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Abstract
The topology of complex classical paths is investigated to discuss quantum 
tunnelling splittings in one-dimensional systems. Here the Hamiltonian is 
assumed to be given as polynomial functions, so the fundamental group for the 
Riemann surface provides complete information on the topology of complex 
paths, which allows us to enumerate all the possible candidates contributing to 
the semiclassical sum formula for tunnelling splittings. This naturally leads to 
action relations among classically disjoined regions, revealing entirely non-local 
nature in the quantization condition. The importance of the proper treatment of 
Stokes phenomena is also discussed in Hamiltonians in the normal form.

Keywords: tunnelling, fundamental group, complex trajectories, 
semiclassical analysis

(Some figures may appear in colour only in the online journal)

1.  Introduction

By definition, tunnelling is a purely quantum effect that cannot be described by any real 
solution of the classical dynamics. One of the best known signature of it is provided by the 
splittings in the energy spectrum of a quantum one-dimensional particle in a symmetric dou-
ble-well potential. A state localised in one well is coupled to its parity-related twin localised 
in the other well to form a symmetric/antisymmetric doublet of eigenstates delocalised in both 
wells whose energies differ by a small amount that depends exponentially on the inverse of 
the Planck constant � or on any classical parameter. Even though no classical real solution 
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connects the two wells, by extending classical dynamics from real to complex plane and 
applying the WKB method, one can actually capture such nonclassical phenomena. Instanton 
is broadly recognized as a classical path running in the complex plane, which has capability 
of describing tunnelling in the double-well potential or degenerated vacua in the fields theory 
[1]. The instanton was originally obtained by performing the so-called Wick rotation of time 
t → it . More generally, one may find in [2–8] some applications of complexifying time in dif-
ferent contexts but the arguments and techniques developed there have mainly been made to 
understand quantum tunnelling in one dimension.

On the other hand, quantum tunnelling has received renewed interest for these two decades. 
One driving force for this is that our understanding for classical dynamics has been proceeded 
considerably and we recognized that qualitative and essential differences in nature of clas-
sical dynamics underlie between one and multi-dimensions. In particular, multidimensional 
systems are known to be nonintegrable in general, which naturally leads to pay attention on 
the nature of quantum tunnelling in chaotic situations [9–11]3.

There are actually two tasks in performing the semiclassical analysis. The first one con-
cerns how to establish a proper semiclassical formulation providing observed quantities, such 
as tunnelling splittings. Our second task is to find or even enumerate the inputs—expected to 
be real or complex classical quantities— which are necessary for the semiclassical analysis.

Concerning formalisms in the semiclassical analysis, if we restrict our interest to energy 
splittings invoked by quantum tunnelling, explicit and closed formulas are rather limited, 
although energy splittings are quantities in which tunnelling effects could typically be 
observed even in experiments. This is the case even in one-dimensional situations [12–15, 20].

The second task would also not be so easy because we need to be thoroughly familiar with 
classical dynamics in the complex plane. In the case of discrete dynamical systems, fortu-
nately enough, we could make full use of the results gained in recent progress on multidimen-
sional complex dynamical systems and a close link between signatures of quantum tunnelling 
and complex classical dynamics was discovered [22, 23]. On the other hand, for continuous 
flow systems, our knowledge about the dynamics in the complex plane is rather fragmental 
and not enough to reach a unified perspective. Much efforts have been made to explore the 
nature of singularities in the complex time plane by studying simple scattering models closely 
[24–26], but the analyses were not exhaustive and remain rather heuristic. This is mainly 
because the models examined there were still not simple enough in the sense that the nature 
of singularities appearing in the associated classical dynamics remained too intricated to be 
handled in a rigorous manner.

Under such circumstances, the aim of the present paper is to focus on the second issue and 
establish models which allow full enumeration of complex orbits necessary for the semiclassi-
cal analysis of tunnelling splittings. This will be achieved for the systems whose Hamiltonians 

3 Notes We should also mention that there is an abundant literature on these matters in mathematical physics. Two 
lines of thought may be identified (i) the first one, initiated by Harrell [41] for the quartic 1d-potential, relies on 
instantons, that were later seen as geodesics for a measure, called the Agmon measure, that evaluates the quantity of 
‘classical interdiction’. The extension to multidimensional systems was made by Davies [42, theorem 4] (expo-
nential majoration), then by Simon [43, theorem 1] (exponential behaviour), Helffer and Sjöstrand [45, 47, 48] 
(prefactor of the exponential). (ii) The second school plays also with the exponential behaviour of the wavefunc-
tions outside the wells but by directly complexifying the time in the Schrödinger equation and then applying the 
semiclassical methods developed by Maslov [49, 50]. These two schools are mainly concerned by the tunnelling 
doublet of lowest energy (see however [52]) and surprisingly enough the authors seem to consider as secondary the 
crucial hypothesis that allows to explain the dichotomy between tunnelling in integrable and non-integrable sys-
tems. This hypothesis is let implicit in [43] (one has to isolate the Agmon geodesics, see condition (1.1) of theorem 
(1.1) in [51], this hypothesis is not even mentioned in theorem 1.5 of [44] and appears indirectly in [46] through 
the hypothesis of the non degeneracy of the instanton trajectories, see also section 4, hypothesis H4 in [53]) and we 
were not even able to identify it in the work of the Russian school.
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are given as polynomial functions. If Hamiltonian functions are polynomial, any local clas-
sical quantities are algebraic functions of the dynamical variables, which greatly simplifies 
the Riemann sheet structure and makes it possible to develop rigorous arguments on classical 
dynamics in the complex plane. In particular, because there is a finite number of algebraic 
singularities and no essential singularities, we can easily describe the associated Riemann 
surface and its fundamental group.

