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Structure and Stability of the 1-Dimensional Mapper

Mathieu Carriere, Steve Oudot

Abstract

Given a continuous function f : X — R and a cover T of its image by intervals, the Mapper is the nerve
of a refinement of the pullback cover f~!(Z). Despite its success in applications, little is known about
the structure and stability of this construction from a theoretical point of view. As a pixelized version
of the Reeb graph of f, it is expected to capture a subset of its features (branches, holes), depending on
how the interval cover is positioned with respect to the critical values of the function. Its stability should
also depend on this positioning. We propose a theoretical framework that relates the structure of the
Mapper to the one of the Reeb graph, making it possible to predict which features will be present and
which will be absent in the Mapper given the function and the cover, and for each feature, to quantify its
degree of (in-)stability. Using this framework, we can derive guarantees on the structure of the Mapper,
on its stability, and on its convergence to the Reeb graph as the granularity of the cover Z goes to zero.

1 Introduction

Many data sets nowadays come in the form of point clouds with function values attached to the points.
Such data may come either from direct measurements (e.g. think of a sensor field measuring some physical
quantity like temperature or humidity), or as a byproduct of some data analysis pipeline (e.g. think of a word
function in the quantization phase of the bag-of-words model). There is a need for summarizing such data
and for uncovering their inherent structure, to enhance further processing steps and to ease interpretation.

One way of characterizing the structure of a scalar field f : X — R is to look at the evolution of the
topology of its level sets—i.e. sets of the form f~1({a}), for a ranging over R. This information is summarized
in a mathematical object called the Reeb graph of the pair (X, f), denoted by R¢(X) and defined as the
quotient space obtained by identifying the points of X that lie in the same connected component of the same
level set of f [31I]. The Reeb graph is known to be a graph (technically, a multi-graph) when X is a smooth
manifold and f is a Morse function, or more generally when f is of Morse type (see Deﬁnition. Moreover,
since the map f is constant over equivalence classes, there is a well-defined induced map on Ry (X).

The connection between the topology of the Reeb graph and the one of its originating pair (X, f) has
been the object of much study in the past and is now well understood. It has gained increasing interest in
the recent years, with the introduction of persistent homology [25] and its extended version [Ig]. Indeed,
the extended persistence diagram of the induced map f (see Section |2 for a formal definition) describes the
structure of the Reeb graph in the following sense. It takes the form of a multiset of points in the plane, where
each point is matched with a feature (branch or hole) of the Reeb graph in a one-to-one manner. Furthermore,
the coordinates of the point characterize the span of the feature, that is, the interval of R spanned by its
image under f. The vertical distance of the point to the diagonal A = {(x,z) : € R} measures the length of
that interval and thereby quantifies the prominence of the feature. Thus, the extended persistence diagram
plays the role of a “bag-of-features” type signature, summarizing the Reeb graph through its list of features
together with their spans, and forgetting about the actual layout of those features.

One issue with the Reeb graph is its computation. Indeed, when the pair (X, f) is known only through a
finite set of measurements, the graph can only be approximated within a certain error. Quantifying this error,
in particular finding the right metric in which to measure it, has been the object of intense investigation in
the recent years. A simple choice is to use the bottleneck distance between the extended persistence diagram
associated to the Reeb graph and the one associated to its approximation [I7]. This pseudometric treats
the Reeb graph and its approximation as bags of features, and it measures the differences between their



respective sets of features. In particular, it is oblivious to the layouts of the features in each of the graphs.
Other distances have been proposed recently, to capture a greater part of this layout [4l 5] 20].

Building approximations from finite point samples with scalar values is a problem in its own right. A
natural approach is to build a simplicial complex (for instance the Rips complez) on top of the point samples,
to serve as a proxy for the underlying continuous space; then, to extend the scalar values at the vertices to
a piecewise-linear (PL) function over the simplicial complex by linear interpolation; finally, to apply some
exact computation algorithm for PL functions. This is the approach advocated by Dey and Wang [23], who
rely on the O(nlogn) expected time algorithm of Harvey, Wenger and Wang [26] for the last step. The
drawbacks of this approach are:

e Its relative complexity: the Reeb graph computation from the PL function is based on collapses of
its simplicial domain that may break the complex structure temporarily and therefore require some
repairs.

e Its overall computational cost: here, n is not the number of data points, but the number of vertices,
edges and triangles of the Rips complex, which, in principle, can be up to cubic in the number of data
points. Indeed, triangles are needed to compute an approximation of the Reeb graph, in the same way
as they are to compute 1-dimensional homology.

The Mappevﬂ was introduced by Singh, Mémoli and Carlsson [32] as a new mathematical object to
summarize the topological structure of a pair (X, f : X — R%). Its construction depends on the choice of a
cover Z of the image of f by open sets. Pulling back Z through f gives an open cover of the domain X. This
cover may have some elements that are disconnected, so it is refined into a connected cover by splitting each
element into its various connected components. Then, the Mapper is defined as the nerve of the connected
cover, having one vertex per element, one edge per pair of intersecting elements, and more generally, one
k-simplex per non-empty (k + 1)-fold intersection. From a philosophical point of view, the Mapper can be
thought of as a pizelized version of the Reeb space, where the resolution is prescribed by the cover Z. From
a practical point of view, its construction from point cloud data is very easy to describe and to implement,
using standard graph traversals to detect connected components. Furthermore, it only requires to build the
1-skeleton graph of the Rips complex, whose size scales up at worst quadratically (and not cubically) with
the size of the input point cloud.

As a simple alternative to the Reeb space, the Mapper has been the object of much interest by practition-
ers in the data sciences. It has played a key role in several success stories, such as the identification of a new
subgroup of breast cancers [30], or the elaboration of a new classification of player positions in the NBA [1],
due to its ability to deal with very general functions and datasets. Meanwhile, it has become the flagship
component in the software suite developed by Ayasdi, a data analytics company founded in the late 2000’s
whose interest is to promote the use of topological methods in the data sciences. Somewhat surprisingly,
despite this success, very little is known to date about the structure of the Mapper and its stability with
respect to perturbations of the pair (X, f) or of the cover Z. Intuitively, when f is scalar, as a pixelized
version of the Reeb graph, the Mapper should capture some of its features (branches, holes) and miss others,
depending on how the cover Z is positioned with respect to the critical values of f. How can we formalize
this phenomenon? The stability of the structure of the Mapper should also depend on this positioning. How
can we quantify it? These are the questions addressed in this article.

Contributions. We draw an explicit connection between the Mapper and the Reeb graph, from which we
derive guarantees on the structure of the Mapper and quantities to measure its stability. Specifically:

e The connection happens through an intermediate object, called the MultiNerve Mapper, which we
define as the multinerve of the connected pullback cover in the sense of [I9]. The Mapper and its
MultiNerve variant are related through the usual Nerve-vs-MultiNerve connection (see Lemma (3.4)).

1n this article we call Mapper the mathematical object, not the algorithm used to build it. Moreover, we focus on the case
where the codomain of the function is R.



e Given a pair (X, f) and an interval cover Z, we relate the topological structure of the (MultiNerve)
Mapper to the one of the Reeb graph. More precisely, we characterize the topology of these objects
with particular zigzag persistence modules that we relate to each other with the so-called Mayer-Vietoris
half-pyramid (Theorem [4.3]). This correspondence is oblivious to the actual layouts of the topological
features in the two graphs, which in principle could differ.

e The previous connection allows us to derive a signature for the (MultiNerve) Mapper, which takes the
form of an extended persistence diagram. The points in this diagram are in one-to-one correspondence
with the features (branches, holes) in the (MultiNerve) Mapper. Thus, like the extended persistence
diagram of the induced map f for the Reeb graph, our diagram for the (MultiNerve) Mapper serves as
a bag-of-features type signature of its structure.

e An interesting property of our signature is to be predictableﬂ given the extended persistence diagram
of the induced map f. Indeed, it is obtained from this diagram by removing the points lying in
certain staircases that are defined solely from the cover 7 and that encode the mutual positioning of
the intervals of the cover. Thus, the signature for the (MultiNerve) Mapper is a subset of the one
for the Reeb graph, which provides theoretical evidence to the intuitive claim that the Mapper is a
pixelized version of the Reeb graph. Then, one can easily derive sufficient conditions under which the
bag-of-features structure of the Reeb graph is preserved in the (MultiNerve) Mapper, and when it is
not, one can easily predict which features are preserved and which ones disappear (Corollary .

e The staircases also play a role in the stability of the (MultiNerve) Mapper, since they prescribe which
features will (dis-)appear as the function f is perturbed. Stability is then naturally measured by a
slightly modified version of the bottleneck distance, in which the staircases play the role of the diagonal.
Our stability guarantees (Theorem follow easily from the general stability theorem for extended
persistence [18]. Similar guarantees hold when the domain X or the cover Z is perturbed (Theorems|5.4]

and .

e These stability guarantees can be exploited in practice to approximate the signatures of the Map-
per and MultiNerve Mapper from point cloud data. The approach boils down to applying known
scalar field analysis techniques [I3] then pruning the obtained extended persistence diagrams using the
staircases (Theorem . The approach becomes more involved if one wants to further guarantee
that the approximate signature does correspond to some perturbed Mapper or MultiNerve Mapper

(Theorem [8.9).

e We also refine the analysis by showing that the MultiNerve Mapper itself is a Reeb graph, for a
perturbed pair (X', f') (Theorem . Furthermore, we are able to track the changes that occur in
the structure of the Reeb graph as we go from the initial pair (X, f) to its perturbed version (X', f’).
This allows us to compute the functional distortion distance between the (MultiNerve) Mapper and the
Reeb graph (Theorern. Our main proof technique consists in progressively perturbing the so-called
telescope [7] associated with the pair (X, f). To be more specific, we decompose the perturbation into a
sequence of elementary perturbations with a predictable effect on the functional distortion distance. We
believe the introduction of these elementary perturbations and the analysis of their effects on persistence
diagrams and on the functional distortion distance between telescopes are of an independent interest
(see Section . In particular, these elementary perturbations have already been used in other works
about Reeb graphs and Mappers [9] [10].

Related work. Reeb graphs can be seen as particular types of skeletonization, when one tries to recover
the geometric structure of data with graphs. Several kinds of graph-like geometric structures have been
studied within the past few years, such as persistent skeletons [27] or graph-induced simplicial complezxes [21].
See [27] for a list of references. As mentioned previously, Reeb graphs are now well understood and have
been used in a wide range of applications. Algorithms for their computation have been proposed, as well as

2As a byproduct, we also clarify the relationship between the extended persistence diagrams of f and f (Theorem [2.8]).



metrics for their comparison. We refer the interested reader to the survey [6] and to the introductions of [4]
and [5] for a comprehensive list of references. In a recent study, even more structure has been given to the
Reeb graphs by categorifying them [20].

A lot of variants of these graphs have also been studied in the last decade to face the common issues
that come with the Reeb graphs (complexity and computational cost among others). The Mapper [32] is one
of them. Chazal et al. [16] introduced the A-Reeb graph, which is another type of Reeb graph pixelization
with intervals. It is the quotient space obtained by identifying the points with the transitive closure of the
following relation: = ~ y < z,y belong to the same level set and x, y belong to the same element of a given
family of intervals. The computation is easier than for the Reeb graph, and the authors can derive upper
bounds on the Gromov-Hausdorff distance between the space and its Reeb or A-Reeb graph. However, this
is too much asking in general; as a result, the hypothesis made on the space are very strong (it has to be
close to a metric graph in the Gromov-Hausdorff distance already). Moreover, taking the transitive closure
makes the structure of the output more difficult to interpret.

Joint Contour Nets [8, 2] and Extended Reeb graphs [3] are Mapper-like objects. The former is the
Mapper computed with the cover of the codomain given by rounding the function values, while the latter
is the Mapper computed from a partition of the domain with no overlap. Both structures are used for
scientific purposes (visualization, shape descriptors, to name a few) and algorithms are proposed for their
computation. Babu [2] characterized the Mapper with coarsened levelset zigzag persistence modules and
showed that, as the lengths of the intervals in the cover Z go to zero uniformly, the Mapper of a real-valued
function converges to the continuous Reeb graph in the bottleneck distance. Similarly, Munch and Wang [29]
recently characterized the Mapper with constructible cosheaves and showed the same type of convergence
for both the Joint Contour Net and the Mapper in the so-called interleaving distance [20]. Their result holds
in the general case of vector-valued functions. Differently, we restrict the focus to real-valued functions but
are able to make non-asymptotic claims (Corollary [4.6).

On another front, Stovner [33] proposed a categorified version of the Mapper, which is seen as a covariant
functor from the category of covered topological spaces to the category of simplicial complexes. Dey et al. [22]
pointed out the inherent instability of the Mapper and introduced a multiscale variant, called the MultiScale
Mapper, which is built by taking the Mapper over a hierarchy of covers of the codomain. They derived a
stable signature by considering the persistence diagram of this family. Unfortunately, their construction is
hard to relate to the original Mapper. Here we work with the original Mapper directly and answer two open
questions from [22], introducing a signature that gives a complete description of the set of features of the
Mapper together with a quantification of their stability and a provable way of approximating them from
point cloud data.

