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Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carrière 1 Marco Cuturi 2 Steve Oudot 1

Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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nel for PDs, which we prove to be both stable and discrim-
inative. Specifically, we provide distortion bounds on the
SW distance that quantify its ability to mimic bottleneck
distances between PDs. This is in contrast to other kernels
for PDs, which only focus on stability. We also propose
a simple approximation algorithm to speed up the compu-
tation of that kernel, confirm experimentally its discrimi-
native power and show that it outperforms experimentally
both proposals of (Kusano et al., 2016) and (Reininghaus
et al., 2015) in several supervised classification problems.

2. Background on TDA and Kernels
We briefly review in this section relevant material on TDA,
notably persistence diagrams, and technical properties of
positive and negative definite kernel functions.

2.1. Persistent Homology

Persistent homology (Zomorodian & Carlsson, 2005;
Edelsbrunner & Harer, 2008; Oudot, 2015) is a technique
inherited from algebraic topology for computing stable sig-
natures on real-valued functions. Given f : X → R as
input, persistent homology outputs a planar point set with
multiplicities, called the persistence diagram of f and de-
noted by Dg f . See Figure 1 for an example. To under-
stand the meaning of each point in this diagram, it suffices
to know that, to compute Dg f , persistent homology con-
siders the family of sublevel sets of f , i.e. the sets of the
form f−1((−∞, t]) for t ∈ R, and it records the topolog-
ical events (e.g. creation or merge of a connected com-
ponent, creation or filling of a loop, void, etc.) that oc-
cur in f−1((−∞, t]) as t ranges from −∞ to +∞. Then,
each point p ∈ Dg f represents the lifespan of a particu-
lar topological feature (connected component, loop, void,
etc.), with its creation and destruction times as coordinates.
See again Figure 1 for an illustration.

For the interested reader, we point out that the mathemati-
cal tool used by persistent homology to track the topolog-
ical events in the family of sublevel sets is homological
algebra, which turns the parametrized family of sublevel
sets into a parametrized family of vector spaces and linear
maps. Computing persistent homology then boils down to
computing a family of bases for the vector spaces, which
are compatible with the linear maps.

Distance between PDs. We now define the pth diagram
distance between PDs. Let p ∈ N and Dg1,Dg2 be two
PDs. Let Γ : Dg1 ⊇ A → B ⊆ Dg2 be a partial bijection
between Dg1 and Dg2. Then, for any point x ∈ A, the
cost of x is defined as c(x) := ‖x − Γ(x)‖p∞, and for any
point y ∈ (Dg1 t Dg2) \ (A t B), the cost of y is defined
as c′(y) := ‖y − π∆(y)‖p∞, where π∆ is the projection
onto the diagonal ∆ = {(x, x) | x ∈ R}. The cost c(Γ)

is defined as: c(Γ) := (
∑
x c(x) +

∑
y c
′(y))1/p. We then

define the pth diagram distance dp as the cost of the best
partial bijection between the PDs:

dp(Dg1,Dg2) = inf
Γ

c(Γ).

In the particular case p = +∞, the cost of Γ is defined
as c(Γ) := max{maxx δ(x) + maxy δ

′(y)}. The corre-
sponding distance d∞ is often called the bottleneck dis-
tance. One can show that dp → d∞ when p → +∞. A
fundamental property of PDs is their stability with respect
to (small) perturbations of their originating functions. In-
deed, the stability theorem (Bauer & Lesnick, 2015; Chazal
et al., 2009a; 2016; Cohen-Steiner et al., 2007) asserts that
for any f, g : X → R, we have

d∞(Dg f, Dg g) ≤ ‖f − g‖∞, (1)

See again Figure 1 for an illustration.

In practice, PDs can be used as descriptors for data via the
choice of appropriate filtering functions f , e.g. distance to
the data in the ambient space, eccentricity, curvature, etc.
The main strengths of the obtained descriptors are: (a) to
be provably stable as mentioned previously; (b) to be in-
variant under reparametrization of the data; and (c) to en-
code information about the topology of the data, which is
complementary and of an essentially different nature com-
pared to geometric or statistical quantities. These proper-
ties have made persistence diagrams useful in a variety of
contexts, including the ones mentioned in the introduction
of the paper. For further details on persistent homology and
on applications of PDs, the interested reader can refer e.g.
to (Oudot, 2015) and the references therein.

