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Introduction

Failure of industrial components, systems and products may be caused by multiple failure processes, e.g. wear, corrosion, erosion, creep, fatigue, etc. [START_REF] Jiang | Modeling zoned shock effects on stochastic degradation in dependent failure processes[END_REF]. In general, the failure processes are categorized as degradation processes (or soft failures) and catastrophic failure processes (or hard failures) [START_REF] Li | Reliability modeling of multi-state degraded systems with multi-competing failures and random shocks[END_REF]. Soft failure is caused by continuous degradation and is often modeled by a continuous-state random process, e.g., Wiener process [START_REF] Guo | A maintenance optimization model for mission-oriented systems based on Wiener degradation[END_REF][START_REF] Wang | A model for residual life prediction based on Brownian motion with an adaptive drift[END_REF], Gamma process [START_REF] Lawless | Covariates and Random Effects in a Gamma Process Model with Application to Degradation and Failure[END_REF][START_REF] Kuniewski | Sampling inspection for the evaluation of timedependent reliability of deteriorating systems under imperfect defect detection[END_REF][START_REF] Castro | Age-based preventive maintenance for passive components submitted to stress corrosion cracking[END_REF], inverse Gaussian process [START_REF] Pan | Remaining useful life estimation using an inverse Gaussian degradation model[END_REF][START_REF] Peng | Leveraging Degradation Testing and Condition Monitoring for Field Reliability Analysis With Time-Varying Operating Missions[END_REF][START_REF] Ye | The Inverse Gaussian Process as a Degradation Model[END_REF], continuous-time semi Markov process [START_REF] Lin | Integrating Random Shocks Into Multi-State Physics Models of Degradation Processes for Component Reliability Assessment[END_REF], etc. Hard failure is caused by traumatic shocks in various patterns and is often modeled by a discrete-state random process, e.g., Homogeneous

Poisson Process (HPP) [START_REF] Lin | Integrating Random Shocks Into Multi-State Physics Models of Degradation Processes for Component Reliability Assessment[END_REF][START_REF] Lemoine | On failure modeling[END_REF][START_REF] Klutke | The availability of inspected systems subject to shocks and graceful degradation[END_REF], Nonhomogeneous Poisson Process (NHPP) [START_REF] Huynh | A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events[END_REF][START_REF] Huynh | Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks[END_REF][START_REF] Fan | Reliability modeling of a spool valve considering dependencies among failure mechanisms[END_REF], etc. Often, complex dependencies exist among the failure processes [START_REF] Zeng | Using PoF models to predict system reliability considering failure collaboration[END_REF]. For example, [START_REF] Jin | Physics of failure-based degradation modeling and lifetime prediction of the momentum wheel in a dynamic covariate environment[END_REF] presents experimental data to show that erosion and corrosion can enhance each other and therefore accelerate the failure process. Also, it is observed in [START_REF] Mcpherson | Reliability physics and engineering: time-to-failure modeling[END_REF] that the dependency between creep and fatigue severely reduces the Time-To-Failure (TTF) of the specimens that are exposed to high temperatures and heavy loads. To accurately describe the failure behavior affected by multiple failure processes, the possible dependencies among the failure processes need to be properly addressed.

In literature, various methods have been developed to model the dependencies among degradation processes and random shocks. Peng et al. [START_REF] Peng | Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[END_REF] develop a dependency model where the arrived shocks lead to an abrupt increase of the degradation process. Wang and Pham [START_REF] Wang | A Multi-Objective Optimization of Imperfect Preventive Maintenance Policy for Dependent Competing Risk Systems With Hidden Failure[END_REF] investigate systems subject to dependent competing risk, which suffer failures due to degradations and random shocks: the model is proposed of shocks that can cause immediate failure of the system, with a time-dependent probability   pt , or can increase the degradation level with probability   1 pt  . Cha and Finklstein [START_REF] Cha | On new classes of extreme shock models and some generalizations[END_REF] assume that a shock can lead to a hard failure with probability   pt , or can increase the degradation rate with probability  