2 Background

Throughout the paper we work with singular homology with coefficients in the field Z,, which we omit in
our notations for simplicity. We use the term ”connected” as a shorthand for ”path-connected”. Given a
real-valued function f on a topological space X, and an interval I C R, we denote by X }{ the preimage
f71(I). We omit the subscript f in the notation when there is no ambiguity in the function considered.

2.1 Morse-Type Functions

We restrict our focus to the class of real-valued functions called Morse-type. These are generalizations of the
classical Morse functions:

Definition 2.1. A continuous real-valued function f on a topological space X is of Morse type if:

(i) There is a finite set Crit(f) = {a1 < ... < an}, called the set of critical values, such that over every open
interval (ag = —00,a1), ..oy (Ai, Qig1), ory (s A1 = +00) there is a compact and locally connected space
Y; and a homeomorphism p; : Y; X (a;,a;41) — X (@isait1) gych that Vi = 0, ..., n, flyaiaign = T2 ON;17
where wo is the projection onto the second factor;



un) vie = 1,...,n — 1, u; extends to a continuous function p; : Y; X |a;, Gi+1] — Ll — symalarty o
i) Vi =1 1 tends t ti ti Y; n Xlaoainl — similarl
extends to i : Yo X (—00,a1] — X(=al gnd pu, extends to fin : Yy X [an, +00) — Xlan,+o0).

(iii) Each levelset Xt has a finitely-generated homology.

Morse functions are known to be of Morse type while the converse is clearly not true. In fact, Morse-type
functions do not have to be differentiable, and their domain does not have to be a smooth manifold nor even
a manifold at all. Furthermore, it is possible to find Morse-type functions that are not Morse even though
they satisfy the previous assumptions (think of the Gaussian curvature on a torus, for instance).

2.2 Extended Persistence

Let f be a real-valued function on a topological space X. The family {X ("X’*O‘]}QGR of sublevel sets of f
defines a filtration, that is, it is nested w.r.t. inclusion: X (o>l C X (=08l for all & < 8 € R. The family
{X[e+20)1 R of superlevel sets of f is also nested but in the opposite direction: X[+ D X[8:+20) for all
a < € R. We can turn it into a filtration by reversing the real line. Specifically, let R°P = {Z : = € R},
ordered by 7 < § < = > y. We index the family of superlevel sets by R°P, so now we have a filtration:
{X1@H0) Y pop, with X[®Fo0) € X1F:4%) for all & < 3 € ROP,

Extended persistence connects the two filtrations at infinity as follows. Replace each superlevel set
X [@:+29) by the pair of spaces (X, X[@’+°°)) in the second filtration. This maintains the filtration property
since we have (X, X[®120)) C (X, X[F:+°0)) for all @ < § € R°P. Then, let Rgyy = R U {400} UR®P, where
the order is completed by o < +oo < 8 for all & € R and 8 € R°P. This poset is isomorphic to (R, <).
Finally, define the extended filtration of f over Rgy by:

F, = X(-o00] fora € R
F—‘rOO = X= (X7 Q))
F; = (X, X&) for 4 € RoP,

where we have identified the space X with the pair of spaces (X,0). This is a well-defined filtration since
we have X(—°%l C X = (X,0) C (X, X[%+°)) for all & € R and B € R°P. The subfamily {Fu}acr is called
the ordinary part of the filtration, and the subfamily {F5}screr is called the relative part. See Figure [1] for
an illustration.

Applying the homology functor H, to this filtration gives the so-called extended persistence module EP(f):

EP(f)a = H.(F,) = H.(X(7ol) for a € R
EP(f)ioe = Hu(Fioo) = H.(X) = H.(X,0)
EP(f)as = H,(F;)= H.(X,X[®%>) for & € R°P,

and where the linear maps between the spaces are induced by the inclusions in the extended filtration.
For functions of Morse type, the extended persistence module can be decomposed as a finite direct sum
of closed-open interval modules—see e.g. [14]:

EP(f) ~ @ lbx, di),
k=1

where each summand I[by, di) is made of copies of the field of coefficients at each index o € [b,dy), and
of copies of the zero space elsewhere, the maps between copies of the field being identities. Each summand
represents the lifespan of a homological feature (connected component, hole, void, etc.) within the filtration.
More precisely, the birth time by and death time dj of the feature are given by the endpoints of the interval.
Then, a convenient way to represent the structure of the module is to plot each interval in the decomposition
as a point in the extended plane, whose coordinates are given by the endpoints. Such a plot is called the
extended persistence diagram of f, denoted Dg(f). The distinction between ordinary and relative parts of
the filtration allows to classify the points in Dg(f) in the following way:
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Figure 1: The extended filtration of the height function on a torus. The upper row displays the ordinary
part of the filtration while the lower row displays the relative part. The red and blue cycles both correspond
to extended points in dimension 1. The point corresponding to the red cycle is located above the diagonal
(d% > b}), while the point corresponding to the blue cycle is located below the diagonal (d? > b?).

e points whose coordinates both belong to R are called ordinary points; they correspond to homological
features being born and then dying in the ordinary part of the filtration;

e points whose coordinates both belong to R°P are called relative points; they correspond to homological
features being born and then dying in the relative part of the filtration;

e points whose abscissa belongs to R and whose ordinate belongs to R°P are called extended points; they
correspond to homological features being born in the ordinary part and then dying in the relative part
of the filtration.

Note that ordinary points lie strictly above the diagonal A = {(x, z) : « € R} and relative points lie strictly
below A, while extended points can be located anywhere, including on A, e.g. connected components
that lie inside a single critical level—see Section It is common to decompose Dg(f) according to this
classification:

Dg(f) = Ord(f) URel(f) UExt" (f) UExt™(f),

where by convention Ext™(f) includes the extended points located on the diagonal A.

Persistence measure. From an extended persistence module EP(f) we derive a measure on the set of
rectangles in the plane, called the persistence measure and denoted pgp. Given a rectangle R = [a, b] X [c, d]
with a < b < ¢ < d, we let

pep(R) = 1 — 1§ + 15 — 10, (1)
where r¥ denotes the rank of the linear map between the vector spaces indexed by x,y € Rgx in EP(f).
When EP(f) has a well-defined persistence diagram, pgp(R) equals the total multiplicity of the diagram
within the rectangle R [14].



Stability. An important property of extended persistence diagrams is to be stable in the so-called bottleneck
distance di°. The definition of this distance is based on partial matchings between the diagrams. Given two
persistence diagrams D, D’ a partial matching between D and D’ is a subset I' of D x D’ such that:

Vp € D, there is at most one p’ € D’ s.t. (p,p’) €T,

Vp' € D', there is at most one p € D s.t. (p,p’) € T.

Furthermore, I’ must match points of the same type (ordinary, relative, extended) and of the same homo-
logical dimension only. The cost of T is:

t(T) = ) op (p'
cost(T") max{rgleag( p(p), nax D(p)}7

where
dp(p) =llp — p'll if Ip" € D' s.t. (p,p’) €T and doo(p, A) = ing lp — || otherwise,
qe

Spr () =|p—1|lc if Ip € D s.t. (p,p') €T and doo(p’, A) = in£ lp" — ¢llco otherwise.
qe

Definition 2.2. Let D, D’ be two persistence diagrams. The bottleneck distance between D and D’ is:

dy(D,D") = igf cost(T),

where T ranges over all partial matchings between D and D’.

Note that dy, is only a pseudometric, not a true metric, because points lying on A can be left unmatched
at no cost.

Theorem 2.3 (Stability Theorem in [I8]). For any Morse-type functions f,g: X — R,

dy’ (Dg(f),Dg(9)) < IIf — glloo-

Moreover, as pointed out in [I§], the theorem can be strengthened to apply to each subdiagram Ord,
Ext™, Ext™, Rel and to each homological dimension individually.

2.3 Zigzag persistence

Let f: X — R be a Morse-type function, and let Crit(f) = {a1,---,an} be its set of critical values. Let
—00=ag < S0 <a; <s1<ay << 51 <Ay <S8y < Apyr = +00. Then, forany 1 <i < j <n, we
define X = Xsi:55] and the levelset zigzag as the following sequence of 2n + 1 nodes:

Xy s Xp = X{ » XP oo XM 2 X1

where each arrow is the canonical inclusion. Applying the homology functor H, to the levelset zigzag gives
the so-called levelset zigzag persistence module LZZ( f), where the linear maps between the spaces are induced
by the inclusions. For functions of Morse type, the levelset zigzag persistence module decomposes as a finite
direct sum of closed interval modules:

m

Lzz(f) ~ Puxi, X7,
k=1

where 4’ is either 7 or i + 1, and similarly for 5. Hence, the classification given by Table
Moreover, each summand I[X?, X7 ] is made of copies of the field of coefficients for each space between

Xf/ and X Jj " and of copies of the zero space elsewhere, the maps between copies of the field being identities.
The disjoint union of all of these intervals is called the levelset zigzag persistence barcode LBc(f).



Table 1: Classification of intervals in a levelset zigzag persistence barcode.

Type 1 1I 111 v
T =it l | 7. =ia T =iat1 | i =ia
j&:ja j&:ja'f'l j(lx:ja""l j(/x:ja

Figure 2: Mayer-Vietoris half-pyramid when the Morse-type function has three critical values. It is composed
of two faces of the full Mayer-Vietoris pyramid: the south face (red) and the east face (green). The extended
persistence module EP(f) is in blue and the levelset zigzag persistence module LZZ(f) is in orange.

Mayer-Vietoris half-pyramid. The Mayer-Vietoris half-pyramid is the diagram of topological spaces
and inclusions displayed in Figure We refer the reader to [7] for more details. Any zigzag within the
Mayer-Vietoris half-pyramid that stretches from the left boundary (i.e. the node X)) to the right boundary
without backtracking is called monotone. Theorem below relates any two monotone zigzags.

Theorem 2.4 (Pyramid Theorem in [7]). For any Morse-type function f, there exists a bijection between
the barcodes of any pair of monotone zigzag persistence modules in the Mayer-Vietoris half-pyramid.

Since the extended persistence module of f is a monotone zigzag persistence module—more precisely the
principal diagonal—of the Mayer-Vietoris half-pyramid, we have the following corollary.

Corollary 2.5 (Table 1 in [7]). For any Morse-type function f, there exists a bijection between Dg(f) and
LBc(f), which is described in Table[d

In particular, the bottleneck distance, as well as stability results, can be derived for levelset zigzag
persistence barcodes using this correspondence and Theorem

2.4 Reeb Graphs

Definition 2.6. Given a topological space X and a continuous function f : X — R, we define the equivalence
relation ~ ¢ between points of X by:

z~ypy < [f(z) = f(y) and 2,y belong to the same connected component of f~*(f(z)) = f~'(f(y))] .



Table 2: This table gives the correspondences between the points of Dg(f) and the intervals of LBc(f). The
minus sign on some intervals of LBc(f) means that the homological dimension of that interval is equal to
the dimension of its corresponding point in Dg(f) minus 1.

Type Ord Rel Ext™ Ext™

Dg(f) [(17,(1]) [djaat) [QZ,EL]) [a’_]v&’t)
LBe(f) | (X, X0 [ (X X9 ) [ Ix L X)) | XL X0
Type I 11 111 IV

The Reeb graph R;(X) is the quotient space X/ ~ .

Figure 3: We consider the height function of the torus T. Note how the critical points induce changes on
the graph.

As f is constant on equivalence classes, there is an induced map f : R;(X) — Rsuchthat f = fom,
where 7 is the quotient map X — Ry (X):

X T Rf(X)
N
R

If f is a function of Morse type, then the pair (X, f) is an R-constructible space in the sense of [20].
This ensures that the Reeb graph is a multigraph, whose nodes are in one-to-one correspondence with the
connected components of the critical level sets of f. In that case, computing the Reeb graph of a Reeb graph
preserves all information, as stated in the following remark.

(2)

Remark 2.7. Let f be a Morse-type function. Then there is a bijection b: R7(Rf(X)) — Ry (X) such that

fo b= f In other words, computing the Reeb graph is an idempotent operation.

In the following, the combinatorial version of the Reeb graph (where each critical point is turned into a
node) is denoted by CR¢(X).

Persistence-based bag-of-features signature. There is a nice interpretation of Dg(f) in terms of the
structure of Ry(X). We refer the reader to [4] and the references therein for a full description as well as
formal definitions and statements. Orienting the Reeb graph vertically so f is the height function, we can see
each connected component of the graph as a trunk with multiple branches (some oriented upwards, others
oriented downwards) and holes. Then, one has the following correspondences, where the wvertical span of a
feature is the span of its image by f:

e The vertical spans of the trunks are given by the points in Ex‘c(‘)|r ( f),



e The vertical spans of the branches that are oriented downwards are given by the points in Ordg( f),
e The vertical spans of the branches that are oriented upwards are given by the points in Rel; ( f );
e The vertical spans of the holes are given by the points in Ext] ( f ).