2.2. Kernel Methods

Positive Definite Kernels. Given a set X , a function
k : X × X → R is called a positive definite kernel if
for all integers n, for all families x1, ..., xn of points in
X , the matrix [k(xi, xj)]i,j is itself positive semi-definite.
For brevity we will refer to positive definite kernels as
kernels in the rest of the paper. It is known that kernels
generalize scalar products, in the sense that, given a ker-
nel k, there exists a Reproducing Kernel Hilbert Space
(RKHS) Hk and a feature map φ : X → Hk such that
k(x1, x2) = 〈φ(x1), φ(x2)〉Hk . A kernel k also induces a
distance dk on X that can be computed as the Hilbert norm
of the difference between two embeddings:

d2
k(x1, x2)

def.
= k(x1, x1) + k(x2, x2)− 2 k(x1, x2).

We will be particularly interested in this distance, since one
of the goals we will aim for will be that of designing a ker-
nel k for persistence diagrams such that dk has low distor-
tion with respect to d1.
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Figure 1. Sketch of persistent homology: (a) the horizontal lines are the boundaries of sublevel sets f((−∞, t]), which are colored in
decreasing shades of grey. The vertical dotted lines are the boundaries of their different connected components. For instance, a new
connected component is created in the sublevel set f−1((−∞, t]) when t = f(p), and it is merged (destroyed) when t = f(s); its
lifespan is represented by a copy of the point with coordinates (f(p), f(s)) in the persistence diagram of f (Figure (c)); (b) a piecewise-
linear approximation g (blue) of the function f (red) from sampled values; (c) superposition of Dg f (red) and Dg g (blue), showing the
partial matching of minimum cost (magenta) between the two persistence diagrams.

Negative Definite and RBF Kernels. A standard way
to construct a kernel is to exponentiate the negative of a
Euclidean distance. Indeed, the Gaussian kernel for vec-
tors with parameter σ > 0 does follow that template ap-
proach: kσ(x, y) = exp

(
−‖x−y‖

2

2σ2

)
. An important theo-

rem of Berg et al. (1984) (Theorem 3.2.2, p.74) states that
such an approach to build kernels, namely setting

kσ(x, y)
def.
= exp

(
−f(x, y)

2σ2

)
,

for an arbitrary function f can only yield a valid positive
definite kernel for all σ > 0 if and only if f is a nega-
tive semi-definite function, namely that, for all integers n,
∀x1, ..., xn ∈ X , ∀a1, ..., an ∈ Rn such that

∑
i ai = 0,∑

i,j aiajf(xi, xj) ≤ 0.

Unfortunately, as observed in Appendix A of Reininghaus
et al. (2014), d1 is not negative semi-definite (it only suf-
fices to sample a family of point clouds to observe experi-
mentally that more often than not the inequality above will
be violated for a particular weight vector a). In this article,
we use an approximation of d1 with the Sliced Wasserstein
distance, which is provably negative semi-definite, and we
use it to define a RBF kernel that can be easily tuned thanks
to its bandwidth parameter σ.

2.3. Wasserstein distance for unnormalized measures
on R

The Wasserstein distance (Villani, 2009, §6) is a distance
between probability measures. For reasons that will be-
come clear in the next section, we will focus on a variant of
that distance: the 1-Wasserstein distance for nonnegative,
not necessarily normalized, measures on the real line (San-
tambrogio, 2015, §2). Let µ and ν be two nonnegative mea-

sures on the real line such that |µ| = µ(R) and |ν| = ν(R)
are equal to the same number r. We define the three fol-
lowing objects:

W(µ, ν) = inf
P∈Π(µ,ν)

∫∫
R×R
|x− y|P (dx,dy) (2)

Qr(µ, ν) = r

∫
R
|M−1(x)−N−1(x)|dx (3)

L(µ, ν) = inf
f∈1−Lipschitz

∫
R
f(x)[µ(dx)− ν(dx)] (4)

where Π(µ, ν) is the set of measures on R2 with marginals
µ and ν, and M−1 and N−1 the generalized quantile func-
tions of the probability measures µ/r and ν/r respectively.