The organization of the present paper is as follows. In section 2, we introduce the semiclas-
sical formula for tunnelling splittings which was derived in [15]. Our argument will throughout 
be based on it. We also mention the limitation of our analysis, especially in view of the Stokes 
phenomenon. Section 3 is devoted to explaining our strategy to enumerate topologically dis-
tinct complex paths. A key idea is to examine the fundamental group of the Riemann surface for 
the associated function, which makes it possible to obtain a complete list complex paths. In sec-
tions 4 and 5, simple models, one-dimensional systems with double- and triple-well potentials, 
are recast with special focus on the method of listing the relevant complex paths we introduced 
in section 3. An advantage in taking such an approach is that one can find non-trivial global 
relations among action integrals appearing in the semiclassical formula. In section 6, we show 
that such action relations imply a sufficient condition under which distinct potential wells are 
simultaneously quantized. Since the condition originates only from the global topology of the 
Riemann surface, the argument applies even in asymmetric multi-well potential systems. In 
section 7, we apply our fundamental-group-based inventory to a richer integrable model con-
structed with the help of Hamiltonian normal forms. However, in section 8, we emphasize that 
handling of the Stokes phenomenon done in the cases of double- and triple-well models are 
improper for the normal form Hamiltonian model by showing a counterexample for which a 
naive prescription in dealing with the Stokes phenomenon does not work.

2.  Semiclassical formula for the tunnelling splitting

In this section, we introduce a semiclassical formula on which we will rely throughout the fol-
lowing analysis for tunnelling splitting in multi-well potential and normal form Hamiltonian 
systems. In [15], a semiclassical trace formula for tunnelling splittings has been derived and it 
was shown to work well in predicting tunnelling splittings for a symmetric triple-well poten-
tial system. Below we briefly explain the formula to show how complex classical orbits come 
into play in determining tunnelling splittings (see more details in appendix A and [15]).

Let us consider a one-dimensional constant classical Hamiltonian H( p, q) having reflec-
tion symmetry with respect to the canonical variables p and q:

H( p, q) = H(−p,−q).� (1)

The energies E±
n  and the associated eigenstates |φ±

n 〉 of the corresponding quantum model are 
given by

Ĥ|φ±
n 〉 = E±

n |φ±
n 〉,� (2)

where Ĥ def
= H(p̂, q̂) with p̂ and ̂q being the canonical operators associated with p and q respec-

tively. The superscripts  ±  stand for the symmetric/antisymmetric states and tunnelling is man-

ifest through the splittings ∆En
def
=E−

n − E+
n .

In [15], a semiclassical formula for the energy splitting ∆En has been derived as

∆En ∼ �
2T

∑
cl

(−1)µ+1eiScl/�,� (3)

H Harada et alJ. Phys. A: Math. Theor. 50 (2017) 435204
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where the sum is taken over all the classical paths with energy E ∼ E±
n  such that q(T) = −q(0) 

and p(T) = −p(0) for a given time interval T. Although the time interval T appears explicitly 
in the formula, it has been shown in [15] that the right-hand side of (3) becomes independent 
of T as long as Im T is taken to be large enough compared to the typical (real) period of the 
classical system.

The quantities Scl and μ denote the classical action of path Γ 

Scl =

∫

Γ

p(q)dq,� (4)

and the Maslov index [16], respectively. The function p(q) is defined by

H( p, q) = E� (5)

where E � E±
n  and we will always left implicit the dependence on E. Since there exist no real 

classical paths connecting two classically disjointed regions, the path Γ runs in the complex 
plane.

Formula (3) comes from the saddle point approximation therefore, in order to apply it, 
two steps can be identified. The first one is to list all the possible complex paths that could 
contribute to the sum in the formula and the second step is to select in this list of candidates 
those that actually contribute to ∆En. As far as the first step is concerned, in general, even in 
the simplest models such as double-well potential systems, the classical solutions with appro-
priate boundary conditions occur in families of infinite numbers and it is a non-trivial task to 
enumerate all these stationary paths. Even after enumerating all the possible candidates, it is 
known that not all of them do not necessarily remain as final contributions. This is because the 
Stokes phenomenon occurs in the complex plane, and some saddles have to be excluded from 
the final contribution. The second step we should consider is therefore to find a proper way of 
handling the Stokes phenomenon.