The rest of the diagram of f is empty. These correspondences provide a dictionary to read off the structure of
the Reeb graph from the extended persistence diagram of the induced map f . Note that it is a bag-of-features
type signature, taking an inventory of all the features (trunks, branches, holes) together with their vertical
spans, but leaving aside the actual layout of the features. As a consequence, it is an incomplete signature:
two Reeb graphs with the same persistence diagram may not be isomorphic, as illustrated in Figure [

: Ol“d()
B :
L C Exty

Figure 4: Two Reeb graphs with the same set of features but not the same layout.

Connection to the extended and zigzag persistence of f. We now show that the topological structure
of Ry(X) is actually nothing but a simplification of the one of f. This can be phrased using the extended
persistence diagrams of f and f:

Theorem 2.8. Let X be a topological space and f: X — R be a function of Morse type. Then, the levelset
zigzag persistence barcodes of f and f in dimension 0 are_the same: LBco(f) = LBco(f), and the extended
persistence diagram of f is included in the one of f: Dg(f) C Dg(f). More precisely:

Dgy (f) = Dgy(f)
Dg, (f) = Dg,(f) \ (Ext{(f) UOrdy(f))
Dg,(f) =0 ifp >2

Note that Extg ( f) = () because every essential O-dimensional feature corresponds to some connected
component of the domain, and it is born at the minimum function value and killed at the maximum function
value over that connected component, hence it belongs to Exty. Similarly, Relo(f) = @ because no 0-
dimensional homology class (i.e. connected component) can be created in the relative part of the extended
filtration of f. Hence, the structure of a Reeb graph can be read off from the levelset zigzag persistence
module of f. Indeed, since Ext;(f), Ord(f), Exty (f), Relo(f) and Dgp(f) for p > 2 are empty, it follows
from Corollary that there is a bijection preserving types between Dgy(f) U Dg;(f) and LBco(f). This
is because all intervals in the 1-dimensional extended persistence module of f are either of type Rel or
Ext™, and thus their analogues in the levelset zigzag persistence module of f have homological dimension 0
according to Table

We provide a proof for completeness, as we have not seen this result stated formally in the literature.

First, note that Crit(f) = {al, o a,} = Crit(f). Hence, given i < j and [s;, s;] as in Section we recall
that X/ denote X551 = f~1([s;, 5;]) and R(X)? denote Ry (X)ls0:%] = f=1([s;, 5,]).

10



Lemma 2.9. Let m denote the quotient map X — Ry(X). Let i < j, and I = [s;,5;], as defined in
Section . Then the morphism . : Ho(X') — Ho(Rf(X)!) is an isomorphism.

The proof of Lemma [2.9]is simpler when 7w admits continuous sections, i.e. when there exist continuous
maps o : Rp(X) — X such that moo = idg, (x). Below we give the proof under this hypothesis, deferring the
general case of Morse-type functions to Appendix [A] The hypothesis holds for instance when X is a compact
smooth manifold and f is a Morse function, or when X is a simplicial complex and f is piecewise-linear.

Lemma[Z.9. Since 7 is surjective, proving the result boils down to showing that x,y are connected in Xij if
and only if m(z), 7(y) are connected in Ry(X)?

e

e If 2,y are connected in X7, then 7(x), 7(y) are connected in R;(X)? by continuity of 7 and commu-
tativity of .

o If m(x), m(y) are connected in Rf(X)g, then choose a path v connecting m(x) to m(y). By definition
of o, we have mogom(x) = m(z), thus oon(z) and z lie in the same connected component of f~1(f(z)).
Let v, be a path connecting = to ¢ o w(x). Similarly, let 7, be a path connecting o o 7(y) to y. Then,
Yy © 0(7) 0 v, is a path between x and y in Xf

O O

Theorem[2.8. We first show that LBco(f) = LBco(f). Let 7 denote the quotient map X — Ry(X). Since
is continuous, it induces a morphism in homology .. We will show that 7. induces an isomorphism between

LZZ(f) and LZZ(f) in dimension 0. First, note that Crit(f) = {a1,--- ,a,} = Crit(f). Hence both LZZ(f)
and LZZ(f) have 2n + 1 nodes. Now, let 1 <i < n.

e According to Lemma T ¢ Ho(X]) — Ho(Ry(X)}) is an isomorphism, and the same holds for
T o Ho(XT) — Ho(Rp (X)), Hence . induces a pointwise isomorphism in dimension 0 between

LZZ(f) and LZZ(f).
e Let ¢: X} — X and (R : Ry(X)! — Ry(X)!™ be canonical inclusions. Then, we have mor = (Ror
by definition of +®. Hence, the following diagram commutes:

Lx

Ho(X}) Ho(X[*)

Ho(Ry(X);) —— Ho(Ry(X);™)

K2

and the same is true for the canonical inclusions X! ; <= X! and Rp(X)!_; +> Rp(X)%

Hence, the induced pointwise isomorphism is an isomorphism between LZZo(f) and LZZ(f).

Now, recall that there is a bijection b; preserving types between Dg(f) and LBco(f). Since there is also
a bijection by preserving types between LBcq(f) and LBco(f) and a bijection bs preserving types between
LBco(f) and Ordo(f) U Extd (f) U Rely (f) U Ext; (f) from Corollary the result follows by considering
the bijection b o by 0 by.

O O

A distance between Reeb graphs. We now give the definition of the functional distortion distance [4]
between Reeb graphs. Note that any Reeb graph R (X) can be equipped with a canonical metric: dy(z,z") =
MiNgg s {Maxee(o fom(t) —mingeo,q] for(t)}, where 7 : [0,1] — Ry(X) ranges over the continuous paths
from z to ' (7w(0) = z and w(1) = 2’). Then, given a pair of Reeb graphs, the functional distortion distance
measures the distortion of their corresponding metrics. Hence, it is very similar to the Gromov-Hausdorff
distance. We use this distance in Section to provide a convergence result of the (MultiNerve) Mapper to
the Reeb graph.

11



Definition 2.10. Let X,Y be topological spaces and f : X — R and g : Y — R be continuous scalar
functions. The functional distortion distance between Ry¢(X) and Ry(Y') is:

(5 (0 Ry (V) = it o { 500600, 17 =30 01 1700~} ®)

where:
e ¢:Ri(X) = Ry(Y) and ¢ : Ry(Y) — Ry(X) are continuous maps,
o D(6.%) = sup {lds(x.a) — dyy.¥/)] : (w,9), (',y/) € C(645)}
o C(o,¢) ={(x,0(x)) : 2 € Rp(X)} U{(¥(y),y) : y € Ry(Y)}.
The functional distortion distance enjoys the following stability theorem:

Theorem 2.11 (Theorem 4.1 in []). Let X be a topological space and let f,g: X — R be two Morse-type
functions with continuous sections. Then:

dep (R (X), Rg(X)) < [If = glloo-

Since dpp can be quite hard to compute and to interpret, we also study the bottleneck distance between
the extended persistence diagrams dj, (Dg( f ), Dg(g)) in Section Recall that dj, is only a pseudometric—see
Figure However, it can be computed efficiently, it allows for interpretation (recall that extended persistence
diagrams act as bag-of-feature signatures) and it has been proven [I0] that d}, and dpp are actually equivalent
for close Reeb graphs.

2.5 Covers and Nerves

Let Z be a topological space. A cover of Z is a family U of subsets of Z, U = {Uy}aca, such that
Z = Upea Ua- It is open if all its elements are open subspaces of Z. It is connected if all its elements are
connected subspaces of Z. Its nerve is the abstract simplicial complex A () that has one k-simplex per
(k 4 1)-fold intersection of elements of U:

{00, .oan} ENU) = (] Ua, #0.
i=0,...,

Lk

When V itself is a cover of Z, it is called a subcover of U. It is proper if it is not equal to U. Finally, U is
called minimal if it admits no proper subcover or, equivalently, if it has no element included in the union of
the other elements. Given a minimal cover U = {U, }qca, for every a € A we let

Oa = Ua \ U Ua/v
a'#acA

be the proper subset of Uy, that is the maximal subset of U, that has an empty intersection with the other el-
ements of U. U is called generic if no connected component of the proper subsets of its elements is a singleton.

Consider now the special case where Z is a subset of R, equipped with the subspace topology. A subset
U C Z is an interval of Z if there is an interval I of R such that U = I N Z. Note that U is open in Z if and
only if I can be chosen open in R. A cover U of Z is an interval cover if all its elements are intervals. In this
case, End(U/) denotes the set of all of the interval endpoints. Finally, the granularity of U is the supremum
of the lengths of its elements, i.e. it is the quantity supy ¢y, |U| where |U| = sup(U) — inf(U) € R U {+o0}.

Lemma 2.12. No more than two elements of a minimal open interval cover can intersect at a time.

12



Proof. Assume for a contradiction that there are k > 3 elements of U: Uy, --- , Uy, that have a non-empty
common intersection. For every 4, fix an open interval I; of R such that U; = I, N Z. Up to a reordering of
the indices, we can assume without loss of generality that I; has the smallest lower bound and I5 has the
largest upper bound. Since I; NIy D U; NUs # B, the remaining intervals satisfy I; C I U I5. In particular,
wehave U3 =IsNZ C(LHUL)NZ =(I1NZ)U(IoNZ) = U; UUs, so the cover U is not minimal. O O

Lemma 2.13. If Z is R itself or a compact subset thereof, then any cover U of Z has a minimal subcover.

Proof. When Z is compact, there exists a subcover V of U that has finitely many elements. Any subcover
of V with the minimum number of elements is then a minimal cover of Z.

When Z = R, the same argument applies to any subset of the form [—n,n], n € N. Then, a simple
induction on n allows us to build a minimal subcover of U. O O

From now on, unless otherwise stated, all covers of Z C R will be generic, open, minimal, interval covers
(gomic for short). Given such a cover U, the proper subset U of any interval U € U is itself an interval of Z
since U is generic, therefore we call it the proper subinterval of U. Moreover, Lemma yields a total
order on the intervals of U, so each one of them partitions into subintervals as follows:

U=U;0UU0uUUT, (4)

where U5 is the intersection of U with the element right below it in the cover (U5 = 0 if that element does
not exist), and where U7 is the intersection of U with the element right above it (UY = () if that element
does not exist).

2.6 Mapper

Let f : X — Z be a continuous function. Consider a cover U of im(f), and pull it back to X via f~!. Then,
decompose every V, = f~1(U,) C X into its connected components: V,, = Licgi, - e(a)} Vi, where c(a) is
the number of connected components of V. Then, V = {Vi}aeA,ie{l,m ,(a)} is a connected cover of X. It
is called the connected pullback cover, and its nerve N'(V) is the Mapper.

Definition 2.14. Let X, Z be topological spaces, f: X — Z be a continuous function, U be a cover of im(f)
and V be the associated connected pullback cover. The Mapper of X is My(X,U) = N (V).

See Figure [f] for an illustration. Note that, when Z = R and U is a gomic, the Mapper has a natural
1-dimensional stratification since no more than two intervals can intersect at a time by Lemma[2.12] Hence,
in this case, it has the structure of a (possibly infinite) simple graph and therefore has trivial homology in
dimension 2 and above.

3 MultiNerve Mapper

In this section, we explain how to extend the construction of Mapper by using a slight modification of the
nerve, called the multinerve, and whose definition relies on simplicial posets [19].

3.1 Simplicial Posets and MultiNerves

Definition 3.1. A simplicial poset is a partially ordered set (P, =), whose elements are called simplices,
and which satisfies the two following properties:

(i) P has a least element called O such that Vp € P, 0 < p;

(ii) Vp € P, 3d € N such that the lower segment [0,p] = {q € P : ¢ X p} is isomorphic to the set of
simplices of the standard d-simplex with the inclusion as partial order, where an isomorphism between
posets is a bijective and order-preserving function.
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N
E L8

M (T#T,T)

Figure 5: Example of the Mapper and the MultiNerve Mapper computed on the double torus T#T with the
height function f. The cover Z of im(f) has four intervals (red, green, blue and purple), and the cover of
the double torus has five connected components (one is blue, one is red, one is purple and the other two are
green). The Mapper and the MultiNerve Mapper are displayed on the right.

Simplicial posets are extensions of simplicial complexes: while every simplicial complex is also a simplicial
poset (with inclusion as partial order and ) as least element), the converse is not always true as different
simplices may have the same set of vertices. However, these simplices cannot be faces of the same higher-
dimensional simplex, otherwise (ii) would be false. See Figure |§| for an example of a simplicial poset that is
not a simplicial complex.

g f d e
© g
h
a
d
b C b a
0

Figure 6: Left: A simplicial poset that is not a simplicial complex. Indeed, edges f and g have the same
vertices (b and ¢). Right: The corresponding Hasse diagram showing the partial order on the simplices. Note
that f, g cannot be part of the same 2-cell.