Proposition 2.1. We haveW = Qr = L. Additionally (i)
Qr is negative definite on the space of measures of mass r;
(ii) for any three positive measures µ, ν, γ such that |µ| =
|ν|, we have L(µ+ γ, ν + γ) = L(µ, ν).

Equation (2) is the generic Kantorovich formulation of op-
timal transport, which is easily generalized to other cost
functions and spaces, the variant being that we consider an
unnormalized mass by reflecting it directly in the set Π.
The equality between (2) and (3) is only valid for proba-
bility measures on the real line. Because the cost function
| · | is homogeneous, we see that the scaling factor r can be
removed when considering the quantile function and mul-
tiplied back. The equality between (2) and (4) is due to the
well known Kantorovich duality for a distance cost (Vil-
lani, 2009, Particular case 5.4) which can also be trivially
generalized to unnormalized measures, proving therefore
the main statement of the proposition. The definition of
Qr shows that the Wasserstein distance is the l1 norm of
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rM−1 − rN−1, and is therefore a negative definite kernel
(as the l1 distance between two direct representations of µ
and ν as functions rM−1 and rN−1), proving point (i).
The second statement is immediate.

We conclude with an important practical remark: for two
unnormalized uniform empirical measures µ =

∑n
i=1 δxi

and ν =
∑n
i=1 δyi of the same size, with ordered x1 ≤

· · · ≤ xn and y1 ≤ · · · ≤ yn, one has: L(µ, ν) =∑n
i=1 |xi−yi| = ‖X−Y ‖1, whereX = (x1, ..., xn) ∈ Rn

and Y = (y1, ..., yn) ∈ Rn.

3. The Sliced Wasserstein Kernel
In this section we define a new kernel between PDs, called
the Sliced Wasserstein (SW) kernel, based on the Sliced
Wasserstein metric of Rabin et al. (2011). The idea un-
derlying this metric is to slice the plane with lines passing
through the origin, to project the measures onto these lines
whereW is computed, and to integrate those distances over
all possible lines. Formally:
Definition 3.1. Given θ ∈ R2 with ‖θ‖2 = 1, let L(θ)
denote the line {λ θ | λ ∈ R}, and let πθ : R2 → L(θ)
be the orthogonal projection onto L(θ). Let Dg1,Dg2

be two PDs, and let µθ1 :=
∑
p∈Dg1

δπθ(p) and µθ1∆ :=∑
p∈Dg1

δπθ◦π∆(p), and similarly for µθ2, where π∆ is the
orthogonal projection onto the diagonal. Then, the Sliced
Wasserstein distance is defined as:

SW(Dg1,Dg2)
def.
=

1

2π

∫
S1

W(µθ1 + µθ2∆, µ
θ
2 + µθ1∆)dθ.

Note that, by symmetry, one can restrict on the half-circle
[−π2 , π2 ] and normalize by π instead of 2π. SinceQr is neg-
ative semi-definite, we can deduce that SW itself is nega-
tive semi-definite:
Lemma 3.2. Let X be the set of bounded and finite PDs.
Then, SW is negative semi-definite on X .

Proof. Let n ∈ N∗, a1, ..., an ∈ R such that
∑
i ai = 0 and

Dg1, ...,Dgn ∈ X . Given 1 ≤ i ≤ n, we let µ̃θi := µθi +∑
q∈Dgk,k 6=i

δπθ◦π∆(q), µ̃θij∆ :=
∑
p∈Dgk,k 6=i,j

δπθ◦π∆(p)

and d =
∑
i |Dgi|. Then:∑

i,j

aiajW(µθi + µθj∆, µ
θ
j + µθi∆)

=
∑
i,j

aiajL(µθi + µθj∆, µ
θ
j + µθi∆)

=
∑
i,j

aiajL(µθi + µθj∆ + µθij∆, µ
θ
j + µθi∆ + µθij∆)

=
∑
i,j

aiajL(µ̃θi , µ̃
θ
j ) =

∑
i,j

aiajQd(µ̃θi , µ̃θj ) ≤ 0

The result follows by linearity of integration.

