paths for d̂B to be the whole class of maps [0, 1]→ Reeb that are
continuous in dB – hence our convention. For instance, let us consider the two Reeb graphs Rf
and Rg of Figure 1 such that Dg(f) = Dg(g), and let us define γ : [0, 1]→ Reeb by γ(t) = Rf
if t ∈ [0, 1/2) and γ(t) = Rg if t ∈ [1/2, 1]. Then γ is continuous in dB while it is not in dFD
at 1/2 since dFD(Rf ,Rg) > 0. In this case, d̂B(Rf ,Rg) ≤ LdB(γ) = 0 < d̂FD(Rf ,Rg).

5 Discussion

In this article, we proved that the bottleneck distance, even though it is only a pseudo-
metric on Reeb graphs, can actually discriminate a Reeb graph from the other Reeb graphs
in a small enough neighborhood, as efficiently as the other metrics do. This theoretical
result legitimates the use of the bottleneck distance to discriminate between Reeb graphs in
applications. It also motivates the study of intrinsic metrics, which can potentially shed new
light on the structure of the space of Reeb graphs and open the door to new applications
where interpolation plays a key part. This work has raised numerous questions, some of
which we plan to investigate in the upcoming months:

Can the lower bound be improved? We believe that ε/22 is not optimal. Specifically, a
more careful analysis of the simplification operator should allow us to derive a tighter
upper bound than the one in Lemma 10, and improve the current lower bound on dB.
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1

1/2

1/4
1/8

0

1/16

· · ·

R1 R2 R3 R4

Figure 7 A sequence of Reeb graphs that is Cauchy but that does not converge in Reeb because
the number of critical values goes to +∞. Indeed, each Rn has n+ 2 critical values.

Do shortest paths exist in Reeb? The existence of shortest paths achieving d̂B is an
important question since a positive answer would enable us to define and study the
intrinsic curvature of Reeb. Moreover, characterizing and computing these shortest paths
would be useful for interpolating between Reeb graphs. The existence of shortest paths is
guaranteed if the space is complete and locally compact. Note that Reeb is not complete,
as shown by the counter-example of Figure 7. Hence, we plan to restrict the focus to the
subspace of Reeb graphs having at most N features with height at most H, for fixed but
arbitrary N,H > 0. We believe this subspace is complete and locally compact, like its
counterpart in the space of persistence diagrams [9].
Is Reeb an Alexandrov space? Provided shortest paths exist in Reeb (or in some subspace
thereof), we plan to determine whether the intrinsic curvature is bounded, either from
above or from below. This is interesting because barycenters in metric spaces with
bounded curvature enjoy many useful properties [25], and they can be approximated
effectively [24].
Can the local equivalence be extended to general metric spaces? We have reasons to
believe that our local equivalence result can be used to prove similar results for more
general classes of metric spaces than Reeb graphs. If true, this would shed new light on
inverse problems in persistence theory.

References
1 P. Agarwal, K. Fox, A. Nath, A. Sidiropoulos, and Y. Wang. Computing the Gromov-

Hausdorff Distance for Metric Trees. In Symp. Algo. Comput., 2015.
2 M. Alagappan. From 5 to 13: Redefining the Positions in Basketball. MIT Sloan Sports

Analytics Conference, 2012.
3 V. Barra and S. Biasotti. 3D Shape Retrieval and Classification using Multiple Kernel

Learning on Extended Reeb graphs. The Visual Computer, 30(11):1247–1259, 2014.
4 U. Bauer, X. Ge, and Y. Wang. Measuring Distance between Reeb Graphs. In Symp.

Comput. Geom., pages 464–473, 2014.
5 U. Bauer, X. Ge, and Y. Wang. Measuring Distance between Reeb Graphs (v2). CoRR,

abs/1307.2839v2, 2016.
6 U. Bauer, E. Munch, and Y. Wang. Strong Equivalence of the Interleaving and Functional

Distortion Metrics for Reeb Graphs. In Symp. Comput. Geom., 2015.
7 S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb Graphs for Shape Analysis

and Applications. Theo. Comp. Sci., 392(1-3):5–22, 2008.