1 pt 
. Jiang et al. [START_REF] Jiang | Reliability and Maintenance Modeling for Dependent Competing Failure Processes With Shifting Failure Thresholds[END_REF] develop a model that considers that the threshold of hard failures can be shifted by random shocks. Rafiee et al. [START_REF] Rafiee | Reliability modeling for dependent competing failure processes with changing degradation rate[END_REF] consider that the degradation rate is increased by a series of shocks. Jiang et al. [START_REF] Jiang | Modeling zoned shock effects on stochastic degradation in dependent failure processes[END_REF] categorize shocks into different shock zones based on their magnitudes and consider that shocks in different zones have different effects on the degradation process. Bagdonavicius et al. [START_REF] Bagdonavicius | Statistical analysis of linear degradation and failure time data with multiple failure modes[END_REF], Fan et al. [START_REF] Fan | Multicomponent lifetime distributions in the presence of ageing[END_REF] and Ye et al. [START_REF] Ye | A Distribution-Based Systems Reliability Model Under Extreme Shocks and Natural Degradation[END_REF] develop models that consider that the probability of hard failures is increased as the degradation process progresses. Huynh et al. [START_REF] Huynh | A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events[END_REF][START_REF] Huynh | Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks[END_REF] investigate maintenance strategies for a dependence model, where the intensity of the NHPP for random shock is a piecewise function of the degradation magnitude. Fan et al. [START_REF] Fan | Reliability modeling of a spool valve considering dependencies among failure mechanisms[END_REF] present a reliability model for sliding spools considering that the intensity of the NHPP describing the random shock process is a linear function of the degradation level.

For models that consider the dependencies between degradation and random shock processes, like these above, it is often too complicated, if not intractable, to evaluate system reliability analytically. Then, simulation methods, such as Monte Carlo methods [START_REF] Zio | The Monte Carlo Simulation Method for System Reliability and Risk Analysis[END_REF], are used, often with limitations due to heavy computational burden. In this respect, Stochastic Hybrid Systems (SHS) [START_REF] Pola | Stochastic hybrid models: An overview[END_REF] offer a new way to model the stochastic behavior of systems that involve both discrete and continuous states [START_REF] Abate | Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems[END_REF][START_REF] Yang | Almost sure state estimation with -type performance constraints for nonlinear hybrid stochastic systems[END_REF][START_REF] Teel | Stability analysis for stochastic hybrid systems: A survey[END_REF][START_REF] Dhople | A Stochastic Hybrid Systems framework for analysis of Markov reward models[END_REF]. SHS describe the system's behavior by a set of differential equations and therefore, whose solution avoids the computational burdens of simulation methods. Various forms of SHS exist in literature (see Pola et al. [START_REF] Pola | Stochastic hybrid models: An overview[END_REF] for a comparison). In this paper, we adopt the models recently developed by Hespanha in [START_REF] Hespanha | Stochastic Hybrid Systems: Application to Communication Networks[END_REF][START_REF] Hespanha | A model for stochastic hybrid systems with application to communication networks[END_REF][START_REF] Hespanha | Modelling and analysis of stochastic hybrid systems[END_REF], which is similar to the Piecewise Deterministic Markov Process (PDMP) [START_REF] Lin | Fuzzy Reliability Assessment of Systems With Multiple-Dependent Competing Degradation Processes[END_REF] but differs from it in that the continuous state variable follow Stochastic Differential Equations (SDEs), rather than Ordinary differential equations (ODEs). To the best of our knowledge, it is the first attempt to use SHS for modeling dependent failure processes.

It should be mentioned that SHS is similar to Stochastic Hybrid Automata (SHA), which is also applied in Dynamic Reliability (DR) assessment or Dynamic Probabilistic Risk Assessment (DPRA) [START_REF] Castañeda | Stochastic hybrid automata model for dynamic reliability assessment[END_REF][START_REF] Chiacchio | Stochastic hybrid automaton model of a multi-state system with aging: Reliability assessment and design consequences[END_REF]. Both methods model dynamic hybrid system behaviors that involve stochastic factors. SHA introduces less assumptions than SHS and resorts to Monte Carlo simulation for the calculations [START_REF] Siu | Risk assessment for dynamic systems: An overview[END_REF][START_REF] Labeau | Dynamic reliability: towards an integrated platform for probabilistic risk assessment[END_REF]; SHS, on the other hand, is able to describe the hybrid dynamics analytically or semi-analytically, by solving a set of Differential Equations (DEs) on the expense of introducing more assumptions [START_REF] Hespanha | Modelling and analysis of stochastic hybrid systems[END_REF]. The computational cost of SHS is, in general, less than that of SHA, but on the expense of more assumptions in particular with respect to the degradation models, whereby epistemic uncertainty (specifically model uncertainty) [START_REF] Nilsen | Models and model uncertainty in the context of risk analysis[END_REF][START_REF] Bjerga | An illustration of the use of an approach for treating model uncertainties in risk assessment[END_REF][START_REF] Kang | Measuring reliability under epistemic uncertainty: Review on nonprobabilistic reliability metrics[END_REF] is introduced. When applying the SHS in practice, then, care should be taken to ensure that the assumptions are consistent with the actual situation, in particular in case of systems characterized by complex and numerous dependencies among physical processes and failure behaviors. In this paper, we choose SHS because the type of dependent degradation and shock processes allows for modeling by SHS and, in general, SHS has a better computational performance than SHA.