Hence, the theorem of Berg et al. (1984) allows us to define
a valid kernel with:

kSW(Dg1,Dg2)
def.
= exp

(
−SW(Dg1,Dg2)

2σ2

)
. (5)

Metric equivalence. We now give the main theoretical
result of this article, which states that SW is equivalent
to d1. This has to be compared with (Reininghaus et al.,
2015) and (Kusano et al., 2016), which only prove stabil-
ity and injectivity. Our equivalence result states that the
kSW, in addition to be stable and injective, also preserves
the metric between PDs, which should intuitively lead to
an improvement of the classification power. This intuition
is illustrated in Section 4 and Figure 4, where we show an
improvement of classification accuracies on several bench-
mark applications.

Theorem 3.3. Let X be the set of bounded PDs with car-
dinalities bounded by N ∈ N∗. Let Dg1,Dg2 ∈ X . Then,
one has:

d1(Dg1,Dg2)

2M
≤ SW(Dg1,Dg2) ≤ 2

√
2d1(Dg1,Dg2),

where M = 1 + 2N(2N − 1).

Proof. Let sθ : Dg1 ∪π∆(Dg2)→ Dg2 ∪π∆(Dg1) be the
one-to-one bijection between Dg1 ∪ π∆(Dg2) and Dg2 ∪
π∆(Dg1) induced by W(µθ1 + µθ2∆, µ

θ
2 + µθ1∆), and let s

be the one-to-one bijection between Dg1 ∪ π∆(Dg2) and
Dg2 ∪ π∆(Dg1) induced by the partial bijection achieving
d1(Dg1,Dg2).

Upper bound. Recall that ‖θ‖2 = 1. We have:

W(µθ1 + µθ2∆, µ
θ
2 + µθ1∆) =

∑
|〈p− sθ(p), θ〉|

≤
∑
|〈p− s(p), θ〉| ≤

√
2
∑
‖p− s(p)‖∞

≤ 2
√

2d1(Dg1,Dg2),

where the sum is taken over all p ∈ Dg1 ∪ π∆(Dg2). The
upper bound follows by linearity.

Lower bound. The idea is to use the fact that sθ is a
piecewise-constant function of θ, and that it has at most
2+2N(2N −1) critical values Θ0, ...,ΘM in [−π2 , π2 ]. In-
deed, it suffices to look at all θ such that 〈p1−p2, θ〉 = 0 for
some p1, p2 in Dg1 ∪ π∆(Dg2) or Dg2 ∪ π∆(Dg1). Then:∫ Θi+1

Θi

∑
|〈p− sθ(p), θ〉|dθ

=
∑
‖p− sΘi(p)‖2

∫ Θi+1

Θi

|cos(∠(p− sΘi(p), θ))|dθ

≥
∑
‖p− sΘi(p)‖2(Θi+1 −Θi)

2/2π

≥ (Θi+1 −Θi)
2d1(Dg1,Dg2)/2π,
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where the sum is again taken over all p ∈ Dg1 ∪ π∆(Dg2),
and where the inequality used to lower bound the integral
of the cosine is obtained by concavity. The lower bound
follows then from the Cauchy-Schwarz inequality.

Note that the lower bound depends on the cardinalities of
the PDs, and it becomes close to 0 if the PDs have a large
number of points. On the other hand, the upper bound is
oblivious to the cardinality. A corollary of Theorem 3.3
is that dkSW

, the distance induced by kSW in its RKHS, is
also equivalent to d1 in a broader sense: there exist con-
tinuous, positive and monotone functions g, h such that
g(0) = h(0) = 0 and g ◦ d1 ≤ dkSW

≤ h ◦ d1.

When the condition on the cardinalities of PDs is re-
laxed, e.g. when we only assume the PDs to be finite and
bounded, with no uniform bound, the feature map φSW as-
sociated to kSW remains continuous and injective w.r.t. d1.
This means that kSW can be turned into a universal kernel
by considering exp(kSW) (cf Theorem 1 in (Kwitt et al.,
2015)). This can be useful in a variety of tasks, including
tests on distributions of PDs.