In [15], the formula (3) was satisfactorily tested in some standard models with a proce-
dure for achieving the first step that does not guarantee that all the possible complex station-
ary path were considered. To justify the adopted method and to have a better control on the 
approximations, we need to establish a systematic way, based on more rigorous grounds, to 
achieve step one. Our subsequent argument will be focused mainly on this step. Concerning 
the second step, although the Stokes phenomenon could be now captured as a well recognized 
object [17–19] and even within the scope of rigorous arguments thanks to recent progress of 
the so-called exact WKB analysis, or resurgent theory [27], we will not take into account the 
Stokes phenomenon based on such recent developments, rather treat the Stokes phenomenon 
in a heuristic way, as explained below.

As is easily seen, classical actions associated with complex paths have imaginary parts, and 
the complex path(s) with the most dominant weight are supposed to have minimal imaginary 
action. Note that such an argument of course holds only after handling the Stokes phenom
enon in an appropriate manner. Our task here is therefore to enumerate all the possible candi-
date complex paths and then to specify the complex path with the smallest imaginary action 
out of the candidates.

The strategy for the first step is to examine the fundamental group of the Riemann surface 
R of the function p(q) since the fundamental group provides the topological independent paths 
on a given surface. In addition to such information we also need to specify singularities of the 
function p(q). This is because, by virtue of Cauchy theorem, the value of the classical action 
(4) is affected when a continuous deformation of Γ crosses singularities.

H Harada et alJ. Phys. A: Math. Theor. 50 (2017) 435204
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3.  Fundamental group of Riemann surfaces of algebraic functions

In this section, we show how the fundamental group of the Riemann surface R of the function 
p(q) helps to construct the path Γ along which the classical action (4) is computed. In what 
follows, we assume that our Hamiltonian H( p, q) is expressed as a polynomial function of p 
and q and the polynomial is irreducible. The former condition allows to obtain the complete 
list of the complex paths contributing to the semiclassical sum (3) and the latter condition 
ensures that the Riemann surface of the function p(q) is connected.

H being a polynomial, the function p(q) defined by (5) is an algebraic function and there-
fore has at most finitely many singularities [28] that are points where p(q) has a pole or 
a branch cut. Since our Riemann surface R is constructed from an algebraic function and 
assumed to be irreducible, it is homeomorphic to a surface of a finite genus g, or g-fold torus 
for short, accompanied with finite number of holes associated with singularities of the func-
tion under consideration. The genus of the surface is given by the formula g = w/2 − d + 1, 
where w is the ramification index and d is the highest degree of p in the polynomial in ques-
tion. Especially, w is equal to the number of branch points if all branch points are square-root 
type, i.e. the function is double-valued near each branch point. For example, in multi-well 
potential systems discussed in sections 4 and 5, and the normal form Hamiltonian system in 
section 7 as well, p(q) is shown to be double-valued functions near each branch point.

The fundamental group on the Riemann surface is introduced as the group whose elements 
are identified through homotopy equivalence of curves on the surface. For the g-fold torus, 
there exist 2g independent homotopically equivalent loops, and following the convention we 
call the half of them αi-loop and the rest βi-loop (1 � i � g). The loops αi and βi are often 
called homology basis in the literature [28].

When computing (4) one must include the contribution of singularities which could provid 
non-zero residues, when by deforming Γ. This means that the associated fundamental group 
should be replaced by the one incorporating singularities of the function p(q). The Seifert–van 
Kampen theorem tells us that the fundamental group for a surface with holes is obtained as 
the product of the fundamental group for the original g-fold torus and that of a sphere with m 
holes, where m is the number of holes [29], which appear as either poles or branch points in 
the present situation. We call the loop encircling a hole the γi  loop (1 � i � m), again follow-
ing the convention. The loop γi  here is taken to be a small closed loop around each hole (see 
figure 1).

We note also from the Seifert–van Kampen theorem that the elements αi,βi and γi  of the 
fundamental group satisfy a relation,

∏
i

αiβiα
−1
i β−1

i =
∏

i

γi� (6)

implying that all the loops αi,βi and γi  are not independent with each other. We hereafter 
assume that one of γi-loops, say γm , is expressed in terms of the other loops. We just graphi-
cally show in figure 1 why the relation (6) follows in the simplest situation where a simple 
torus with g = 1 is connected with a sphere with with a hole.