Methods

SHS model

The state space of a SHS model is a combination of discrete and continuous states. Let us denote the discrete states by     , q t q t Q  , where Q is a finite set containing all the possible discrete modes of the system. The continuous states are denoted by     , l x t x t  . A SHS model is defined based on the following assumptions [34- 36]:

(1) The evolution of the continuous states is governed by a set of SDEs:

              , , , t dx t f q t x t dt g q t x t dw  (1) 
where : 

k t w   is a k-dimensional
      ,, q t x t it undergoes a transition with a rate       , : , l ij q t x t Q    , ij Q  .
That is, the probability that the system undergoes a transition from state i to state j within the interval  

, t t t  is:         ,, ij q t x t t o t     (2) 
(3) Whenever the system undergoes a state transition from state i to state j , it instantaneously applies the map

      , ij q t x t  to the current values of   qt and  
xt , so that their values are reset:

            ,, ij q t x t q t x t    , (3) 
where the notation   at  represents the left-hand limit of the function a at time t . 

SHS formulism for dependent failure processes

The modeling framework for dependent failure processes involves three elements, i.e., a model for the degradation process, a model for the shock process and a model for the dependency between the two processes. The following assumptions are made in order to model a dependent failure process in the framework of SHS:

Assumption Given a dependent failure process, the following steps show how to model it in the framework of SHS:

Step 1: Modeling degradation. In this step, the performance parameters  

xt are identified to characterize the degradation processes. For the performance parameters, the SDEs in (1) are developed to describe their degradation, considering both deterministic and stochastic characteristics. The deterministic characteristics are often described based on the physical knowledge on the degradation processes (e.g., using the Physics-of-Failure (PoF) models [START_REF] Mcpherson | Reliability physics and engineering: time-to-failure modeling[END_REF]), while the stochastic characteristics are modeled by a Wiener process, as shown in (1).

Step 2: Modeling random shocks. In SHS, random shocks are considered as transitions among the system health states. The transition rates,

      , ij q t x t  , ,, i j Q 
need to be determined based on historical data or expert judgments.

Step 3: Modeling dependencies. Finally, the dependencies between the degradation processes and random shocks need to be considered. The dependencies can be modeled in various ways in SHS. For instance, by resetting the values for  , Note that in order to make sure that the developed SHS model is solvable in case that truncations techniques [START_REF] Hespanha | Modelling and analysis of stochastic hybrid systems[END_REF] are needed, for example Case 3 in this paper, the , , , , ,

i i ij ij f g i j Q   in the SHS model have to be polynomial functions of   xt .

Conditional moments estimation

In this section, we derive the conditional expectations for the continuous state variables, i.e.,

    , , 1, 2, |, , p j E x t q t i p l i Qj       
, where

  j xt represent the j th element of   xt .
The conditional expectations will be used in the next section for reliability analysis. Let us define a test function to be 

    ,, 0 m m i x q i qx qi        ( 
                :, Pr . mm ii m t E q x E x t q t i q t i           (6)
For a general test function

      ,, q t x t  :, l Q  
which is twice continuously differentiable with respect to x , the evolution of its expected value is governed by Dynkin's formula [START_REF] Hespanha | Modelling and analysis of stochastic hybrid systems[END_REF]:

              , , dE q t x t E L q t x t dt        , (7) 
where   

, L q x 
is the extended generator of SHS and  

, l q x Q    ,    , L q x  is given by                        2 2 , , , : , , 1 ,, 2 , , , 
,

ij ij i j Q qx L q x f q x x qx trace g q x g q x x q x q x q x                      (8)
where x   and 22

x   denote the gradient and Hessian matrix of   , qx  with respect to x , respectively;   trace A is the trace of the matrix A , i.e., the sum of elements on its main diagonal.