Computation. In practice, we propose to approximate
kSW in O(N log(N)) time using Algorithm 1. This algo-
rithm first samples M directions in the half-circle S+

1 ; it
then computes, for each sample θi and for each PD Dg,
the scalar products between the points of Dg and θi, to sort
them next in a vector Vθi(Dg). Finally, the `1-norm be-
tween the vectors is averaged over the sampled directions:
SWM (Dg1,Dg2) = 1

M

∑M
i=1 ‖Vθi(Dg1) − Vθi(Dg2)‖1.

Note that one can easily adapt the proof of Lemma 3.2 to
show that SWM is negative semi-definite by using the lin-
earity of the sum. Hence, this approximation remains a
kernel. If the two PDs have cardinalities bounded by N ,
then the running time of this procedure is O(MN log(N)).
This approximation of kSW is useful since, as shown in
Section 4, we have observed empirically that just a few
directions are sufficient to get good classification accura-
cies. Note that the exact computation of kSW is also pos-
sible in O(N2log(N)) time using the algorithm described
in (Carrière et al., 2017).

4. Experiments
In this section, we compare kSW to kPSS and kPWG on
several benchmark applications for which PDs have been
proven useful. We compare these kernels in terms of clas-
sification accuracies and computational cost. We review
first our experimental setting, and then all our tasks.

Experimental setting All kernels are handled with
the LIBSVM (Chang & Lin, 2011) implementation
of C-SVM, and results are averaged over 10 runs
on a 2.4GHz Intel Xeon E5530 Quad Core. The

Algorithm 1 Computation of SWM

Input: Dg1 = {p1
1 ... p

1
N1
}, Dg2 = {p2

1 ... p
2
N2
},M .

Add π∆(Dg1) to Dg2 and vice-versa.
Let SWM = 0; θ = −π/2; s = π/M ;
for i = 1 ... M do

Store the products 〈p1
k, θ〉 in an array V1;

Store the products 〈p2
k, θ〉 in an array V2;

Sort V1 and V2 in ascending order;
SWM = SWM + s‖V1 − V2‖1;
θ = θ + s;

end for
Output: (1/π)SWM ;

TASK TRAINING TEST LABELS
ORBIT 175 75 5
TEXTURE 240 240 24
HUMAN 415 1618 8
AIRPLANE 300 980 4
ANT 364 1141 5
BIRD 257 832 4
FOURLEG 438 1097 6
OCTOPUS 334 1447 2
FISH 304 905 3

Table 1. Number of instances in the training set, the test set and
number of labels of the different applications.

cost factor C is cross-validated in the following grid:
{0.001, 0.01, 0.1, 1, 10, 100, 1000}. Table 1 summarizes
the number of labels, and the number of training and test in-
stances for each task. Figure 2 illustrate how we use PDs to
represent complex data. We first describe the two baselines
we considered, along with their parameterization, followed
by our proposal.

PSS. The Persistence Scale Space kernel kPSS (Reining-
haus et al., 2015) is defined as the scalar product of
the two solutions of the heat diffusion equation with ini-
tial Dirac sources located at the PD points. It has the
following closed form expression: kPSS(Dg1,Dg2) =

1
8πt

∑
p∈Dg1

∑
q∈Dg2

exp
(
−‖p−q‖

2

8t

)
− exp

(
−‖p−q̄‖

2

8t

)
,

where q̄ = (y, x) is the symmetric of q = (x, y) along the
diagonal. Since there is no clear heuristic on how to tune
t, this parameter is chosen in the applications by ten-fold
cross-validation with random 50%-50% training-test splits
and with the following set of NPSS = 13 values: 0.001,
0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500 and 1000.