Using the elements of the fundamental group, we can now enumerate all the topologically 
distinct paths obtained from a reference path Γ0. More concretely, for an arbitrarily chosen 
reference path Γ0 with fixed initial and final ends in the q-plane, topologically independent 
paths associated with the reference path Γ0 are expressed as

Γ = Γ0 +

g∑
i=1

nαiαi +

g∑
i=1

nβiβi +

m−1∑
i=1

nγiγi,� (7)

H Harada et alJ. Phys. A: Math. Theor. 50 (2017) 435204
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where nαi , nβi and nγi are integers and will be called winding numbers. In what follows we 
apply the scheme formulated in this way to a couple of concrete examples, some of them are 
the systems already well studied.

4.  Double-well potential case

As a simple example, we first discuss a double-well potential system:

H( p, q) =
p2

2
+ V(q),

� (8)

V(q) = E + (q − q1)(q − q2)(q − q3)(q − q4).� (9)
Here qi (1 � i � 4) are real parameters satisfying q1 < q2 < q3 < q4 and E is the total energy. 
We further assume that the potential function is symmetric, that is q1 = −q4, q2 = −q3  
(see figure 2) in accordance with (1) eventhough this symmetry condition is not relevant for 
topological considerations. From (5) we find

p(q) = ±
√
−2(q − q1)(q − q2)(q − q3)(q − q4).� (10)

The function p(q) has four branch points at q = qi (1 � i � 4), which are all located on the 
real axis and one can choose the intervals [q1, q2] and [q3, q4] as two cuts defining a Riemann 
surface with two leaves. As shown in figure 3, we project each leaf onto the Riemann sphere 
and continuously deform two spheres by opening the branch cuts. We finally get a simple torus 
with g = 1 with holes associated with the singularities.

The homology basis of the fundamental group in this case is composed of α,β , which are 
homotopically independent loops on the torus, together with the loops encircling singulari-
ties. In addition to branch points at q = qi (1 � i � 4), there exist poles at q = ±∞, and we 
denote the loops associated with singularities by γi (1 � i � 4) and γ(±∞), respectively (see 
figure 4). Relations (6) allow to express, γ4, say, as a product of the other loops considered to 
be independent. As shown in the previous section, with fixed initial and final end points, the 
variety of distinct values of the action integral is given based on the formula (7).

Recall the semiclassical formula (3) for the tunnelling splitting requires the complex paths 
connecting the points symmetrically located in the q-plane then we may take Γ0 to connect q2 

α

α

γ

(b)(a)

ββ

Figure 1.  (a) An example of the Riemann surface. Here the case for the 2-fold torus 
with two holes is presented. Homology bases of the fundamental group are shown as 
α1,α2,β1,β2, γ1 and γ2. (b) A graphical proof for the relation (6). A simple torus with 
a hole is here assumed.

H Harada et alJ. Phys. A: Math. Theor. 50 (2017) 435204
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and q3 = −q2. Without loss of generality, we can obtain arbitrary symmetric paths from the 
path connecting the branch points q2 and q3 by shifting both initial and final points simultane-
ously keeping the symmetry condition. All the topologically distinct paths, taking into account 
the contribution from divergent singularities, are then written as

Γ = Γ0 + nαα+ nββ +

3∑
i=1

nγiγi + n(+∞)γ(+∞) + n(−∞)γ(−∞),� (11)

where nα, nβ , nγi and n(±∞) are winding numbers of each loop.
As is discussed below, it is important to specify the α and β loops explicitly when one actu-

ally evaluates the action integrals, while we can freely move and deform the α and β loops 
and the locations are not relevant within the argument of the fundamental group (see figure 1).

For simplicity, we take two independent loops α and β on the torus in such a way that each 
branch in the α loop runs along the real q-axis with encircling the two branch points q1 and 

Figure 2.  The double-well potential V(q).

Figure 3.  Deformation of Riemann spheres to a torus is shown in the double-well 
potential case. The black dots and the dashed lines represent branch points and branch 
cuts, respectively.  ±  signs show the branches of p(q).

H Harada et alJ. Phys. A: Math. Theor. 50 (2017) 435204
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q2, and in the same way the β loop encircles the two branch points q2 and q3 (see figure 5). By 
taking the loops α and β in this manner, the action integral for the α loop turns out to be real 
valued and that for the β loop purely imaginary valued. As shown in appendix B, the action 
integrals for γi  (i = 1, 2, 3) vanish. We then reach the expression for the total action integral 
after summing over all the contributions as

SΓ = SΓ0 + nαSα + nβSβ + n(+∞)S(+∞) + n(−∞)S(−∞),� (12)

where

SΓ0 :=
∫ q3

q2

pdq,

Sα :=
∮

α

p(q)dq = 2
∫ q2

q1

pdq,

Sβ :=
∮

β

p(q)dq = 2
∫ q3

q2

pdq,

S(±∞) :=
∮

γ(±∞)

p(q)dq.