Substituting ( 5) into ( 7), we get a group of differential equations with respect to    ,,

m l i t i Q m   :               ,. mm ii d t E L q t x t dt     (9) 
The evolution of     m i t  can be depicted by solving [START_REF] Peng | Leveraging Degradation Testing and Condition Monitoring for Field Reliability Analysis With Time-Varying Operating Missions[END_REF]. The conditional moments can, then, be obtained by assigning proper values for m : if we let

  0,0,...,0 , m  we have         0,0,...,0 Pr , . i t q t i i Q     (10) 
If we let

    12 i ,, , , : f 1, 2, , , f, 0, , i j j l m p j l kk mm j m m k m          
where j m denotes the j th element in m and p is a natural number, we have

            Pr , . m p ik t E x t q t i q t i i Q         (11) 
The conditional expectations,

    , , 1, 2, |, , p j E x t q t i p l i Qj       
, can, then, be calculated by combining [START_REF] Ye | The Inverse Gaussian Process as a Degradation Model[END_REF] and [START_REF] Lin | Integrating Random Shocks Into Multi-State Physics Models of Degradation Processes for Component Reliability Assessment[END_REF].

Reliability analysis

From Assumption 6, system reliability can be expressed as:

            1 1 2 2 Pr , , . , , ll R t q t n x t H x t H x t H      (12) 
From the law of total probability, we have

                          1 1 2 2 1 1 1 2 2 1 , Pr , , , , Pr Pr , , 
.

n ll ll i R t q t n x t H x t H q t i x t H x t H x t H x t H q t i                (13) 
Since we assume that the degradation processes are independent from one another, (13) becomes

            1 1 1 Pr Pr l n jj i j R t x t H q t i q t i              (14)
In ( 14),  

 

Pr q t i  can be calculated by [START_REF] Ye | The Inverse Gaussian Process as a Degradation Model[END_REF],

      Pr 1, 2, , 1, 1, 2, , jj x t H q t i i n j l     , can,
instead, be approximated using the First Order Second Moment (FOSM) method [START_REF] Zhao | Moment methods for structural reliability[END_REF], since we have the conditional moments for  .

j xt Let   j x q i t   and   j x q i t  
denote the expected value and standard deviation of the random variable   j xt conditioned on qi  , respectively. Then,

  j x q i t   and   j x q i t   can be calculated by                                                         ,,
,, 0,0,...,0 2 2 2 0,0,...,0 0,0,...,0

ˆ, Pr ˆ, 1, 2,..., 1 , jj j j jj mm ii j x q i i jj x q i mm ii ii tt t E x t q t i q t i t t E x t q t i E x t q t i tt in tt                               (15)
where *, j m and **, j m are given by

    , 12 , 12
= , , , :

; 0, if . j l k k j l k k m m m m m k j m k j m m m m m k j m k j            1, if ; 0, if , , , , : 2, if 
Based on FOSM [START_REF] Zhao | Moment methods for structural reliability[END_REF],

      Pr jj x t H q t i  can be approximated by           Pr . ˆj j j x q i jj x q i Ht x t H q t i t              (17) 
Substituting ( 17) into ( 14), the reliability of the system is approximated by

            1 0,0,...,0 1 1 ˆ, ˆj j l n j x q i ei i j x q i Ht R t R t t t                        (18) 
where

  ˆj x q i t   ,   ˆj x q i t  
are calculated by [START_REF] Huynh | Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks[END_REF].

The accuracy of the approximation by FOSM relies on the normality assumption: the random variables

    1, 2,..., 1, 1, 2 | ,, , j n x t q i jl ti    
are normally distributed with mean value

  j x q i t   and standard deviation   j x q i t  
. In practice, the assumption does not always hold. Therefore, we also present an estimation method for the lower bound of the system reliability, using Markov inequality.