PWG. Let K, p, ρ be positive parameters. Let kρ
be the Gaussian kernel with parameter ρ and associ-
ated RKHS Hρ. Let Dg1,Dg2 be two PDs, and let
µ1 :=

∑
x∈Dg1

arctan(Kd∞(x,∆)p)kρ(·, x) ∈ Hρ
be the kernel mean embedding of Dg1 weigthed by
the diagonal distances. Let µ2 be defined similarly.
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TASK kPSS (10−3) kPWG (103) kSW (6) kPSS (10−3) kPWG (103) kSW (6) −NC
ORBIT 63.6± 1.2 77.7± 1.2 83.7± 0.5 N(124± 8.4) N(144± 14) 415± 7.9
TEXTURE 98.8± 0.0 95.8± 0.0 96.1± 0.4 N(165± 27) N(101± 9.6) 482± 68

TASK kPSS kPWG kSW kPSS kPWG kSW −NC kSW (10) −NC
HUMAN 68.5± 2.0 64.2± 1.2 74.0± 0.2 N(29± 0.3) N(318± 22) 2270± 336 107± 14
AIRPLANE 65.4± 2.4 61.3± 2.9 72.6± 0.2 N(0.8± 0.03) N(5.6± 0.02) 44± 5.4 10± 1.6
ANT 86.3± 1.0 87.4± 0.5 92.3± 0.2 N(1.7± 0.01) N(12± 0.5) 92± 2.8 16± 0.4
BIRD 67.7± 1.8 72.0± 1.2 67.0± 0.5 N(0.5± 0.01) N(3.6± 0.02) 27± 1.6 6.6± 0.8
FOURLEG 67.0± 2.5 64.0± 0.6 73.0± 0.4 N(10± 0.07) N(113± 13) 604± 25 52± 3.2
OCTOPUS 77.6± 1.0 78.6± 1.3 85.2± 0.5 N(1.4± 0.01) N(11± 0.8) 75± 1.4 14± 2.1
FISH 76.1± 1.6 79.8± 0.5 75.0± 0.4 N(1.2± 0.004) N(9.6± 0.03) 72± 4.8 12± 1.1

Table 2. Classification accuracies (%) and Gram matrices computation time (s) for the benchmark applications. As explained in the
text, N represents the size of the set of possible parameters, and we have N = 13 for kPSS, N = 5 × 5 × 5 = 125 for kPWG and
N = 3× 5 = 15 for kSW. C is a constant that depends only on the training size. In all our applications, it is less than 0.1s.

Label = Canvas Label = Carpet

Label = Foot

Label = Head

Label = 2

Label = 1

Figure 2. Examples of PDs computed on orbits, texture images and 3D shapes.

Let τ > 0. The Persistence Weighted Gaussian ker-
nel kPWG (Kusano et al., 2016; 2017) is defined as
kPWG(Dg1,Dg2) = exp

(
−‖µ1−µ2‖Hρ

2τ2

)
, i.e. the

Gaussian kernel with parameter τ on Hρ. The authors
in (Kusano et al., 2016) provide heuristics to compute
K, ρ and τ and give a rule of thumb to tune p. Hence,
in the applications we select p according to the rule of
thumb, and we use ten-fold cross-validation with random
50%-50% training-test splits to chose K, ρ and τ . The
ranges of possible values is obtained by multiplying the
values computed with the heuristics with the following
range of 5 factors: 0.01, 0.1, 1, 10 and 100, leading to
NPWG = 5× 5× 5 = 125 different sets of parameters.

Parameters for kSW. The kernel we propose has only
one parameter, the bandwidth σ in Eq. (5), which we
choose using ten-fold cross-validation with random 50%-
50% training-test splits. The range of possible values is
obtained by computing the squareroot of the median, the
first and the last deciles of all SW(Dgi,Dgj) in the train-
ing set, then by multiplying these values by the following
range of 5 factors: 0.01, 0.1, 1, 10 and 100, leading to
NSW = 5× 3 = 15 possible values.

Parameter Tuning. The bandwidth of kSW is, in practice,
easier to tune than the parameters of its two competitors
when using grid search. Indeed, as is the case for all in-
finitely divisible kernels, the Gram matrix does not need to
be recomputed for each choice of σ, since it only suffices
to compute all the Sliced Wasserstein distances between
PDs in the training set once. On the contrary, neither kPSS

nor kPWG share this property, and require recomputations
for each hyperparameter choice. Note however that this
improvement may no longer hold if one uses other meth-
ods to tune parameters. For instance, using kPWG without
cross-validation is possible with the heuristics given by the
authors in (Kusano et al., 2016), and leads to smaller train-
ing times, but also to worse accuracies.