Given a cover U of a topological space X, the nerve is extended to a simplicial poset as follows:

Definition 3.2. Let U = {Us}taca be a cover of a topological space X. The multinerve M(U) is the
simplicial poset defined by:

k k
MU) = {({ao7 o) C) ﬂ Ua, # 0 and C is a connected component of m Ual} .

i=0 =0

The proof that this set, together with the least element ((,J,c, Us) and the partial order (F,C) =
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(F',C") & F C F' and C' C C, is a simplicial poset, can be found in [19]. Given a simplex (F,C) in the
multinerve of a cover, its dimension is |F| — 1. The dimension of the multinerve of a cover is the maximal
dimension of its simplices. Given two simplices (F,C), (F',C"), we say that (F,C) is a face of (F',C") if
(F,C) < (F',C").

Given a connected pullback cover V, we extend the Mapper by using the multinerve M(V) instead of
N (V). This variant will be referred to as the MultiNerve Mapper in the following.

Definition 3.3. Let X, Z be topological spaces, f: X — Z be a continuous function, U be a cover of im(f)
and V be the associated connected pullback cover. The MultiNerve Mapper of X is My (X,U) = M(V).

See Figure for an illustration. For the same reasons as Mapper, when Z = R and U is a gomic of im(f),
the MultiNerve Mapper is a (possibly infinite) multigraph having trivial homology in dimension 2 and above.
Contrarily to the Mapper, the MultiNerve Mapper also takes the connected components of the intersections
into account in its construction. As we shall see in Section [4] it is able to capture the same features as the
Mapper but with coarser gomics, and it is more naturally related to the Reeb graph.

3.2 Connection to Mapper

The connection between the Mapper and the MultiNerve Mapper is induced by the following connection
between nerves and multinerves:

Lemma 3.4 ([19]). Let X be a topological space and U be a cover of X. Let m : (F,C) — F be the projection
of the simplices of M(U) onto the first coordinate. Then, m (MU)) = NU).

Corollary 3.5. Let X, Z be topological spaces and f : X — Z continuous. LetU be a cover of im(f). Then,
Mf(Xvu) = Trl(Mf(Xvu))

Thus, when Z = R and U is a gomic, the Mapper is the simple graph obtained by gluing the edges
that have the same endpoints in the MultiNerve Mapper. In this special case it is even possible to embed
My (X,U) as a subcomplex of M;(X,U). Indeed, both objects are multigraphs over the same set of nodes
since they are built from the connected pullback cover. Then, it is enough to map each edge of M¢(X,U) to
one of its copies in M¢(X,U), chosen arbitrarily, to get a subcomplex. This mapping serves as a simplicial
section for the projection 7y, therefore:

Lemma 3.6. When Z =R and U is a gomic, 1 induces a surjective homomorphism in homology.

Note that this is not true in general when M (X, ) has a higher dimension. See Figure|7|for an example.

Mp(B%U)  My(B*U)

Figure 7: The domain is the disk B2, and we consider the identity function f, as well as a generic open
minimal cover U with five elements. The MultiNerve Mapper is homeomorphic to the disk B? and the
Mapper is homeomorphic to the sphere S%. Then, Ho(M(B?,U)) # 0 while Ho(M¢(B?,U)) = 0.

15



4 Structure of the MultiNerve Mapper

In this section, we study and characterize the topological structure of the (MultiNerve) Mapper computed
on a non discrete topological space. More precisely, we show that this topological structure can be read
off from the extended persistence diagram of the Reeb graph. To prove this, we show that the MultiNerve
Mapper M(X,Z) is actually isomorphic (as a combinatorial multigraph) to a specific Reeb graph, whose

extended persistence diagram is related to the extended persistence diagram Dg(f) of Ry(X).

4.1 Topology of the MultiNerve Mapper

In order to show that the MultiNerve Mapper is a specific Reeb graph, we first show that (MultiNerve)
Mappers can be equipped with functions.

Definition 4.1. Let T = {Io}aca be a gomic of im(f) andV = {Vi}1<i<c(a)aca be the associated connected
pullback cover. Then we define mz : M¢(X,Z) — R as the piecewise-linear extension of the function defined
on the nodes of My(X,Z) by Vi s mid(I,), where mid(I,) is the midpoint of the proper subinterval I, of
I,. The definition of mz : My(X,Z) — R is similar.

Hence, Reeb graphs can be computed from M¢(X,Z) and M(X,Z), once they are equipped with mz
and mz respectively. Let us call them Rpm,(M;(X,Z)) and Rpm,(M(X,Z)), with corresponding induced
maps mz : R, (Mf(X,Z)) = R and mz : Rm,(M¢(X,Z)) — R. The following lemma, which states that
(MultiNerve) Mappers are isomorphic to their Reeb graphs, is a simple consequence of Remark

Lemma 4.2. Let X be a topological space and [ : X — R be a Morse-type function. Let T be a gomic of
im(f). Then M¢(X,Z) and CRm, (M¢(X,Z)) are isomorphic as combinatorial multigraphs. The same is true
for M;(X,Z) and CRm, (M;(X,T7)).

Hence, by a slight abuse of notation, we rename mz and mz into mz and mz for convenience.

We now state the main result of this section, which ensures that the extended persistence diagram
Dg(mz), i.e. the bag-of-features signature of R, (Ms(X,Z)) and M;(X,Z), is nothing but a simplification

of Dg(f), i.e. the bag-of-features signature of R(X).

Theorem 4.3. Let X be a topological space and f : X — R be a Morse-type function. Let Ry(X) be the
corresponding Reeb graph and f : Ry(X) — R be the induced map. Let T be a gomic of im(f). There are
bijections between:

(i) Ordo(mz) and Ordg(f) \ Q%  (iii) Ext; (mz) and Exty (f)\ Q%_
(ii) Rely(mz) and Rell(f) \ Q% (iv) Extd (mz) and Exta'(f)

where Q5 = Ujer Q}ruﬁ; Q% = Ujer Q7 ;- ond QE_ = U;er Q7 and where, for any interval I with
endpoints a < b, we let QF = {(z,y) € R? : a < x <y < b} be the corresponding half-square above the
diagonal, and Q7 = {(z,y) € R? : a <y < x < b} be the half-square strictly below the diagonal. See
Figure[§ for an illustration.

The remaining of Section [I.1]is devoted to the proof of Theorem [4-3] In order to state the proof, we first
introduce cover zigzag persistence modules.

Definition 4.4. Let X be a topological space and f : X — R be a Morse-type function. Let T = {I,}1<a<m
be a gomic of im(f), sorted by the natural order defined in Section ,

Let Crit(f) = {—o00 = ag, a1, ..., Gn, any1 = +00}. For any open interval I with left endpoint a, we define
the integers I(I), r(I) by I(I) = max{i : a; < a} and r(I) = max{l(]),max{i : a; € I}}. Then, we define
the cover zigzag persistence module CZZ(f,Z) by

C22(£,7) = Ho (X} < X = X6 Xy = o Xirmiany) = X))

where the Xij spaces are as in Section . We also let CBe(f,Z) denote the barcode of this module.
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4 /

Figure 8: Left: Staircases of ordinary (light grey) and relative (dark grey) types. Right: Staircases of
extended types— %, is in dark grey while Q% is the union of Q% _ with the light grey area.

Note that cover zigzag persistence modules can be isometrically embedded (with the bottleneck distance)
into the south face of the Mayer-Vietoris half-pyramid. Indeed, each node of CZZ( f,Z) belongs to this south
face. The only difficulty is that CZZ(f,Z) may include the same node several times consecutively when there
is a sequence of consecutive intervals in the gomic that are all included between two consecutive critical
values of f, i.e. for which I(I) = r(I). However, in that case, the corresponding arrows in the module are
isomorphisms. Thus, composing these arrows leaves the resulting barcode unchanged.

Lemma 4.5. Let X be a topological space and f : X — R be a Morse-type function. Let T be a gomic of
im(f). Then, there is a bijection between Dg(mz) and CBco(f,Z).

Proof. Recall from Corollary that it suffices to show that LZZy(mz) and CZZ(f,Z) are isomorphic as
zigzag persistence modules. Assume without loss of generality that Z has m elements, with m € N*. First,
note that card(Crit(mz)) is equal to m. Hence, both LZZ(mz) and CZZ(f,Z) have exactly 2m + 1 nodes.
Moreover, since the MultiNerve Mapper tracks the connected components of the interval and intersection
preimages of f, each element of LZZy(mz) is of the form Ho(f~1(I)), I € Z, or Ho(f~1(I N J)), I,J
consecutive in 7.

Let I € Z. Since f is Morse-type, XIT((II)) and X! = f~1(I) have the same homotopy type. Indeed,

recall from Section that there exist s;;) and s,() such that XIT((II)) = f! ([31(1), Sr([)}) and sy(py (resp.
sp(ry) and the left (resp. right) endpoint of I are located between the same consecutive critical values of
f. In particular, X lr((ll)) and X7 have the same number of connected components, meaning that Hy(X?!) and
HO(XZ”((II))) are isomorphic groups. The same is also true for any INJ, I,J € Z.

Hence, we define a canonical pointwise isomorphism ¥ in dimension 0 as follows: for each node, send
each connected component of one preimage, or equivalently each generator of one homology group, to the
connected component of the other preimage which intersects it (there is only one since the preimages have
the same number of connected components). By definition of the MultiNerve Mapper, ¥ commutes with the
canonical inclusion. Hence, LZZo(mz) and CZZ(f,Z) are isomorphic. O O

Finally, we relate the cover zigzag persistence barcode to the extended persistence diagram of the Reeb
graph. Namely, we show that a specific simplification of this extended persistence diagram encodes the same
information as the cover zigzag persistence barcode.

Theorem[{.3 Again, recall from Corollary ﬁthat Dg( f ) encodes the same information as LBcg( f ). Hence,
since Dg(mz) and CBco(f,Z) are equivalent from Lemma we focus on the relation between LBcq(f)
and CBco(f,Z). As mentioned after Definition the cover zigzag persistence module CZZ(f,Z) can be
isometrically embedded in the south face of the Mayer-Vietoris half-pyramid. Hence, we can assume without
loss of generality that the set of nodes of CZZ(f,T) is a subset of the nodes of a monotone zigzag module
CZZ(f,T) that can be drawn along the south face of the Mayer-Vietoris half-pyramid by interpolating the

17



elements of CZZ(f,Z). Thus, it suffices by Theorem to study which intervals disappear when going from

LBco(f) to CBeo(f,Z) and then to CBco(f,Z) using the pyramid rules recalled in Figure

. . /’
. L] v o . J)
> £
. 0 —;—1 . .

Figure 9: (From [7]) We show the axis of travel of birth and death endpoints of intervals of LZZ(f) to the
up-down zigzag persistence module bounding the south face of the Mayer-Vietoris half-pyramid for interval
modules that correspond to type I intervals (upper-left, red), type II intervals (upper-right, green), type
III intervals (down-left, blue), and type IV intervals (down-right, orange). The 41 in the down-right figure
means that the homological dimension is increased by one.

We first give analogues of staircases for zigzag persistence. For any I = I5 U U IF € Z, we define:

1(TuIt) and Xr(iulrt)

e suppy (1) as the set of nodes of LZZ(f) that are located strictly between Xl(iu1+) r(FUID) 17

l(I5ul)+1 nd Xr(lg ul)

e suppp(]) as the set of nodes of LZZ(f) that are located strictly between Xl(rui) rIoUT)

e suppp- (I) as the set of nodes of LZZ(f) that are located strictly between Xll((ll))ﬂ and X:((;))fl.
There are two possible ways for an interval of LBcq(f) to disappear in CBco(f,Z): either its homological

dimension is shifted by 1, or its intersection with the set of nodes of CZZ(f,Z) is empty after being projected
onto CBc(f,Z)—see Figure According to the pyramid rules, we have that:

e Projections of type Il intervals of LBco(f) onto CBcqo(f,Z) always intersect with the nodes of CZZ(f,T)
and their homological dimensions cannot be shifted. Hence, none of them disappears. This proves (iv).

e Projections of type IV intervals of LBcg(f) onto CBco(f, Z) always intersect with the nodes of CZZ(f, Z).
However, their homological dimensions can be shifted by 1. This happens when the endpoints collide
in the south face of the Mayer-Vietoris half-pyramid. Hence, only those intervals whose support is
included in suppg- (1) for some I € Z go through such a shift before getting to CBco(f,Z). This
proves (iii).

e Homological dimensions of type I intervals in LBco(f) cannot be shifted, but their projections onto
CBco(f,Z) may not always intersect with the nodes of CZZ(f,Z). This happens for those intervals
whose support is included in suppg (1) for some I € Z, thus proving (i).

e Homological dimensions of type II intervals in LBco(f) cannot be shifted, but their projections onto
CBco(f,Z) may not always intersect with the nodes of CZZ(f,Z). This happens for those intervals
whose support is included in suppy(I) for some I € Z, thus proving (ii).