According to Markov inequality [START_REF] Pishro-Nik | Introduction to Probability, Statistics, and Random Processes[END_REF], if X is a nonnegative random variable and 0 a  , then

    Pr . EX Xa a  (19) 
Using [START_REF] Mcpherson | Reliability physics and engineering: time-to-failure modeling[END_REF], we obtain

            Pr , 1, 2,..., , 1, 2, 
..., 1 .

j jj j E x t q i x t H q i j l i n H        (20) 
From ( 14) and ( 20), the lower bound of system reliability can, then, be derived: 1,

                                                  , , 1 1 1 1 
1 j j l n jj i j l n jj i j l n j i j j m l n i i i j j m l i li i j j R t q t i x t H q t i q t i x t H q t i E x t q t i q t i H t t H t R t t H                                                                 1 1 , n   (21) 
where *, j m has the same meaning as in (16).

Results and Discussion

Case 1

System description

The first case study to demonstrate the developed framework is adapted from [START_REF] Peng | Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[END_REF]. A MEMS device is subject to two dependent failure processes, i.e., soft failures caused by wear and debris from shock loads, and hard failures due to spring fracture caused by shock loads [START_REF] Peng | Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[END_REF]. The soft failure is modeled by a continuous degradation process and the hard failure is modeled by a random shock process. Dependence exists among the two processes: the arrival of a shock brings an additional contribution to the degradation process. Failures occur whenever one of the following two events happens:

 the degradation process reaches its threshold, denoted by ; H  a shock whose magnitude exceeds a critical level, denoted by , D occurs.

Additional assumptions include:

(1) The continuous degradation process follows an SDE.

   

,,

t dx t dt dw x t      (22) 
where t w  is a standard Wiener process, ,   are constants and the initial degradation level at t = 0 is null.

(2) The random shock process is a HPP with intensity .  

SHS formulation

A SHS model is constructed in Fig 2 to describe the behavior of the system. The system has two health states,

    1, 2 . qt When   1
qt  , the system is subject to the degradation process according to [START_REF] Cha | On new classes of extreme shock models and some generalizations[END_REF]. When   2 qt  , the system fails due to hard failure and the degradation level is set to zero, i.e.   0 xt  . 

0 2. W W W W D q q q D q q q                                        (23)         11 12
, : 1, , , : 2,0 .

q x x d qx     (24) 
In [START_REF] Rafiee | Reliability modeling for dependent competing failure processes with changing degradation rate[END_REF], the reset map  

11

, qx  models the dependency in Assumption (4).

Reliability analysis

We define the test functions

      , , 1, 2 , 
,

m i q x i m   to be:         1 0 2 1 , 0 1, 12 , 0 2. m m xq qx q q qx q               (25) Since   0 xt  when   2
qt  , we only consider the 0-order conditional moment of the degradation at state 2 , i.e.     0 2

, qx



. By substituting (22)(23)( 24) into (8), the extended generator of the SHS model is:

                                                  2 11 2 1 2 10 11 1 1 11 12 1 0 0 2 12 1
,,

m m q x q x L q x xx q q x d q x q q q x L q x q q x                       1 , 2 ,, ,, , , . mm m 
According to ( 7) and ( 26), the differential equations governing the conditional moments are:

                                  12 2 1 1 1 11 1 11 12 1 0 00 2 12 1 1 1 2 , , m m m m m k m k k d t m t m m t dt m t E d t k d tt dt                                (27) 
where    

2 2 2
, [START_REF] Ye | A Distribution-Based Systems Reliability Model Under Extreme Shocks and Natural Degradation[END_REF], we can obtain the following set of differential equations: 

d d d E d E d       . From
              00 
                                                         (28) 
Since the system must belong to one of the two health modes, it is obvious that

        00 12
1. tt   [START_REF] Pola | Stochastic hybrid models: An overview[END_REF] From ( 18) and ( 21), the estimated system reliability   e Rt and the lower bound

  l Rt are calculated by                                 10 0 11 1 2 2 0 1 0 1 1 1 1 , e H t t R t t t t t t                 (30)           1 0 1 1 1, l t R t t H          (31) 
where the conditional moments

            0 1 2 1 1 1 ,, t t t   
are obtained by solving the differential equations in [START_REF] Zio | The Monte Carlo Simulation Method for System Reliability and Risk Analysis[END_REF] and ( 29).