4.1. 3D shape segmentation

Our first task, whose goal is to produce point classifiers for
3D shapes, follows that presented in (Carrière et al., 2015).

Data. We use some categories of the mesh segmentation
benchmark of Chen et al. (Chen et al., 2009), which con-
tains 3D shapes classified in several categories (“airplane”,
“human”, “ant”...). For each category, our goal is to design
a classifier that can assign, to each point in the shape, a



Sliced Wasserstein Kernel for Persistence Diagrams

1 2 3 4 5 6 7 8 9 10 11 12100

Number of directions

0

0.5

1

1.5

2

lo
g
( 

S
W

 a
p
p
ro

x
 /
 S

W
 e

x
a
c
t 
)

1 2 3 4 5 6 7 8 9 10 11 12100

Number of directions

-1.5

-1

-0.5

0

0.5

lo
g

( 
S

W
 a

p
p

ro
x
 /

 S
W

 e
x
a

c
t 

)

Figure 3. The first row corresponds to the orbit recognition and the texture classification while the second row corresponds to 3D shape
segmentation. On each row, the left plot shows the dependence of the accuracy on the number of directions, the middle plot shows the
dependence of a single Gram matrix computation time, and the right plot shows the dependence of the ratio of the approximation of SW
and the exact SW. Since the box plot of the ratio for orbit recognition is very similar to that of 3D shape segmentation, we only give the
box plot of texture classification in the first row.

label that describes the relative location of that point in the
shape. For instance, possible labels are, for the human cate-
gory, “head”, “torso”, “arm”... To train classifiers, we com-
pute a PD per point using the geodesic distance function to
this point—see (Carrière et al., 2015) for details. We use
1-dimensional persistent homology (0-dimensional would
not be informative since the shapes are connected, leading
to solely one point with coordinates (0,+∞) per PD). For
each category, the training set contains one hundredth of
the points of the first five 3D shapes, and the test set con-
tains one hundredth of the points of the remaining shapes
in that category. Points in training and test sets are evenly
sampled. See Figure 2. Here, we focus on comparison
between PDs, and not on achieving state-of-the-art results.
It has been proven that PDs bring complementary infor-
mation to classical descriptors in this task—see (Carrière
et al., 2015), hence reinforcing their discriminative power
with appropriate kernels is of great interest. Finally, since
data points are in R3, we set the p parameter of kPWG to 5.

Results. Classification accuracies are given in Table 2. For
most categories, kSW outperforms competing kernels by a
significant margin. The variance of the results over the run
is also less than that of its competitors. However, train-
ing times are not better in general. Hence, we also provide
the results for an approximation of kSW with 10 directions.
As one can see from Table 2 and from Figure 3, this ap-
proximation leaves the accuracies almost unchanged, while
the training times become comparable with the ones of the

other competitors. Moreover, according to Figure 3, using
even less directions would slightly decrease the accuracies,
but still outperform the competitors performances, while
decreasing even more the training times.

4.2. Orbit recognition

In our second experiment, we use synthetized data. The
goal is to retrieve parameters of dynamical system orbits,
following an experiment proposed in (Adams et al., 2017).

Data. We study the linked twist map, a discrete dynamical
system modeling fluid flow. It was used in (Hertzsch et al.,
2007) to model flows in DNA microarrays. Its orbits can
be computed given a parameter r > 0 and initial positions
(x0, y0) ∈ [0, 1]× [0, 1] as follows:

{
xn+1 = xn + ryn(1− yn) mod 1
yn+1 = yn + rxn+1(1− xn+1) mod 1

Depending on the values of r, the orbits may exhibit
very different behaviors. For instance, as one can see in
Figure 2, when r is 2, there seems to be no interesting
topological features in the orbit, while voids form when r
is 1. Following (Adams et al., 2017), we use 5 different
parameters r = 2.5, 3.5, 4, 4.1, 4.3, that act as labels. For
each parameter, we generate 100 orbits with 1000 points
and random initial positions. We then compute the PDs of
the distance functions to the point clouds with the GUDHI
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library (The GUDHI Project, 2015) and we use them (in all
homological dimensions) to produce an orbit classifier that
predicts the parameter values, by training over a 70%-30%
training-test split of the data. Since data points are in R2,
we set the p parameter of kPWG to 4.