O O
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Figure 10: The black path in the south face of the Mayer-Vietoris half-pyramid represents the monotone
zigzag persistence module CZZ(f,Z) for a gomic Z with three intervals. The white disks on this path are
the nodes that do not intersect the set of nodes of the cover zigzag persistence module CZZ(f,Z), which are
colored according to the interval of Z they represent (and are colored orange if they represent an intersection).
The boxes outline the support of the intervals of LBcy(f) that disappear in the MultiNerve Mapper depending
on their types (upper-left for type I intervals, upper-right for type II intervals and down-left for type IV
intervals). We also show (down-right) the analogue, drawn in grey color, of Q% on the south face of the
Mayer-Vietoris half-pyramid.

4.2 A signature for MultiNerve Mapper

Theorem [4.3] means that the dictionary introduced in Section [2:4] can be used to describe the structure
of the MultiNerve Mapper from the extended persistence diagram of the induced function f . Indeed, the
topological features of M;(X,Z) are in bijection with the points of Dg(f) minus the ones that fall into the
various staircases (Q%, %,, QIIZ) corresponding to their type. Moreover, by Theorem Dg( f) itself
is obtained from Dgy(f) and Dg,(f) by removing the points of Ext{ (f) and Ord;(f). Hence, we use the
off-staircase part of Dg(f) as a signature for the structure of the MultiNerve Mappe

Dg(M;(X, 1)) = (0rd(f) \ @5) U (Ext(f) \ Q-) U (Rel(f) \ QF)
= (Ordo(f) \ Q5) U ((Extg (f) U Exty (f)) \ QF-) U (Reli(f) \ QF).

We call this signature the extended persistence diagram of the MultiNerve Mapper. Note that this signature
is not computed by applying persistence to some function defined on the multinerve, but it is rather a
pruned version of the extended persistence diagram of f. As for Reeb graphs, it serves as a bag-of-features
type signature of the structure of M¢(X,Z). Moreover, the fact that Dg(M¢(X,Z)) C Dg(f) formalizes the
intuition that the MultiNerve Mapper should be viewed as a pizelized version of the Reeb graph, in which

some of the features disappear due to the staircases (prescribed by the cover). For instance, in Figure u we

()

3Recall that Exty (f) = Relo(f) = 0.
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show a double torus equipped with the height function, together with its associated Reeb graph, MultiNerve
Mapper, and Mapper. We also show the corresponding extended persistence diagrams. In each case, the
points in the diagram represent the features of the object: the extended points represent the holes (dimension
1 and above) and the trunks (dimension 0) while the ordinary and relative points represent the branches.

b
N

N\
N

Figure 11: From left to right: a 2-manifold equipped with the height function; the corresponding Reeb
graph, MultiNerve Mapper, and Mapper. For each object, we display the extended persistence diagrams
of dimension 0 (green points), 1 (orange points) and 2 (purple points). Extended points are squares while
ordinary and relative points are disks (above and below the diagonal respectively). The staircases are
represented with dashed (QF), dotted (Q%_ ), dash-dotted (Q%), and dash-dot-dotted (Q%) lines. One can
see how to go from the extended persistence diagram of the height function to the one of the induced map
(remove the points in dimension 2 and the points in dimension 1 above the diagonal), then to the one of the
MultiNerve Mapper (remove the points inside the staircases corresponding to their type), and finally, to the
one of the Mapper (remove the extended points in Q).

Convergence of the signature. The following convergence result (which is in fact non-asymptotic) is a
direct consequence of our previous results:

Corollary 4.6. Suppose the granularity of the gomic T is at most €. Then,

Dg(f)\ {(z,y) : |y — 2| < e} € Dg(M,(X,T)) C Dg(f).

Thus, the features (branches, holes) of the Reeb graph that are missing in the MultiNerve Mapper have spans
at most . In particular, we have d,(Dg(M;(X,Z)),Dg(f)) < /2. Moreover, the two signatures become

equal when & becomes smaller than the smallest vertical distance of the points of Dg(f) to the diagonal.
Finally, My(X,Z) and Ry(X) themselves become isomorphic as combinatorial graphs up to one-step vertex
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splits and edge subdivisions (which are topologically trivial modifications) when € becomes smaller than the
smallest absolute difference between distinct critical values of f.

We show a similar convergence result in the functional distortion distance in Section[7] Note that building
the signature Dg(M/(X,Z)) requires computing the critical values of f exactly, which may not always be
possible. However, as for Reeb graphs, the signature can be approximated efficiently and with theoretical
guarantees under mild sampling conditions using existing work on scalar fields analysis, as we will see in
Section Bl

4.3 Induced signature for Mapper

Recall from Lemma that the projection m1 : M¢(X,Z) — M;(X,Z) induces a surjective homomorphism
in homology. Thus, the Mapper has a simpler structure than the MultiNerve Mapper. To be more specific,
w1 identifies all the edges connecting the same pair of vertices. This eliminates the corresponding holes in
Mf(X ,Z). Since the two vertices lie in successive intervals of the cover, the corresponding diagram points
lie in the following extended staircase (see the staircase Q% displayed on the right in Figure :

z _
Qe = U Qrus-
IUJ such that INJ#0
The other staircases remain unchanged. Hence the following signature:

Dg(M;(X,)) = (Ord(f) \ @5) U (Ext(f) \ QF) U (Rel(f) \ QF)
= (Ordo(f) \ @6) U ((Extg (f) UExty (f)) \ QF) U (Reli(f) \ QF)-
The interpretation of this signature in terms of the structure of the Mapper follows the same rules as for

the MultiNerve Mapper and Reeb graph—see again Figure Moreover, the convergence result stated in
Corollary [4.6] holds for the Mapper as well.

(6)

5 Stability in the bottleneck distance

Intuitively, for a point in the signature Dg(M¢(X,Z)), the ¢>°-distance to its corresponding staircas mea-
sures the amount by which the function f or the cover Z must be perturbed in order to eliminate the
corresponding feature (branch, hole) in the MultiNerve Mapper. Conversely, for a point in the Reeb graph’s
signature Dg( f) that is not in the MultiNerve Mapper’s signature (i.e. that lies inside its corresponding
staircase), the ¢>°-distance to the boundary of the staircase measures the amount by which f or Z must be
perturbed in order to create a corresponding feature in the MultiNerve Mapper. Our goal here is to formalize
this intuition. For this we adapt the bottleneck distance so that it takes the staircases into account. Our
results are stated for the MultiNerve Mapper, they hold the same for the Mapper with the staircase QZ,_
replaced by its extension Q%.

An extension of the bottleneck distance. Let © be a subset of R?. Given a partial matching I' between
two extended persistence diagrams Dg, Dg’, the O-cost of T is:

coste(I') = max { max & , max Opg(p) .,
o(l) X{pED)é Dg(P) Jnax, Opg (P)}

where:
dpg(p) = |lp — p'l|o if 3p’ € Dg’ such that (p,p") € T and duo(p, ©) otherwise,

dpg’ (P') = ||lp — p'||oo if Ip € Dg such that (p,p") € T and duo(p, ©) otherwise.

4 %), QJ;7 or QII,L, depending on the type of the point.
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The bottleneck distance becomes:
dp.e(Dg,Dg’) = i%f coste(T),

where I' ranges over all partial matchings between Dg and Dg’. This is again a pseudometric and not a
metric. Note that the usual bottleneck distance is obtained by taking © to be the diagonal A. Given a gomic
T, we choose different sets © depending on the types of the points in the two diagrams. More precisely, we
define the distance between signatures as follows:

Definition 5.1. Given a gomic I, we define the distance dz between extended persistence diagrams Dg, Dg’
as:
dz(Dg,Dg’) = max {db qz (Ord, Oord’), d, qz (Ext, Ext’), d,, qz (Rel, Rel’)} . (7)
I 76) A IR
5.1 Stability with respect to perturbations of the function
The distance dz stabilizes the (MultiNerve) Mappers, as stated in the following theorem:

Theorem 5.2. Given a topological space X, Morse-type functions f,g : X — R and a gomic I of granularity
at most € > 0, the following stability inequality holds:

dz(Dg(My(X,T)), Dg(My(X,7))) < dz(Dg(M;(X,Z)),Dg(My(X,7))) < [If - gllo- (8)

Moreover, dz and dy, are related as follows:

dp(Dg(My (X, 7)), Dg(M,(X, 7)) < % +dz(Dg(M; (X, T)), Dg(My(X, 1))). (9)
dy(Dg(Mf(X, 7)), Dg(My(X,7))) < & + dz(Dg(My(X, I)), Dg(My(X, 1))). (10)

a C

Figure 12: We compute the MultiNerve Mapper of the height function f on the torus T, given a gomic Z with
two intervals. We also compute the MultiNerve Mapper of a perturbed function g such that || f — gl|eo < 0.
We plot the extended persistence diagrams of f (dark green) and g (purple). Note that the signature of
MQ(T,I) is obtained by removing the purple point beneath the diagonal since it belongs to a staircase,
while the signature of M¢(T,Z) is equal to Dg(f). If we used the bottleneck distance to compare the two
signatures, their distance would be equal to the distance to the diagonal of the dark green point beneath A
(green segment), which can be arbitrarily large, while, using dz, their distance becomes the distance of the
same point to the staircase (tiny pink segment), which is bounded by ¢.

The proof of Theorem [5.2 relies on the following monotonicity property, which is immediate:

Lemma 5.3. Let © C R? be in the closure of © C R2. Then,
de/(Dg,Dg’) < de(Dg, Dg') < des(Dg, Dg') + du (O, ©),

where dy denotes the Hausdorff distance in the {-norm.
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Theorem [5.2. Equation @ and are direct applications of Lemma Equation is proven by the
following sequence of (in)equalities:

dz(Dg(My(X, 7)), Dg(My(X,T))) = dz(Dg(f), Dg(9))
< d,a(Dg(f), Dg()) = dy(Dg(f), Dg(3))
< dn(Dg(f),Dg(g))
<|If = 9glloo-

The first equality comes from the observation that the points of Dg(f) U Dg(g) that lie inside their corre-
sponding staircase can be left unmatched and have a zero cost in the matching, so removing them as in
does not change the bottleneck cost. The first inequality follows from Lemma since the diagonal A is
included in the closure of each of the staircases. The second inequality follows from Theorem and the
fact that the matchings only match points of the same type (ordinary, extended, relative) and of the same
homological dimension. The last inequality comes from Theorem [2.3] O O

Interpretation of the stability. Note that the bottleneck distance d, is unstable in this context—see
Figure The theorem allows us to make some interesting claims. For instance, denoting by QZI) the
staircase corresponding to the type of a diagram point p, the quantity

dz(Dg, 0) = max dec (p, Q)

measures the amount by which the diagram Dg must be perturbed in the metric dz in order to bring all its
points to the staircase. Hence, by Theorem given a pair (X, f), the quantity

dz(Dg(M;(X,Z)),0) = max  dw(p,Q;)
p€Dg(My(X,T))

is a lower bound on the amount by which f must be perturbed in the supremum norm in order to remove
all the features (branches and holes) from the MultiNerve Mapper. Conversely,

min  doo(p, QF)
pEDg(My(X,1))

is a lower bound on the maximum amount of perturbation allowed for f if one wants to preserve all the
features in the MultiNerve Mapper no matter what. Note that this does not prevent other features from

appearing. The quantity that controls those is related to the points of Dg(f) (including diagonal points)
that lie in the staircases. More precisely, the quantity

min  deo(p,0Q; \ A)
peDg(/HuA

is a lower bound on the maximum amount by which f can be perturbed if one wants to preserve the
structure (set of features) of the MultiNerve Mapper no matter what. Note that this lower bound is in fact
zero since Q%5 \ A and Q% \ A come arbitrarily close to the diagonal A (recall Figure . This means
that, as small as the perturbation of f may be, it can always make new branches appear in the MultiNerve
Mapper. However, it will not impact the set of holes if its amplitude is less than
min  deo(p, 8Q§, \ A).

pEExt(fIUA

From this discussion we derive the following rule of thumb: having small overlaps between the intervals of
the gomic helps capture more features (branches and holes) of the Reeb graph in the (MultiNerve) Mapper;
conversely, having large overlaps helps prevent new holes from appearing in the (MultiNerve) Mapper under
small perturbations of the function. This is an important trade-off to consider in applications.
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5.2 Stability with respect to perturbations of the domain

More generally, we can derive a stability result for perturbations of the pair (X, f), provided we make some
extra assumptions on the regularity of the domain and function. Typically, we will assume X to be a
compact Riemannian manifold (or, more generally, a compact length space with curvature bounded above)
and f to be Lipschitz-continuous. To measure the amount of perturbation of the domain we use the concept
of correspondence from metric geometry: given another pair (Y, g), a correspondence is a subset C of the
product space X x Y such that the canonical projections C' — X and C — Y are surjective. We consider
the functional distortion associated with C, which is the quantity:

g(C) = sup [f(z) —g(y)l.
(z,y)eC

Similarly, writing respectively dx and dy for the intrinsic metrics of X and Y, we consider the metric
distortion of C:
Em(C) = Sup ‘dx($7l'/) - dY(yvy/)|
(z,y)€C,(a',y")eC

The Gromov-Hausdorff distance between X and Y is then:
1.
den(X,Y) = B 1Iéf5m(0),

where C' ranges over all correspondences between X and Y. Now we can derive a stability guarantee for the
signatures of MultiNerve Mappers in this context, using a variant of Theorem proven in [I1]:

Theorem 5.4. Fiz a gomic Z. Let X and Y be two compact Riemannian manifolds or length spaces with
curvature bounded above. Denote by p(X) and p(Y') their respective convexity radii (i.e. the smallest radius
for which any geodesic ball is convex). Let f : X — R and g : Y — R be Lipschitz-continuous Morse-type
functions, with Lipschitz constants c; and cg respectively. Assume dgu(X,Y) < 55 min(p(X), p(Y)). Then,
for any correspondence C € C(X,Y) such that e (C) < 15 min(p(X),p(Y)),

dI(Dg(Mf(Xa I))ng(Mg(Y’ 7))) < (9(cf + ¢g) + min{cy, ¢y} )em(C) + €:(C).