Numerical calculation

A numerical example is conducted with the parameters in Table 1, taken from [START_REF] Peng | Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[END_REF]. To solve the differential equations in ( 28) and ( 29), the solver based on Runge Kutta method in Matlab R2013a is used. In [START_REF] Peng | Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[END_REF], the original 

      0 1 Pr 2 qt   . (B)
Comparison on the order 1 moment: 

           
           

Case 2 System description

The second case study to demonstrate the developed framework is adapted from [START_REF] Rafiee | Reliability modeling for dependent competing failure processes with changing degradation rate[END_REF]. A MEMS device is subject to two dependent failure processes, i.e., soft failures and hard failures. The soft failure is modeled by a continuous degradation process and the hard failure is modeled by a random shock process. Dependences between the two failure processes exist in the following two aspects: (1) the arrival of each shock brings a degradation increment;

(2) the degradation rate increases when the system undergoes a series of shocks. The second type of dependence has been investigated based on four different shock models in [START_REF] Rafiee | Reliability modeling for dependent competing failure processes with changing degradation rate[END_REF]: extreme shock,  shock, m shock, and run shock models. In this section, we apply our framework by considering the first dependence and the second dependence triggered by the extreme shock model. Failure occurs whenever one of the following two events happens:

 the degradation process reaches its threshold, denoted by H ;

 a shock whose magnitude exceeds a critical level, denoted by 1 D , occurs.

Additional assumptions include:

(1) Random shocks arrive according to a HPP with intensity  .

( 

SHS formulation

The SHS concerning this case is described by the state-transition diagram in Fig 4 . The system has three health states,     1, 2,3 . qt When   1 qt  , the system is subject to the degradation at a low-level degradation rate. By contrast, when   2, qt 

the system degrades at a high-level degradation rate. System's degradation under the first two health states evolves according to the following SDEs: 

        11 22 if 1 ,. if 2 t t dt dw q t dx t x t dt dw q t              (33) When   3,

Pq q q

Pq q q Pq q q P P q q q Pq q q , : 3, 0 ,

                                           (34)                    
q x x d q x x d qx q x x d qx           ( 35 
)
where 1 2 3 ,, P P P are calculated by

0 1 0 1 1 2 3 , , 1 
.

W W W W W W W W D D D D P P P                                              (36) 
In [START_REF] Hespanha | A model for stochastic hybrid systems with application to communication networks[END_REF], the reset maps

    11 22
, , , q x q x  model the dependency in assumption (3) and the change of system degradation rate along with the transition from health state 1 q  to health state 2 q  model the dependency in assumption (4).

Reliability analysis

We define the test functions       , , 1, 2,3 , ,

m i q x i m   to be:             1 2 0 3 1, , 0 1, 2, , 0 2, 1 3, , 0 3. m m m m xq qx q xq qx q q qx q                      (37) Since   0 xt  when   3
qt  , we only consider the 0-order conditional moment of the degradation at state 3 , i.e.

    0 3 , qx



. By substituting (33)(34)( 35) into ( 8), the extended generator of the SHS is: ,,

                                                                                         
m mm m m m m q x q x L q x q x d q x xx qx q x q x L q x q x d q x xx q x d q x q x L q x q x q x                                                          1 , , , 2 ,, ,, 1 , , , 2 , , , , , , , . mm m m 
According to [START_REF] Castro | Age-based preventive maintenance for passive components submitted to stress corrosion cracking[END_REF] and [START_REF] Castañeda | Stochastic hybrid automata model for dynamic reliability assessment[END_REF], the differential equations governing the conditional moments are:

                                                          11 22 12 2 1 1 1 11 1 11 12 13 1 0 12 2 2 2 2 22 2 0 12 1 22 23 2 0 1 1 2 , 1 1 2 , m m m m m k m k k m m m m m k k k m m k m k k d t m t m m t dt m t E d t k m d t m t m m t t E d k dt m t E d t k d dt                                                                                   0 0 0 3 13 1 23 2 , t t t      (39) 
where     [START_REF] Chiacchio | Stochastic hybrid automaton model of a multi-state system with aging: Reliability assessment and design consequences[END_REF], we can obtain the following set of differential equations: 

2 2 2 , d d d E d E d       . From
                  1 
0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 2 2 0 0 2 2 2 d dd d d d d d d d d d                                                                                        0 1 0 2 1 1 1 2 2 1 2 3 2 .                             (40) 
Since the system must belong to one of the three health modes, it is clear that