Results. Since the PDs contain thousands of points, we use
kernel approximations to speed up the computation of the
Gram matrices. In order for the approximation error to be
bounded by 10−3, we use an approximation of kSW with 6
directions (as one can see from Figure 3, this has a small
impact on the accuracy), we approximate kPWG with 1000
random Fourier features (Rahimi & Recht, 2008), and we
approximate kPSS using Fast Gauss Transform (Morariu
et al., 2009) with a normalized error of 10−10. One can see
from Table 2 that the accuracy is increased a lot with kSW.
Concerning training times, there is also a large improve-
ment since we tune the parameters with grid search. In-
deed, each Gram matrix needs not be recomputed for each
parameter when using kSW.

4.3. Texture classification

Our last experiment is inspired from (Reininghaus et al.,
2015) and (Li et al., 2014). We use the OUTEX00000 data
base (Ojala et al., 2002) for texture classification.

Data. PDs are obtained for each texture image by com-
puting first the sign component of CLBP descriptors (Guo
et al., 2010) with radius R = 1 and P = 8 neighbors
for each image, and then compute the persistent homology
of this descriptor using the GUDHI library (The GUDHI
Project, 2015). See Figure 2. Note that, contrary to the
experiment of (Reininghaus et al., 2015), we do not down-
sample the images to 32× 32 images, but keep the original
128 × 128 images. Following (Reininghaus et al., 2015),
we restrict the focus to 0-dimensional persistent homology.
We also use the first 50%-50% training-test split given in
the database to produce classifiers. Since data points are in
R2, we set the p parameter of kPWG to 4.

Results We use the same approximation procedure as in
Section 4.2. According to Figure 3, even though the ap-
proximation of SW is rough, this has again a small impact
on the accuracy, while reducing the training time by a sig-
nificant margin. As one can see from Table 2, using kPSS

leads to almost state-of-the-art results (Ojala et al., 2002;
Guo et al., 2010), closely followed by the accuracies of
kSW and kPWG. The best timing is given by kSW, again
because we use grid search. Hence, kSW almost achieves
the best result, and its training time is better than the ones
of its competitors, due to the grid search parameter tuning.

Metric Distortion. To illustrate the equivalence theorem,
we also show in Figure 4 a scatter plot where each point
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Figure 4. We show how the metric d1 is distorted. Each point rep-
resents a pair of PDs and its abscissae is the first diagram distance
between them. Depending on the point color, its ordinate is the
logarithm of the distance between PDs in the RKHS induced by
either kPSS (blue points), kPWG (green points), kSW (red points)
and a Gaussian kernel on d1 (black points).

represents the comparison of two PDs taken from the Air-
plane segmentation data set. Similar plots can be obtained
with the other datasets considered here. For all points, the
x-axis quantifies the first diagram distance d1 for that pair,
while the y-axis is the logarithm of the RKHS distance in-
duced by either kSW, kPSS, kPWG or a Gaussian kernel
directly applied to d1, to obtain comparable quantities. We
use the parameters given by the cross-validation procedure
described above. One can see that the distances induced
by kSW are less spread than the others, suggesting that the
metric induced by kSW is more discriminative. Moreover
the distances given by kSW and the Gaussian kernel on d1

exhibit the same behavior, suggesting that kSW is the best
natural equivalent of a Gaussian kernel for PDs.

5. Conclusion
In this article, we introduce the Sliced Wasserstein kernel,
a new kernel for PDs that is provably equivalent to the first
diagram distance between PDs. We provide fast algorithms
to approximate it, and show on several datasets substantial
improvements in accuracy and training times (when tuning
parameters is done with grid search) over competing ker-
nels. A particularly appealing property of that kernel is that
it is infinitely divisible, substantially facilitating the tuning
of parameters through cross validation.
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