Proof. The proof is the same sequence of (in)equalities as for Theorem except the last inequality is
replaced by da(Dg(f),Dg(g)) < (9(cs + ¢¢) + min{cy, cq})em(C) + €(C'), which comesﬂ from Theorem 3.4
in [11]. O O

This result brings about the same discussion as in Section [5] with f replaced by the pair (X, f).

6 Stability with respect to perturbations of the cover

Let us now fix the pair (X, f) and consider varying gomics. For each choice of gomic, Egs. —@ tell which
points of the diagram Dg(f) end up in the diagram of the (MultiNerve) Mapper and thus participate in
its structure. We aim for a quantification of the extent to which this structure may change as the gomic is
perturbed. For this we adopt the dual point of view: for any two choices of gomics, we want to use the points
of the diagram Dg(f) to assess the degree by which the gomics differ. This is a reversed situation compared
to Section [5] where the gomic was fixed and was used to assess the degree by which the persistence diagrams
of two functions differed.

5Note that Theorem 3.4 in [IT] is stated only for the ordinary part of the persistence diagrams, however its analysis extends
to the full extended filtrations at no extra cost.
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A distance between gomics. The diagram points that discriminate between the two gomics are the
ones located in the symmetric difference of the staircases, since they witness that the symmetric difference
is non-empty. Moreover, their /*°-distances to the staircase of the other gomic provide a lower bound on the
Hausdorff distance between the two staircases and thus quantify the extent to which the two covers differ.
We formalize this intuition as follows: given a persistence diagram Dg and two gomics Z, J, we consider the
quantity:

+*€{O,E~,R} pEDg*ﬂ(QEAQf)

dDg(I, j) = max { sup max{doo(p7 Qf)a doo(pa Qf)}} ’ (11)

where A denotes the symmetric difference, where Dg* stands for the subdiagram of Dg of the right type
(Ord, Ext or Rel), and where we adopt the convention that sup,,c ... is zero instead of infinite. Note that
there is always one of the two terms in that is zero since the supremum is taken over all points that lie in
the symmetric difference of the staircases. Deriving an upper bound on dpg(Z, J) in terms of the Hausdorft
distances between the staircases is straightforward, since the supremum in is taken over points that lie
in the symmetric difference between the staircases:

dpg(Z,J) < du(Qf, Q7
Dg( ,j)_*e{g%%)i,R} H( *7Q* )a
where dy stands for the Hausdorff distance in the £°*-norm. The connection to the MultiNerve Mapper
appears when we take Dg to be the persistence diagram of the induced map f defined on the Reeb graph
R¢(X). Indeed, we have

Ord(f) N (Q52Q%) = (0rd(f) NQE)A(0rd(f) NQF) = Ord(M (X, I))a0rd(My (X, 7)),

where the second equality follows from the definition of the signature of the MultiNerve Mapper given in .
Similar equalities can be derived with Ext and Rel. Thus, dDg( 7 (Z,J) quantifies the proximity of each
signature to the other staircase. In particular, having d, «(F) (Z,J) = 0 means that there are no diagram
points in the symmetric difference, so the two gomics are equivalent from the viewpoint of the structure of the
MultiNerve Mapper. Differently, having dDg( B (Z,J) > 0 means that the structures of the two MultiNerve
Mappers differ, and the value of d «(f) (Z,J) quantifies by how much the covers should be perturbed to
make the two multigraphs isomorphic. Furthermore, we have the following upper bound on this quantity:

Theorem 6.1. Given a Morse-type function f: X — R, for any gomics I, T,

; < L.Q)).
dDg(f) (I7 j) = *e{g}%}}E,R} dH( ) Q* )

Tightness. It is easy to build examples where the upper bound is tight, for instance by placing a diagram
point at a corner of one of the staircasesﬂ On the other hand, there are obvious cases where the bound is
not tight, for instance we have dDg( P (Z,J) = 0 as soon as there are no diagram points in the symmetric
difference, whereas the symmetric difference itself may not be empty. What the upper bound measures
depends on the subdiagram. For instance, for * = E~, we defined Q%_ to be the set Uwpezi(@,y) € R? :

a <y <ax<b}, so du %,, Qg,) measures the supremum of the differences between the intervals in one
cover to their closest interval in the other cover:

da(Q%E_, Q7 )=max{ sup inf max{la—c|, [b—d|}, sup inf max{la—c|, |b—d .
n(@F- @) e it (o —cl, p—dl}, swp int max{la el [o—d]

Similar formulas can be derived for the other subdiagrams.

6Which is easily done by choosing suitable critical values as coordinates for this point.
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7 Convergence in the functional distortion distance

Since d, is merely a pseudometric, the relationship between the (MultiNerve) Mapper and the Reeb graph is
only partially explained by Theorem In this section, we bound the functional distortion distance drp (a
true distance between metric graphs equipped with continuous functions) between the (MultiNerve) Mapper
and the Reeb graph, and we provide an alternative proof of Theorem [4.3| as a byproduct. To this end, we
connect the (MultiNerve) Mapper and the Reeb graph through a sequence of metric spaces on which we
can control the functional distortion distance. This connection has an interest in its own right, as it was
leveraged in other contributions on Mappers and Reeb graphs recently—see e.g. [9, [10].

7.1 Telescopes and Operators

In this section we introduce the telescopes, which are our main objects of study when we relate the MultiNerve
Mapper to the Reeb graph.

Recall that, given topological spaces X and A C Y together with a continuous map f : A — X, the
adjunction space X Uy Y (also denoted Y Uy X)) is the quotient of the disjoint union X ITY" by the equivalence
relation induced by the identifications {f(a) ~ a}qca.

Definition 7.1 (Telescope [7]). A telescope is an adjunction space of the following form:
T = (Yo x (a0, a1]) Uy, (X1 x {ar}) Ug, (Y1 X [a1,a2]) Uy, .. Ug, (Yn X [an,ani1)),

where —00 = ag < a1 < -+ < ap < apy1 = +0o, and where the ¢; : Y; x {a;} — X; x {a;} and
Y 1Yy x {aip1} = Xip1 X {ai1} are continuous maps. The a; are called the critical values of T and their
set is denoted by Crit(T), the ¢; and 1; are called attaching maps, the Y; are compact and locally connected
spaces called the cylinders and the X; are topological spaces called the critical slices. Moreover, all Y; and
X, have finitely-generated homology.

Extended persistence diagram. A telescope comes equipped with functions 7; and 7o, which are the
projections onto the first factor and second factor respectively. From now on, given any interval I, we let
TT denote 7y o, *(I). Then, the extended persistence diagram Dg(m2) can be described using the following
Lemma.

Lemma 7.2. Since ¢; and v; are continuous,
Vo € [ai, aiv1), T deform retracts onto T(~°%]

Va € (a;—1,a;, Tlowtoo) deform retracts onto Tlaitoo)

where a topological space X is said to deform retract onto Y C X if there exists a continuous function
F: X x[0,1] = X such that F(-,0) = idx, Flyx{a}(-,a) = idy for any o € [0,1], and F(X,1) CY. In
particular, this means that the inclusion Y — X s a homotopy equivalence.

Corollary 7.3. The following inclusion holds: Dg(me) C Crit(T") x Crit(T).

Construction from a Morse-type function. One can build telescopes from the domain of Morse-type
functions—see Definition 2.I] Indeed, a function f : X — R of Morse type naturally induces a telescope
T(X, f) with

Crit(T'(X, f)) = Crit(f),
X; = Y (a),
o Vi=mopu; o f ((ai,ais1)),

Y}X{ai}(y>ai)aai)a Vl/ S Yri7 Vi € {17 "'an}a

® ¢ (y,a;) — (i
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b wz : (y>ai+1) — (ﬁz mx{ai+1}(y,ai+1)7ai+1)7 Vil/ € Y7-§7 Vi € {07 sy TV — 1}7
T(X, f) is well-defined thanks to the following Lemma:
Lemma 7.4. im(¢;) C f~1(a;) x {a;} and im(v;) € f~ (a11) x {aiz1}.

Proof. Let (y,ai11) € Y; x {a;+1}. Consider the sequence (y, vy, )nen, for an arbitrary (v,)nen € (ai, a;1)Y
that converges to a;+1. Then, (f o i;(y,v,))nen converges to f o fi;(y,a;+1) by continuity of f o . Moreover,
for all n € N we have f o fi;(y,vn) = f o pi(y,vn) = v, since flr-1(q;,a,.,) = T2 0 ,u;l. Therefore, (f o
i (Y, Un))nen converges also to a;+1. By uniqueness of the limit, we have f o [i;(y,a;+1) = @i+1, meaning
that ji;(y,ai41) € f~1(ay1). Thus, im(1;) C f~(ai11) % {ai+1}. The same argument applies to show that
im(¢;) € f~'(a;) x {a;}. O O

Correspondence between X and T(X, f). We now exhibit a homeomorphism between T'(X, f) and X.
Let p: T(X, f) — X be defined by:

y if (y,z) € X; x {a;} for some i;
wi(y, z) if (y,2) € Y; x (a;,a;41) for some 1.

Wy, z) = {

The map p is bijective as every pu; is. It is also continuous as every [i; is. Since every continuous bijection
from a compact space to a Hausdorff space is a homeomorphism (see e.g. Proposition 13.26 in [34]), p defines
a homeomorphism between T'(X, f) and X. Moreover, mo = f o u so Dg(f) = Dg(m2).

Operators on telescopes

The decomposition of telescopes into cylinders can be used to define simple operators that modify the
telescope structures in a predictable way. Specifically, we detail three types of operators, corresponding
to the cases where one asks for either removal of critical values (Merge operator), duplication of critical
values (Split operator), or translation of critical values (Shift operator). To formalize this, we use generalized
attaching maps:

of: Yix{a} = Xix{a};  (y,a) v (m10¢i(y,a:),a),
v Yixd{a} = X x{a}; (y,a) = (m10¢i(y, ait1), a).

Merge. Merge operators merge all critival values located in [a,b] into a single critical value a = “TH’

Definition 7.5 (Merge). Let T be a telescope. Let a < b. If [a,b] contains at least one critical value, i.e.
3i,j € N such that a;—1 < a < a; < a; < b < aj1, then the Merge on T between a,b is the telescope
T" = Merge, ,(T') given by:

o (Yicr X faio1, ai]) Uy, o, (X x {ai}) Ug, - Uy, (X5 x{a;}) Ug, (Y X [a;, a511])...
1
w(Yimr X [ai—1,a]) Uy, (TP x {a}) Uy, (Y x [@,aj41]).-

i
where @ = £, where fi_1 = Y¢ | if a = a; and f;—1 = idy, ,x(a} otherwise, and where g; = ¢% if b= a;
and g; = idy; x{a} otherwise.

If [a,b] contains no critical value, i.e. a;—1 < a <b < a;, then Merge, ,(T) is given by:

(Ximr x{aio1}) Ug,_, (Yiea X [ai1, ai]) Uy, (X x {ai})..
I
U,y ()/1;1 X [aifl’a]) Usia (T[a’b] X {d}) Ugi_s (Yvifl X [dvai]) Uiy oo

a+b

where a = 37,

and where fi_1 = gi—1 = idy,_, x{a}-

See the left panel of Figure [13] for an illustration.
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Figure 13: Left: Effect of a Merge on a telescope. Right: Effect on the corresponding extended persistence
diagram. Points before the Merge are disks while points after the Merge are squares.

Merge for persistence diagrams. Similarly, we define the Merge between a, b on an extended persistence
diagram Dg as the diagram Merge, ,(Dg) given by Merge, ,(7,y) = (Z,y), where:

__[wifrglat o [ yifydab
{ -4

a otherwise a otherwise

Points in the strips « € [a,b], y € [a,b] are snapped to the lines © = @ and y = a respectively. See the right
panel of Figure See also the first intermediate points along the trajectories of the red points in Figure
for another illustration on extended persistence diagrams.