�

(13)

Now we show that Sα and S(±∞) are not independent and actually related with each other. 
To see this, we rewrite as SL = Sα for left-side well, and introduce the action integral for the 
right-side well as

SR = 2
∫ q4

q3

pdq.� (14)

As illustrated in figure 6, the integration contour specifying the action integral SL is continu-
ously deformed and split into the ones associated with the action integrals S(+∞) and SR. This 
leads to the relation

SL = SR − S(+∞),� (15)

where the minus sign in front of S(+∞) comes from the phase of p (see appendix C). From the 
symmetry of the potential function, it is obvious that SL = SR holds. This automatically gives 
S(+∞) = 0, which can also be confirmed by the direct calculation of the residue at q = +∞ 

Figure 4.  Homology basis of the fundamental group for the torus 
T \ {q1, q2, q3, q4,+∞,−∞}.

H Harada et alJ. Phys. A: Math. Theor. 50 (2017) 435204
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(also see appendix C). From this observation, the candidates of action integrals finally take a 
simple form as

SΓ = SΓ0 + nαSα + nβSβ .� (16)

Next we turn our attention to the most dominant complex path in the semiclassical form
ula (3). Since classical action integrals under consideration are complex valued, the most 
dominant contribution is supposed to come from the complex classical orbit(s) with minimal 
imaginary action Im S. In the present situation, the α loop contribution is real valued, so the 
imaginary part of action integral is written as

Im SΓ = Im SΓ0 + nβIm Sβ .� (17)

Figure 5.  α,β  loops taken as integration contours on the q plane.

Figure 6.  Deformation of the α loop in the left well. It splits into a combination of the 
α loop in the right well and a loop around +∞.

H Harada et alJ. Phys. A: Math. Theor. 50 (2017) 435204



10

This may take arbitrarily large negative values as nβ is allowed to be any integer, positive or 
negative, meaning that imaginary action can become arbitrarily small. However, it is obvious 
that the orbits with negative imaginary action give rise to exponentially large contributions, 
which are not physically accepted, so should be dropped from the final contributions.

Excluding unphysical contributions out of necessary ones could be done by handling the 
Stokes phenomenon properly. This would therefore be a matter of issues which should be 
closely discussed in order to make our theory self-consistent. However, as mentioned in sec-
tion 2, we here treat the Stokes phenomenon only in a heuristic manner. The principle we 
adopt is based on the behavior of imaginary action as time proceeds. From the Hamiltonian 
equations of motion, dq = pdt  follows, which results in 

∫
pdq =

∫
p2dt. We then have

Im S =

∫
−Im p2Im dt.� (18)

and in order to get ImS > 0 we will choose a parametrisation such that Im dt < 0. In this 
choice, Im S becomes negatively large with increase in Im dt in a monotonic way.

If one applies this rule, which will also be used in the examples discussed below, Γ0 is 
given as a trajectory passing through the potential barrier only once, that is a half cycle of the 
β loop, and the smallest imaginary action is just

Im SΓ =
1
2

Sβ .� (19)

This is nothing but the imaginary action for the so-called instanton path. From the expression 
(16), the corresponding real part turns out to be

Re SΓ = nαSα.� (20)

Since branch points are turning points and α, β loops encircle the two branch points, we 
find that the Maslov index is equal to µ = 2nα + 1. Incorporating the semiclassical quantiza-
tion condition Sα = (1/2 + N)2π�, the formula (3) can now be explicitly written as

�
2T

e−Sβ/2�
∑
nα

(−1)2nα+2(−1)nα .� (21)

Here the sum over the winding number nα is canceled except for the case nα = 0. From these 
arguments we finally obtain the formula

∆E ∼ �
2T

e−Sβ/2�.� (22)

This is nothing but the well known formula in the instanton theory, and also coincides with 
the result rederived in [15].

5. Triple-well potential case

As a next example, we consider a triple-well potential system:

H( p, q) =
p2

2
+ V(q),� (23)

V(q) = E + (q − q1)(q − q2)(q − q3)(q − q4)(q − q5)(q − q6),

H Harada et alJ. Phys. A: Math. Theor. 50 (2017) 435204
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where the parameters qi (1 � i � 6) are all real and satisfy the conditions q1 < q2 < · · · < q6. 
We again assume the conditions q1 = −q6, q2 = −q5, q3 = −q4 in order to develop the semi-
classical analysis for the tunnelling splitting (see figure 7).

In the same way as the double-well case, we obtain p(q) as

p(q) =
√

−2(q − q1)(q − q2)(q − q3)(q − q4)(q − q5)(q − q6).

The function p(q) has now six branch points on the real axis. The associated Riemann surface 
of p(q) is homeomorphic to a 2-fold torus with small holes associated with branch points and 
poles (see figure 8). The homology basis of the fundamental group is composed of the loops 
αi and βi (i = 1, 2) on the 2-fold torus and γi  (1 � i � 6) and γ(±∞), each of which is a small 
loop encircling the corresponding singularity. We illustrate in figure 9 the elements of the 
fundamental group in this case.