M. Carrière and S. Oudot 25:15

8 H. Bjerkevik. Stability of Higher Dimensional Interval Decomposable Persistence Modules.
CoRR, abs/1609.02086, 2016.

9 A. Blumberg, I. Gall, M. Mandell, and M. Pancia. Robust Statistics, Hypothesis Test-
ing, and Confidence Intervals for Persistent Homology on Metric Measure Spaces. CoRR,
abs/1206.4581, 2012.

10 D. Burago, Y. Burago, and S. Ivanov. A Course in Metric Geometry, volume 33 of Graduate
Studies in Mathematics. AMS, Providence, RI, 2001.

11 G. Carlsson, V. de Silva, and D. Morozov. Zigzag Persistent Homology and Real-valued
Functions. In Symp. Comput. Geom., pages 247–256, 2009.

12 M. Carrière and S. Oudot. Structure and Stability of the 1-Dimensional Mapper. In Symp.
Comput. Geom., volume 51, pages 1–16, 2016.

13 Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The Structure and Stability
of Persistence Modules. Springer, 2016.

14 D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Extending persistence using Poincaré
and Lefschetz duality. Found. Comput. Math., 9(1):79–103, 2009.

15 Vin de Silva, Elizabeth Munch, and Amit Patel. Categorified Reeb Graphs. Discr. Comput.
Geom., 55:854–906, 2016.

16 B. di Fabio and C. Landi. The Edit Distance for Reeb Graphs of Surfaces. Discrete
Computational Geometry, 55(2):423–461, 2016.

17 M. Gameiro, Y. Hiraoka, and I. Obayashi. Continuation of Point Clouds via Persistence
Diagrams. Physica D, 334:118–132, 2016.

18 X. Ge, I. Safa, M. Belkin, and Y. Wang. Data Skeletonization via Reeb Graphs. In Neural
Inf. Proc. Sys., pages 837–845, 2011.

19 Alexandr Ivanov, Nadezhda Nikolaeva, and Alexey Tuzhilin. The Gromov-Hausdorff Met-
ric on the Space of Compact Metric Spaces is Strictly Intrinsic. Mathematical Notes,
100(6):947–950, 2016.

20 P. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson, M. Alagappan,
J. Carlsson, and G. Carlsson. Extracting insights from the shape of complex data using
topology. Scientific Reports, 3(1236), 2013.

21 W. Mohamed and A. Ben Hamza. Reeb graph path dissimilarity for 3d object matching
and retrieval. The Visual Computer, 28(3):305–318, 2012.

22 T. Mukasa, S. Nobuhara, A. Maki, and T. Matsuyama. Finding Articulated Body in Time-
Series Volume Data, pages 395–404. Springer Berlin Heidelberg, 2006.

23 M. Nicolau, A. Levine, and G. Carlsson. Topology based data analysis identifies a subgroup
of breast cancers with a unique mutational profile and excellent survival. Proceedings of
the National Academy of Science, 108(17):7265–7270, 2011.

24 S. Ohta. Gradient flows on Wasserstein spaces over compact Alexandrov spaces. American
Journal Mathematics, 131(2):475–516, 2009.

25 S. Ohta. Barycenters in Alexandrov spaces of curvature bounded below. Advances Geo-
metry, 12:571–587, 2012.

26 G. Reeb. Sur les points singuliers d’une forme de pfaff complètement intégrable ou d’une
fonction numérique. CR Acad. Sci. Paris, 222:847–849, 1946.

27 G. Singh, F. Mémoli, and G. Carlsson. Topological Methods for the Analysis of High
Dimensional Data Sets and 3D Object Recognition. In Symp. PB Graphics, 2007.

28 J. Tierny, J.-P. Vandeborre, and M. Daoudi. Invariant High Level Reeb Graphs of 3D
Polygonal Meshes. Symp. 3D Data Proc. Vis. Trans., pages 105–112, 2006.

SoCG 2017


	Introduction
	Background
	Morse-Type Functions
	Extended Persistence
	Reeb Graphs
	Distances for Reeb graphs

	Local Equivalence
	Proof of Theorem 9
	Graph Transformation
	Properties of the transformed graph


	Induced Intrinsic Metrics
	Discussion