Commutativity of the operators. We now prove that extended persistent homology commutes with
this operator, i.e. Dg(Merge) = Merge(Dg).

Lemma 7.6. Let a < b and T' = Merge, ,(T). Let 7y : T" — R be the projection onto the second factor.
Then, Dg(m3) = Merge, ;,(Dg(2)).

Proof. We only study the sublevel sets of the functions, which means that we only prove the result for the
ordinary part of the diagrams. The proof is symmetric for superlevel sets, leading to the result for the
extended and the relative parts.

Assume a;—1 < a < a; <a; <b<ajrr. Givenz <y, we let 11, , : H*(T(_‘X”“]) — H*(T(_‘X”y]) and
I, , H, (7)== — H,((T")(=°>¥]) be the homomorphisms induced by inclusions. Since f is of Morse
type, Lemma relates I’ to II as follows (see Figure [T4):

M, if 2,y ¢ [0,8] (green) My, if 2 <,y € [a,a) (pink)
o - I, , 4 if z €la,a),y > b (blue) Mo, 1 a; if x € [a,a),y € [a,b] (orange) 19
v = ) g, if 2 € [a,b],y > b (grey) idy. | if 2,y € [a,a) (brown) (12)

., if £ <a,y € [a,b] (turquoise) id;‘/j if x,y € [a,b] (purple)

The equality between the diagrams follows from these relations and the inclusion-exclusion formula .
Consider for instance the case where the point (z,y) € Dg(m2) belongs to the union A of the pink and the
turquoise areas. One can select two abscissae 1 < x < z9 and an arbitrarily small € > 0. Then, the total
multiplicity of the corresponding rectangle R in Dg(n}) (displayed in the right panel of Figure is given
by:

mult(R) = rank IT,, ,  —rank IT,, ,,  +rank IT) ,  —rank I, , ..

The first relation in shows that R has exactly the same multiplicity in Dg(ms), since all its corners
belong to the green area. As this is true for arbitrarily small ¢ > 0, it means that R = RN A also has the
same multiplicity in Dg(m2) as in Dg(75). Now, if we pick a point inside R’ with an ordinate different than a,
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Figure 14: Left: Areas of the extended persistence diagram used in the proof. Right: Examples of the
boxes we use to prove the result (circles represent points before the Merge, squares represent points after
the Merge).

we can compute its multiplicity in Dg(75) by surrounding it with a box included in the turquoise area (if the
ordinate is bigger than @) or in the pink area (if it is smaller). Boxes in the turquoise area have multiplicity
rank I}, —rank IT}, +4vank I,  —rank I} = rankIl,, . —rankIl,, o +rank I, o, —rank 11, o, =
0. Similarly, boxes in the pink area also have multiplicity zero. Thus, all points of R’ in Dg(n%) have ordinate
a. Again, as it is true for x1, x5 as close to each other as we want, it means that (z,y) is snapped to (z,a)
in Dg(n}). The treatment of the other areas in the plane is similar.

Now, if [a,b] contains no critical values, then II' = II, so the result is clear. O O

Split. Split operators split a critical value a; into two different ones a; — ¢ and a; + €.

Definition 7.7 (Split). Let T be a telescope. Let a; € Crit(T) and € such that
0<e< min{aiH — Q;,Q; — ai,l}.
The e-Split on T at a; is the telescope T" = Split, ,. (T') given by:

w(Yicr X [ai—1,ai]) Uy, (Xi x {ai}) Ug, (Yi X [ai, @iga])-.
1

...(Y;,l X [ai,l,ai — ED U oime ()(z X {ai — 6}) Uia ()(z X [(li —€,a; + 6]) Uia (Xi X {ai + 6}) U¢?i+e (Y; X [ai + E,CLZ‘+1])...

P
See the left panel of Figure [15] for an illustration.

Down- and up-forks. Splits create particular critical values called down- and up-forks. Intuitively, Split
operations allow to distinguish between all possible types of changes in 0- and 1-dimensional homology
of the sublevel and superlevel sets, namely: union of two connected components, creation of a connected
component, destruction of a connected component, and separation of a connected component. Unions and
creations occur at down-forks while separations and destructions occur at up-forks. See Figure for an
illustration. We formalize and prove this intuition in Lemma [7.11

Definition 7.8. A critical value a; € Crit(T) is called an up-fork if ¥;_1 is an homeomorphism, and it is
called a down-fork if ¢; is a homeomorphism.
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Figure 15: Left: Effect of a Split on a telescope. Right: Effect on the corresponding extended persistence
diagram. Points before the Split are disks while points after the Split are squares.
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Figure 16: Left and right panels display the space before and after a Split respectively. Subsets of X; that
are colored in red and blue correspond to im(m; 0 t;—1) and im(m o ¢;) respectively.

Yi X [a;i +€ a;41)

—————— Xi x {a; + ¢}
Xix[a;—€, a;i+e
"""" Xi x {a; — €}

Yio1 x [aio1,a; — €

Since the attaching maps introduced by the Split are identity maps, we have the following lemma:
Lemma 7.9. The critical values a; — € and a; + € created with Split are down- and up-forks respectively.

The next lemma is a direct consequence of the existence and continuity of gf);l (resp. o, 11) when
a; € Crit(T) is a down-fork (resp. up-fork):

Lemma 7.10. Let a; € Crit(T). If a; is an up-fork, then T(=°%%1 deform retracts onto T=° for all
o € (ai_1,a;). If a; is a down-fork, then T(F) deform retracts onto T+ for all o € [a;, aiy1).

Now we can prove the previous intuition concerning down- and up-forks correct:

Lemma 7.11. Let a; € Crit(T). If a; is an up-fork, then it can only be the birth time of relative cycles and
the death time of relative and extended cycles in Dg(ms). If a; is a down-fork, then it can only be the birth
time of ordinary and extended cycles and the death time of ordinary cycles in Dg(ms).

Proof. Let 0 < e, < min{a;+1 — a;,a; —a;—1}. Consider the extended persistence module of ma:

— H*(T(*Ooyaifé]) N H*(T(foo,ai]) N H*(T(foo,ai+e’]) N
N H*(T,T[ai+e"+oo)) N H*(T’T[ai,+oo)) N H*(T’T[ai7€,+oo)) N

If a; is an up-fork, then the composition H, (T\~°%—¢€ 00, +€/]) is an isomorphism since
T(—oai+e'l deform retracts onto 7'(—°:ai—¢l by Lemmas h and |7 - As ¢,€ can be chosen arbitrarily
small, there cannot be any creation of ordinary or extended cycle at a;. There also cannot be any destruc-
tion of ordinary cycle.

Similarly, if a; is a down-fork, then the composition H, (T, T+ %)) — H, (T, Tlai=¢+)) i an iso-
morphism since T1% =) deform retracts onto Tlaite’+o0) Again, there cannot be any destruction of
extended or relative cycle at a;. There also cannot be any creation of relative cycle. O O
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Split for persistence diagrams. Similarly, we define the e-Split at a; on a diagram Dg as the diagram
Split, ,, (Dg) given by Split, , (v,y) = (7, 7), where:

zifx #q; y if y # a;
=4 a;+teifx=a; and (z,y) €Rel and g=1{ a; —eif y=a; and (x,y) € Ord
a; —e if x = a; and (z,y) ¢ Rel a; + € if y = a; and (z,y) ¢ Ord

Points located on the lines x,y = a; are snapped to the lines x,y = a; £ € according to their type. Note
that the definition of Split, (Dg) assumes implicitly that Dg contains no point within the horizontal and
vertical bands [a; — €,a;) X R, (a;,a; + €] x R, R x [a; — €,a;) and R x (a;,a; + €], which is the case under
the assumptions of Definition [7.7} See the right panel of Figure [I5] for an illustration. See also the second
intermediate points along the trajectories of the red points in Figure [20] for another illustration on extended
persistence diagrams.

Commutativity of the operators. We now prove that extended persistent homology commutes with
this operator, i.e. Dg(Split) = Split(Dg).

Lemma 7.12. Let a; € Crit(T). Let 0 < € < min{a;11 — a;,a; —a;—1}, T" = Split, . (T) and 75 : T" — R
the projection onto the second factor. Then, Dg(my) = Split, ,, (Dg(72)).

Proof. Note that T' = Merge,, . ,,+.(T"). Hence, by Lemma Dg(m2) can be obtained from Dg(7})
with Dg(me) = Merge,, . ,,1.(Dg(m3)). Note also that w5 has no critical value within the open interval
(a; — €,a; + €), so Dg(mh) has no point within the horizontal and vertical bands R x (a; — €,a; + €) and
(a; —e,a; + ¢) x R. Finally, Lemma ensures that a; + €,a; — € are up- and down-forks respectively, so
Lemma tells us exactly where the preimages of the points of Dg(ms) through the Merge are located
depending on their type. O O

Shift. Shift operators translate critical values.

Definition 7.13 (Shift). Let T be a telescope. Let a; € Crit(T) and € such that
0< |€| < min{aHl — Q;,Q; — ai,l}.
The e-Shift on T at a; is the telescope T' = Shift, o, (T) given by:

e (Yicr x [aio1,ai]) Uy, (Xi x {ai}) Ug, (Yi X [ai, aia])...
1
...(}/,L'_l X [ai_l,ai + CD Uw:ziglre (Xz X {ai + 6}) U¢?,1+e (YVZ X [(li =+ 6,(1@4.1])...

See the left panel of Figure [L7] for an illustration.

Shift for persistence diagrams. Similarly, we define the e-Shift at a; on a diagram Dg as the diagram
Shifte o, (Dg) given by Shifte o, (z,y) = (&, §) where:

5 {xlfx;éai andy:{ylfy#ai

a; + € otherwise a; + € otherwise

Points located on the lines x,y = a; are snapped to the lines =,y = a; + €. Note that the definition of
Shifte o, (Dg) assumes implicitly that Dg contains no point within the horizontal and vertical bands delimited
by a; and a; + €, which is the case under the assumptions of Definition See the right panel of Figure
for an illustration. See also the third intermediate points along the trajectories of the red points in Figure
for another illustration on extended persistence diagrams.
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Figure 17: Left: Effect of a double Shift with amplitudes €; < 0 < €2. Right: Effect on the corresponding
extended persistence diagram. Points before the Shift are disks while points after the Shift are squares.

Commutativity of the operators. We now prove that extended persistent homology commutes with
this operator, i.e. Dg(Shift) = Shift(Dg).

Lemma 7.14. Let a; € Crit(T), € € (a;—1 — a;, a1 — a;), T' = Shift. o, (T) and 75 : T" — R the projection
onto the second factor. Then, Dg(m)) = Shift, 4, (Dg(m2)).

Proof. Again, the following relations coming from Lemma [7.2

I, if 2,y ¢ (ai—1,a:4+1) (green) g, if © € [a; + €,ai11),y > a; 41 (grey)
) Wy, ifx < a1,y € (aji—1,a; + €) (pink) M, ,yifx € (ai—1,a; +€),y > a;+1 (blue)
") I, if 2 <ai—1,y € [a; + € ai+1) (turquoise) idy. | if z,y € (ai—1,a; + €) (brown)
Ho,_ 1 a, if © € (ai—1,a; +€),y € [a; + €,a;41) (orange) idy if z,y € [a; + €, a;41) (purple)

allow us to prove the result similarly to Lemma [7.6}—see Figure For instance, one can choose a box that
intersects the lines y = a; + € and y = a;, show that the total multiplicity is preserved, then choose another
small box that does not intersect y = a; + € inside the first box, and show that its multiplicity is zero.

A;—1 a; +€ iyl

Qi+1
a; + €
a;—1

a;

Figure 18: Areas of the extended persistence diagram used in the proof, with € < 0.

O O
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7.2 Operators on MultiNerve Mapper

We first provide invariance results for MultiNerve Mappers computed on telescopes as defined in Section
The result is stated in a way that is adapted to its use in the following sections. The conclusion would still
hold under somewhat weaker assumptions.

Proposition 7.15. Let T be a telescope, mo be the projection onto the second coordinate, and I be a gomic of
im(ma). Let End(Z) denote the set of endpoints of intervals of Z, sorted in ascending order. All isomorphisms
mentioned in the following items are in the category of combinatorial multigraphs.

(i) Let a < b such that there exists an interval I € T for which a,b belong to either I, I or IX. Then,
My, (Merge, ,(T),I) is isomorphic to My, (T, ).

(i) Let a; € Crit(T) \ End(Z), and a < a; < b with a,b consecutive in End(Z). Ifa;—1 < a <b < a1 and
0 <& <minfa; — a,b—a;}, then My, (Split, ,,(T),Z) is isomorphic to My, (T, I).

(iii) Let a; € Crit(T) \ End(Z), and b < a; < ¢ < d with b, c,d consecutive in End(Z). If a; is an up-fork,
(b,e) = INJ is an intersection, and ¢ — a; < € < min{d,a;11} — a;, then M, (Shift. o, (T),T) is
isomorphic to My, (T, T).