Figure 7.  The triple-well potential V(q).

Figure 8.  Deformation of Riemann spheres to a torus is shown in the triple-well 
potential case. The black dots and the dashed lines represent branch points and branch 
cuts, respectively.  ±  signs show the branches of p(q).
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To discuss the tunnelling splitting between the states localized at the left- and right-wells, 
let Γ0 be a path connecting the branch points q2 and q5 = −q2. The integration contour is 
given by a combination of these loops as follows, keeping in mind that γ6 is a product of the 
other loops,

Γ = Γ0 +

2∑
i=1

nαiαi +

2∑
i=1

nβiβi

+

5∑
i=1

nγiγi + n(+∞)γ(+∞) + n(−∞)γ(−∞),

�

(24)

where nα, nβ , nγi and n(±∞) are winding numbers of each loop. Again using the result shown 
in appendix B, the action integrals for γi  (i = 1, 2, · · · , 5) all vanish, and we reach the expres-
sion for the total action integral contributions,

SΓ = SΓ0 +
2∑

i=1

nαi Sαi +
2∑

i=1

nβi Sβi + n(+∞)S(+∞) + n(−∞)S(−∞),� (25)

where

SΓ0 :=
∫ q5

q2

pdq,

Sα1 :=
∮

α1

pdq = 2
∫ q2

q1

pdq,

Sα2 :=
∮

α2

pdq = 2
∫ q6

q5

pdq,

Sβ1 :=
∮

β1

pdq = 2
∫ q3

q2

pdq,

Sβ2 :=
∮

β2

pdq = 2
∫ q5

q4

pdq,

S(±∞) :=
∮

γ(±∞)

p(q)dq.

�

(26)

Figure 9.  Homology basis for the surface T #T \ {q1, q2, q3, q4, q5, q6,+∞,−∞}.
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As done in the double well potential case, we next show that these action integrals are not 
independent. As illustrated in figure 10, the integration contours specifying Sα1 and Sα2 are 
continuously deformed and split into the ones associated with the action integrals S(+∞) and 
SC. Here SC stands for the action integral for the central well,

SC := 2
∫ q4

q3

pdq.� (27)

Rewriting the notation as SL = Sα1 and SR = Sα2 to make clear that Sα1 and Sα2 are action 
integrals for the left- and right-side wells, we obtain the relation

SC = SL + SR + S(+∞).� (28)

This relation can also be confirmed in the direct calculation presented in appendix C. A similar 
relation holds for S(−∞) except that the sign in front of S(−∞) is minus.

The symmetry of the potential function leads to the relations SR = SL, and Sβ1 = Sβ2. As a 
result, all the possible classical action integrals are simply expressed as

SΓ = SΓ0 + nLSL + nCSC + (nβ1 + nβ2)Sβ1 .� (29)

Note that the winding numbers are introduced as nL := nα1 + nα2 − 2nC and 
nC := n(+∞) − n(−∞).

The principle to incorporate the Stokes phenomenon is the same as before. The imaginary 
part of complex paths is written as

Im SΓ = Im SΓ0 + (nβ1 + nβ2)Im Sβ1 ,� (30)

and we require that the imaginary component of time t is decreasing. Under this condition, the 
complex path with the minimal imaginary action is given as the one with nβ1 = nβ2 = 0. The 
corresponding orbit starts from the left-side well and crosses over two potential barriers and 
reaches the right-side well. The resulting imaginary action is evaluated twice as much as the 
instanton action in each barrier:

Im SΓ = Im Sβ1 .� (31)

Concerning the real part of the action integral, the path Γ has to go half round the central 
well, so the real part of the action is given as

Figure 10.  Deformation of the α1 and α2 loops in the left- and right-wells. They split 
into a combination of the loop for the central well and a loop encircling +∞.
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Re SΓ = nLSL + (nC +
1
2
)SC,� (32)

and the Maslov index is also evaluated similarly to give µ = 2nL + 2nC + 3. We finally get the 
semiclassical expression for the tunnelling splitting:

∆En ∼ �
2T

e−Sβ1/�
∑
nL,nC

(−1)µ+1ei(nLSL+(nC+
1
2 )SC)/�.� (33)

This almost coincides with the formula derived in [15], but the way of enumerating the paths 
differs from the one adopted there, so the form of the sum is slightly different. As also dis-
cussed in [15], the interference caused by the sum in the right-hand side gives rise to reso-
nances, which generate a series of spikes in the ∆E versus 1/�-plot. Such a phenomenon 
could be understood as the resonant tunnelling or the Fabry–Pérot effect in optics [30, 31].

6.  Simultaneous quantization

As given in (15) and (28) the action integrals for the α loops in the fundamental group are 
related through the action integral associated with the loop encircling infinity. These relations 
will invoke simultaneous quantization of distinct wells. Simultaneous quantization in distinct 
wells has been discussed in [32], and the result obtained above is essentially the same as the 
one derived there in the double-well potential case.