            000 1 2 3 1. ttt     (41) 
From ( 18) and ( 21), the estimated system reliability   e Rt and the lower boundary

  l Rt are calculated by                                 10 2 0 2 2 0 1 0 1 , ii ei i i i i i H t t R t t t t t t                   (42)           1 2 0 1 1. i li i t R t t H            (43) 
where the conditional moments 

                        0 1 2 0 1 2 1 1 1 2 2 2 , , , , , t t 

Numerical calculation

A numerical example is conducted using the parameters in Table 2, taken from [START_REF] Rafiee | Reliability modeling for dependent competing failure processes with changing degradation rate[END_REF]. To solve the differential equations ( 40) and ( 41), the solver based on Runge Kutta method in Matlab R2013a is used. In [START_REF] Rafiee | Reliability modeling for dependent competing failure processes with changing degradation rate[END_REF], the original model is simulated by Monte Carlo to compute system reliability. A comparison is made between the results obtained by the developed methods in this paper and those obtained by Monte Carlo simulation. The sample size of the Monte Carlo simulation is Comparison on the order 0 moment: 

         
                111 1 2 3 E x t t t t     . (C)
Comparison on the order 2 moment: 

               

Case 3

System descriptions

The third case study to demonstrate the developed framework is adapted from [START_REF] Bagdonavicius | Statistical analysis of linear degradation and failure time data with multiple failure modes[END_REF]. The failure behavior of bus tires is modeled by two dependent failure processes, i.e. soft failures caused by wear and hard failures of seven modes due to traumatic shocks. The soft failure is modeled by a continuous degradation process and the hard failure is modeled by a random shock process. Dependence exists among the two processes, that is, the probability that a traumatic shock occurs depends on the degradation level. Failures occur whenever one of the following two events happens:

 the degradation process reaches its threshold, denoted by ; H  a traumatic shock following a Cox process [START_REF] Lando | On cox processes and credit risky securities[END_REF] with intensity   x  occurs.

Additional assumptions include:

(1) The continuous degradation process is modeled by an SDE. 

SHS formulation

A SHS model is constructed in Fig 6 to describe the behavior of the system. The system has two health states,

    1, 2 . qt When   1
qt  , the system is subject to the degradation process and degrades according to [START_REF] Kang | Measuring reliability under epistemic uncertainty: Review on nonprobabilistic reliability metrics[END_REF]. When   2 qt  , the system fails due to a hard failure, and the degradation level is set to zero, i.e.   0 xt  . As shown in Fig 6, the initial state of the system is state 1. The transition rates and reset maps of the SHS are defined as follows:

  12 1, ,: 0 1, xq qx q         (46)     12 , : 2,0 . qx   (47) 

Reliability analysis

We define the test functions

      , , 1, 2 , 
,

m i q x i m   to be:         1 0 2 1, , 0 1, 1 2, , 0 2. m m xq qx q q qx q               (48) Since   0 xt  when   2
qt  , we only consider the 0-order conditional moment of the degradation at state 2, i.e. 

                                2 11 2 11 2 0 0 21 ,, 1 , , , 2 , 
, .

mm m m q x q x L q x x q x xx L q x x q x                       (49) 
According to [START_REF] Castro | Age-based preventive maintenance for passive components submitted to stress corrosion cracking[END_REF] and (49), the differential equations governing the conditional moments are:

                                  1 2 1 2 1 1 1 1 1 0 0 1 2 1 1 1 1, 2 . m m m m m d t m t m m t t t dt d t t t dt                     (50) 
From (50), we can obtain the following set of differential equations:

              00 11 1 1 3 1 1 1 2 22 11 00 0. 2                                                         (51) 
Since the system must belong to one of the two health modes, it is obvious that

        00 12 1. tt   (52) 
Unlike the differential equations obtained in case 1 and case 2, the dynamics of

      0 1 2 1 1 1 ,,    in this case is related to a high-order conditional moment   3 1
 , so that (51) cannot be solved directly. To deal with this situation, an approximate truncation method is developed in [START_REF] Hespanha | Modelling and analysis of stochastic hybrid systems[END_REF] to provide an approximate function of the involved high-order conditional moments using the low-order conditional moments. Adopting the truncation method, we have the approximate function of   3 1  in the following form:

                    3 02 11 3 0 1 2 1 1 1 1 3 1 1 , , .          (53) 
Thus, (51) is approximated by:

                      00 3 02 11 11 11 11 3 1 2 22 1 11 00 0. 2                                                           (54) 
From ( 18) and ( 21), the estimated system reliability 

                                10 0 11 1 2 2 0 1 0 1 1 1 1 , e H t t R t t t t t t                 (55)           1 0 1 1 1. l t R t t H          (56) 
where the conditional moments

            0 1 2 1 1 1 ,, t t t   
are obtained by solving the differential equations ( 52) and (54).