(iv) Let a; € Crit(T) \ End(Z), and a < b < a; < ¢ with a,b, ¢ consecutive in End(Z). If a; is a down-fork,
(b,e) = I NJ is an intersection, and max{a,a;—1} —a; < € < b — a;, then My, (Shift. o, (T),Z) is
isomorphic to My, (T, T).

Proof. Under the assumptions given by each item, the connected components in every intersection I N .J,
I,J € T and in every element I € 7 remain the same after each operation. Given any intersection K = I'NJ,
I,J €T, or interval K = I € T, we recall that T denotes 7 o 7, }(K). Then, we have:

(i) - (ii) 7% deform retracts onto (Merge, ,(T))* and (Split, ,,(T))* deform retracts onto T

(iii) - (iv) The Shifts move the up-fork to the upper proper subinterval, and the down-fork to the lower
proper subinterval, which preserves the connected components in each of the two intervals as well as
in their intersection.

Thus, the MultiNerve Mapper is not changed by any of the aforementioned operations. O O

7.3 Connection between the (MultiNerve) Mapper and the Reeb graph

In this section, we describe a sequence of metric spaces linking the MultiNerve Mapper and the Reeb graph.
Let f : X — R be of Morse type, and let Z be a gomic of im(f). Let T'(X, f) be the corresponding telescope.
The idea is to move all critical values out of the intersection preimages f~(I N J), so that the MultiNerve
Mapper and the Reeb graph become isomorphic. For any interval I € Z, we let a; < b; be the endpoints of
its proper subinterval I, so we have I = [af,b;]. For any non-empty intersection I N J, we fix a subinterval
[arng,brns] € I N J such that every critical value within I N J falls into [arns,b7ns] (which is possible
because f is of Morse type hence has finitely many critical values). We then define three different operations
individually as follows:

e Merge; is the composition of all the Merge,_ ., I € 7, and of all the Merge,, ., I,J € T and
INJ # (. All these functions commute, so their composition is well-defined. The same holds for the
following compositions.

e Split; is the composition of all the Split, ; with a a critical value after Mergez (therefore not an interval
endpoint) and € > 0 such that the assumptions of Proposition (ii) are satisfied.
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e Shifty is the composition of all the Shift. ;. with a; an up-fork critical value after the Split; and
€ > 0 such that the assumptions of Proposition (iii) are satisfied, and of all the Shift. ; with a_
a down-fork critical value after the Split; and & < 0 such that the assumptions of Proposition (iv)
are satisfied. After Shift7 there are no more critical values located in the intersections of consecutive
intervals of Z.

e Merge? is the composition of all the Merge lel.

af,bf7
We can now define our sequence of intermediate spaces:

Definition 7.16. Let X be a topological space, f: X — R be a Morse-type function, and I be a gomic of
im(f). Let T(X, f) be the telescope associated to f. We define the telescope Tr with:

Tr(X, f) = Merge o Shiftz o Split; o Merge(T(X, f)).
We also let fr denote the projection of Tz onto the second factor.

_ See Figure [19] for an illustration of this sequence of transformations. When often write T instead of
T7(X, f) when the pair (X, f) is clear from the context. In the following, we identify the pair (T, m2) with

(X, f) since they are isomorphic in the category of R-constructible spaces. We also let fr : Ry, (Tr) - R
denote the induced map defined on the Reeb graph of T7.

Thanks to Proposition and the choice of the aj,bj,arns,brns,€ in the definitions of Merges,
Split, Shiftz; and Merge;, we provide Lemma below, which states that the MultiNerve Mapper is
not affected by this sequence of transformations.

Lemma 7.17. For (Tz, fr) defined as in Definition Mfz (Tr,Z) and M¢(X,Z) are isomorphic as
combinatorial multigraphs.

This allows us to prove the following result, which states that the MultiNerve Mapper M/ (X,T) is actually
the same object than the perturbed Reeb graph Ry, (17).

Theorem 7.18. For (Tr, fr) defined as in Definition M¢(X,Z) and CRf,(Tz) are isomorphic as
combinatorial multigraphs.

We know from Lemma that Mf(X ,Z) and MfI(TI, T) are isomorphic as combinatorial multigraphs.
Theorem is then a consequence of the following result, whose hypothesis is satisfied by the T7 of
Definition [7.16l

Lemma 7.19. Let T be a telescope and let o : T' — R be the projection onto the second factor. Suppose that
every proper subinterval I in the cover T contains exactly one critical value of wa, and that the intersections

INJ contain none. Then, My, (T,Z) and CR,(T) are isomorphic as combinatorial multigraphs.

Proof. The nodes of CR, (T') represent the connected components of the preimages of all critical values of
7o, while the nodes of My, (T, T) represent the connected components of the preimages of all I € Z. The
hypothesis of the lemma implies that there is exactly one critical value per interval I € Z, hence the nodes
of M, (T,Z) and of CRy,(T) are in bijection. Meanwhile, the edges of CR.,(T) are given by the connected
components of the Y; X [a;, a;11]. Since the proper subintervals contain one critical value each and the I N.J
contain none, the pullbacks of all intersections of consecutive intervals also span the Y; x [a;, a;41]. Hence,
the edges of M,,(T,Z) are in bijection with the ones of CR.,(T"). Moreover, their endpoints are defined in
both cases by the ¢; and ;. Hence the multigraph isomorphism. O O

In passing, it is interesting to study the behavior of the MultiNerve Mapper as the hypothesis of the
lemma is weakened. For instance:

Lemma 7.20. Let T be a telescope and let wo : T — R be the projection onto the second factor. Suppose

that every interval I in the cover I contains at most one critical value of mo. Then, M, (T,Z) is obtained
from CR.,(T) by splitting some vertices into two and by subdividing some edges once.
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Figure 19: Tlustration of the sequence of transformations in (7.16]) on the features located in an interval
intersection. For each figure, we display the original space (middle), its Reeb graph (left) and its MultiNerve
Mapper (right).

Thus, the MultiNerve Mapper may non longer be ‘exactly’ isomorphic to the combinatorial Reeb graph
(counter-examples are easy to build, by making some of the critical values fall into intersections of intervals in
the cover), however it is still isomorphic to it up to vertex splits and edge subdivisions, which are topologically
trivial modifications.

Lemma[7.20. The proof is constructive and it proceeds in 3 steps:

1. For every interval I € 7 that does not contain a critical value, add a dummy critical value (with identities
as connecting maps) in the proper subinterval I. The effect on the Mapper is null, while the effect on the
Reeb graph is to subdivide once each edge crossing the dummy critical value. At this stage, every interval
of Z contains exactly one critical value. For simplicity we identify T with the new telescope.

2. For every interval I € T whose corresponding critical value does not lie in the proper subinterval I but
rather in some intersection I N J (defined uniquely since Z is a gomic), merge I and J into a single interval
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I U J. The coarser cover J thus obtained is still a gomic and it has the extra property that every proper
subinterval contains exactly one critical value and every intersection contains none. Then, by Lemma [7.19]
the MultiNerve Mapper M, (T, J) is isomorphic to the combinatorial Reeb graph CR,(T).

3. There remains to study the differences between M., (T,Z) and M, (T, J). The only difference between
the two covers is that some isolated pairs of intervals (I,J) have been merged because their intersection
I N J contained a critical value a;. For every such pair, there are as many connected components in the
preimage 7, '(I) as in 7, ' (J) as in 75 1 (INJ) as in 7wy (I UJ) because T U.J contains no critical value other
than a;. Hence, every vertex of My, (T, J) corresponding to a connected component of 7, *(I U .J) is split
into two in My, (T,Z). Moreover, the two copies are connected by a single edge, given by the corresponding
connected component of 75 1([ N J). Now, assuming without loss of generality that J lies above I, we have
(IuJ)t = JZ, which by assumption contains no critical value, so the connections between the vertex copy
corresponding to my 1(.J) and the vertices lying above it in M, (T, Z) are the same as the connections between
the original vertex and the vertices lying above it in M, (T, 7). Similarly, (IUJ)5 = I5 contains no critical
value by assumption, so the connections between the vertex copy corresponding to 75 1(I) and the vertices
lying below it in M,,(T,Z) are the same as the connections between the original vertex and the vertices
lying below it in M, (T, 7). O O

Extension to the Mapper. Due to the simple relation between the Mapper and the MultiNerve Mapper
given by Corollary Theorem [7.18] can be extended for Mappers.

Definition 7.21. Let X be a topological space, and f : X — R be a Morse-type function. Let (TI,_fI) be
defined as in Definition . Let Cyl(Tz) be the set of the connected components of the cylinders of Tr. We
define the equivalence relation ~ between elements of Cyl(Tz) as:

C,C" are connected components of the same cylinder
C~C < ¢(Cx{a;}) and ¢;(C" x {a;}) belong to the same connected component
;i (C x {a;11}) and ¥;(C’ x {a;11}) belong to the same connected component

Then, we define Tr as Tr/ ~, equipped with the projection onto the second factor that we call fz.

Intuitively, we glue the pairs C,C’ of connected components of the same cylinder whose images under
the attaching maps are in the same connected component of the critical slice, i.e. those that induce edges
with the same endpoints in the multinerve. Hence, we obtain the following corollary using Corollary [3.5}

Corollary 7.22. CRy,(T7) and M¢(X,T) are isomorphic as combinatorial multigraphs.

7.4 Convergence results

Recall that the dpp compares metric graphs, whereas the (MultiNerve) Mappers are combinatorial graphs.
However, since M (X, Z) and R, (T) are essentially the same according to Theorem we can use R, (Tr)
as a metric graph representation of Mf (X,T), when computing the functional distortion distance. Note that
we could also use Rg, (Mf(X,Z)) since it is isomorphic to M(X,Z) as well according to Lemma but
its connection to Ry(X) is unclear. On the opposite, even though dpp is most of the time untractable, its
computation is possible with Rz, (Tr) thanks to the sequence of transformations of Definition We will

see at the end of the section that mz and fz actually coincide on Mf(X ,I).

Theorem below shows that R, (Tr) is close to Ry(X) if Z has a small granularity. To prove it, we
use the following lemma, whose proof is just a simple extension of the one of Proposition 3.1 in [10], and is
deferred to Appendix

Lemma 7.23. Let S be a set of pairwise disjoint bounded open intervals, and let Mergeg be defined as the
composition of all Merge,, ,,, (a,b) € S. Let Ry be a Reeb graph such that Crit(g) C (J;cg I and let Ry be
the Reeb graph of the telescope Mergeg(Ry). Then dep(Rg,Ry/) < sup{length(1) : I € S}.
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Given a gomic Z, we let €1(Z) = sup{length(l) : I € I} and e3(Z) = sup{length(INnJ) : I,J € T}.
Note that €1(Z) and e3(Z) can be thought of as different types of granularity measures of Z. They are both
bounded from above by the granularity of Z as defined in Section

Theorem 7.24. Suppose the granularity of the gomic I is at most €. For (T, fr) defined as in Defini-
tion we have dpp (R, (T7),Rf (X)) < €1(Z) + e2(Z) + max{e1(Z), e2(Z)} < 3e.
Moreover, for (Tz, fz) defined as in Definition we have dpp(Ry; (T7), Rp(X)) < 7e/2.

Proof. We start with the MultiNerve Mapper. By the triangle inequality, it suffices to bound the functional
distortion distance for each of the four operations Merge;, Shiftz, Split; and Merge; individually. Let Ry
be the Reeb graph of the telescope Merges(R;(X)). Similarly, let Ry be the Reeb graph of Split-(R1), R
be the Reeb graph of Shiftz(Rz) and Ry = Ry, (T7) be the Reeb graph of MergeZ(Rs). Examples of such
Reeb graphs can be seen in the left parts of Figure

Then we have dgp <sz (TI), Rf(X)) < dFD(Rf(X), Rl) + dpp (R, Rg) + dpp(Re, R3) + dFD<R3, R4).

e By Lemma[7.23] we have dpp(Rys(X),R1) < max{e1(Z),e2(Z)} and drp(Rs,Ra) < €1(T).

e Assume without loss of generality that Split7 is the composition of all Split,, ;, where a is a critical
value of R;. Since R; is obtained from Ry by taking the composition of all Merge, it follows
from Lemma, that dgp(R1,Re) < 2a.

—a,a+to

e Since the assumptions of Prop. (iii) and Prop. (iv) are satisfied by Shiftz, it follows that
Ro and Rj3 are isomorphic, because the number, the types and the ordering of the critical values of
Ro are preserved when transformed into Rg. It is then straightforward that the functional distortion
distance between Ry and Rg3 is the maximal amplitude of the Shift operations involved. According to
the assumptions of Proposition (iii) and Proposition (iv), these amplitudes are all bounded
by e2(Z).

The result follows by letting a — 0.
Concerning the Mapper, the result is obtained by adding an extra €/2 to the previous upper bound, which
corresponds to the functional distortion distance cost of gluing edges with the same endpoints. O O

Note that a simila