We first explain how simultaneous quantization is achieved in the double-well case. 
Suppose the action integral for the left-side well is quantized as SL = (1/2 + mL)2π�. From 
the relation (15), the action for the right well is also quantized as SR = (1/2 + mR)2π� if 
and only if the action integral around infinity satisfies the condition S(∞) = 2π�m(∞), where 
mR, mL  and m(∞) are integers.

Concerning the triple-well system, the relation (28) among action integrals is not enough to 
give simultaneously quantization of SL and SR even if S(∞) = 2π�m(∞) with integers m(∞) is 
satisfied. However, if the potential is symmetric as assumed in section 5, SL and SR are quanti
zed simultaneously since SL = SR follow in such a case.

Note that the relations (15) and (28) hold among the α loops in the fundamental group. It 
would be natural to explore whether or not the relation involving β loops exist, which might 
provide further constraints for action integrals. Integrals of algebraic functions along α or β 
loops are called periods of Abelian integrals [28]. In a general argument of Abelian integrals, 
the period of Abelian integrals of the first kind has a relation as

(∫

β1

ω, · · ·,
∫

βg

ω

)
=

(∫

α1

ω, · · ·,
∫

αg

ω

)
T ,� (34)

where T is called the period matrix and ω is the Abelian differential of the first kind, respec-
tively [33]. However, since the function p(q) has poles in the Riemann surface, the relation 
among α or β loops might not take a linear form as given in (34). If the relation is linear, it 
would not provide an additional relation generating extra constraints concerning the quantiza-
tion condition.

7.  Normal form hamiltonian

In this section, we examine the case where the Hamiltonian is built from more general nor-
mal forms and whose tunnelling splittings were semiclassically studied in [20] in order to 
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investigate the validity of the so-called resonance-assisted tunnelling scenario (RAT) [21, 34]. 
As shown below, equi-energy contours look like typical patterns observed in the Poincaré 
section of phase space in two-dimensional nearly integrable systems. With a Hamiltonian of 
the form [35]

H( p, q) =
n∑

k=1

ak( p2 + q2)k +
∑
l,m

bl,mqlpm,

�

(35)

where ak  and bl,m are constants. Note that the b’s are not all independent and depend only on 2 
real parameters. The argument based on the fundamental group for algebraic functions holds, 
in particular, the formula (7) for the path Γ.

As shown in an example below, if the coefficient of the highest order of p in the Hamiltonian 
does not depend on the variable q, the action integral along γi  loop turns out to be 0 (see 
appendix B).

More specifically we will work with

H( p, q) =
1
2
( p2 + x2)− 1

2
( p2 + x2)2 − 2x2p2,� (36)

where x := 1 − q2. The symmetry condition (1) is maintained. As seen in the phase space por-
trait drawn in figure 11, the system has two symmetric wells located at the positions q = ±1 
respectively, and nonlinear resonance like equi-energy contours appear around each well.

In order to perform semiclassical analysis for the tunnelling splitting, as was done in the 
previous examples, we first examine the Riemann surface and the associated fundamental 
group. From the Hamiltoninan (36), we easily find

p(q) =

√
±
√
−8E + 32x4 − 8x2 + 1

−2
− 3x2 +

1
2

.� (37)

The branch points are obtained by solving simultaneous algebraic equations

Figure 11.  Equi-energy contours for the Hamiltonian (36).
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±
√
−8E + 32x4 − 8x2 + 1

−2
− 3x2 +

1
2
= 0,

− 8E + 32x4 − 8x2 + 1 = 0,

which provide 24 branch points in total. Each branch point is locally square-root type, thereby 
the corresponding Riemann surface R has four leaves. Using the formula evaluating the genus, 
we find that the Riemann surface R is homeomorphic to 9-fold torus with 28 small holes 
associated with 4 poles and 24 branch points. The Riemann surface is illustrated in figure 12. 
There are 9 α- and β-loops together with 24 γ-loops associated with the branch points and  
4 γ-loops with poles, each of which is attached in the corresponding leaf. From these obser-
vations, we have 45 independent action integrals in the semiclassical formula. However, as 
shown in appendix B, the action integrals for γ-loops for branch points are all zero, and the 
residues at the poles vanish. This fact simplifies the expression of action integrals as

SΓ = SΓ0 +

9∑
i=1

nαi Sαi +

9∑
i=1

nβi Sβi .
�

(38)

The next step is to single out the most dominant path out of all the candidates given above. 
Since dq = pdt  does not hold any more, we cannot a priori compare the different Im S even 
with an increasing Im dt < 0 and the usual heuristic selection argument may fail, as will be 
shown below.