Numerical calculation

A numerical example is conducted using the parameters in Table 3, assumed arbitrarily by hypothesis for the purpose of illustration. To solve the differential equations in ( 52) and ( 54), the solver based on Runge Kutta method in Matlab 2013a is used. On the other hand, based on the properties of Cox process, the conditional moments can also be written as ( 57)-(58) below: Comparison on the estimated reliability and lower bound for reliability.

                                                  0 1 0 0 1 1 0 0 2 2

Conclusions

In this paper, a SHS-based modeling framework is developed for the reliability modeling and analysis of dependent failure processes, where degradation processes and random shock processes compete to cause system failure and dependencies exist among these processes. In the developed model, the degradation process is modeled by SDEs and the shock process is characterized by transitions among the system health states. The dependencies among the two processes are modeled within the structure of the SHS model by the reset map, transition rates etc.

The conditional moments for the state variables in the developed SHS model are calculated by deriving and solving a set of differential equations based on Dynkin's formula. Using these conditional moments, a reliability analysis method is developed to estimate the system reliability and its lower bound. Three case studies are conducted to demonstrate the developed methods. Comparisons to Monte Carlo simulations show that the developed method can achieve accurate reliability analysis results, while requiring much less computations than Monte Carlo simulations.

To apply the developed model in practice, the parameter values, such as the parameters in the SDEs that model the degradation processes, the transition rates that model the random shock processes, and the parameters in the reset maps that describe the dependency, need to be set based on historical data or expert judgments. Epistemic uncertainty might present when setting values for the parameters. Another source of epistemic (model) uncertainty is derived from the assumptions made for the present model. Treatment and calculation of epistemic uncertainty is an interesting
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 1 Fig 1 depicts the state transition and evolution of the SHS.

Fig 1 .

 1 Fig 1. State-transition diagram for the SHS model

xt the reset map in ( 3 )

 3 can capture the influence of the random shock on the degradation process. Further, the functions , fg and even  itself, as shown in Fig 1, are dependent on the current values of   xt and   qt , which provides a versatile way to model the dependencies.
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 2 Fig 2. State-transition diagram of the SHS for case 1
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 3 Fig 3. Comparison of results for case 1. (A) Comparison on the order 0 moment:

  C) Comparison on the order 2 moment:

  D) Comparison on the estimated reliability and lower bound for reliability The comparisons show that the moments are accurately predicted by the SHS model. The estimated reliability by FOSM is consistent with the result by Monte Carlo simulation. The estimated lower bound provides a relatively conservative reliability estimation. The running time of Monte Carlo simulation is 5788.2 times more than that of the developed SHS-based approach.

  qt the system fails due to a hard failure and the degradation level is set to zero, i.e.   0 xt  .
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 4 Fig 4. State-transition diagram for the SHS in case 2.
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 105 Fig 5. Comparison of results obtained by the SHS model and those by Monte Carlo simulation for case 2. (A)

  Comparison on the order 1 moment:

Fig 6 .

 6 Fig 6. State-transition diagram for the SHS in case 3.
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 377 Fig 7. Comparison of results obtained by the SHS model and those by analytic expressions for case 3. (A)Comparison on the order 0 moment:

  C) Comparison on the order 2 moment:           

  3) The magnitudes of shock loads, denoted by i W , are i.i.d. random variables following a normal distribution,

	 WN  . i W W  2 ,	
	(4) The arrival of each shock brings a degradation increment , d which is a random variable following a normal
	distribution	2 ( , )

dd

dN 

 .

  Comparison on the estimated reliability and lower bound for reliability. The comparisons show that the moments are accurately predicted by the SHS model. The estimated reliability by FOSM is consistent with the result by Monte Carlo simulation. The estimated lower bound provides a relatively conservative reliability estimation. Besides, the running time of Monte Carlo simulation is 1203.8 times more than that of the developed SHS-based approach.

	E	x	2	t		222 2 3 t t  1  	t	. (D)
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problem that deserves further investigations.