8. Tunnelling splitting for the normal form Hamiltonian

In the following, we discuss the tunnelling splitting ∆En for the normal form Hamiltonian 
(36) based on the semiclassical analysis. Note however that the semiclassical analysis per-
formed here will not fully be based on the semiclassical formula (3), and could be done 
only with a heuristic recipe. This is because, as shown below, that non-trivial situations 
actually arise from the handling of the Stokes phenomenon, so the selection of the most 

Figure 12.  The Riemann surface of p(q) for the Hamiltonian (36). The Riemann 
surface forms a 9-fold torus. The black dots and dashed curves are branch points and 
branch cuts, respectively.
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dominant complex path would be highly non-trivial. We focus on the tunnelling splitting 
∆En = E−

n − E+
n  for E+

n � E−
n � E below the barrier. Figure 13 plots ∆En as a function of 

1/� for E = 6.19 × 10−3.
In classical phase space, there appear congruent energy contour pairs in both sides of equi-

energy contours, reflecting the symmetry with respect to the q-direction. For the energy sat-
isfying E ∼ E±

n , there appear two closed energy contours in each side, which are shown in 
magenta curves in figure 14. Obviously, due to the symmetry, there are only two characteristic 
real periods Tout and Tin and two actions Sout and Sin associated with the outer and inner orbits 
respectively. The latter are connected via complex manifolds, which are shown in blue curves 
in figure 14, and outer periodic orbits in both sides are also connected via complex manifolds, 
drawn in green curves. Complex manifolds are obtained by integrating Hamiltonian equa-
tions of motion in the purely imaginary direction starting from each point of periodic orbits.

Following the argument developed in [15], we consider the time path in the complex plane 
for the orbit contributing to the semiclassical formula (3). The total elapsed time T is written as

T ∼ R(T) + iTin−out + iTout−out + iTin−out + L(T).� (39)

where iTin−out is the time interval during which the complex orbit runs from the inner energy 
to the outer energy curve within the same well, shown in blue curves in figure 14. Similarly, 
iTout−out is the purely imaginary interval between the outer energy curve in the left side to 
another outer curve in the right side, shown in green curves in figure 14. L(T) and R(T) are 
sums of time intervals spent by the orbit moving in the inner and outer real energy curves, i.e.

L(T) = ninTin + noutTout,� (40)
R(T) = n′inTin + n′outTout,� (41)

Figure 13.  The tunnelling splitting ∆En = E−
n − E+

n  as a function of 1/�. Here 
E+

n � E−
n � E = 6.19 × 10−3. The black curve shows the numerical result obtained 

by direct calculation. The blue and red ones are obtained by applying the semiclassical 
formula (44), and the corresponding time paths are respectively shown in figure 16.
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where the winding numbers nin, nout, n′in and n′
out are taken to be positive integers. A com-

ment concerning L(T) and R(T) is in order. In [15], a fractional time interval τ, or a residual 
time, was introduced for the time interval along the real direction as Re T = L(T) + R(T)− τ  
in order to adjust the time interval in such a way that initial and final points are located at 
desired positions. However this residual time τ does not play any roles after taking the limit 
Re T → ∞ [15]. The corresponding action integral is then written as

S ∼ ninSin + iSin−out/2 + noutSout

+ iSout−out/2
+ n′

inSin + iSin−out/2 + n′outSout.
� (42)

Here we focus only on the trajectories running on the complex manifolds connecting the 
real energy curves only once, as illustrated in figure 15. Hence, under the restrictions given in 
(40) and (41), the sum of contributions of such trajectories takes the form as

Figure 14.  (a) Equi-energy contours for the Hamiltonian (36). The magenta curves 
show energy contours satisfying the condition E ∼ E±

n  where E = 6.19 × 10−3. The 
blue curves are projections onto the real plane of complex manifolds connecting inside 
and outside energy contours. The green one shows projection of complex manifolds 
connecting left and right outer energy contours. (b) The projection of each manifold 
onto (Re q, Re p, Im p) space.
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∑
nin

∑
n′in

(−1)µ+14(nin + 1)4(n′in + 1)ei(ninSin+iSin−out/2+noutSout)/�

× e(−Sout−out/2)/�ei(n′inSin+iSin−out/2+n′outSout)/�.

�
(43)

Here the Maslov index is evaluated as µ = nin + nout + n′
in + n′

out + 7. We may take the sums 
for nin and n′

in separably, and each sum is the same as the one in the triple-well case in [15]. 
These lead us to the semiclassical expression for the tunnelling splitting

∆En ∼ 2�
Tin

(
e−Sin−out/(2�)

sin(((Tout/Tin)Sin − Sout)/(2�))

)2

e−Sout−out/2�.� (44)

Using this formula, we now demonstrate that a proper treatment of the Stokes phenomenon 
is crucial to discuss the tunnelling splitting of the normal form Hamiltonian within the semiclas-
sical framework. In figure 13, we compare the splitting calculated using direct diagonalization 
with the ones obtained using the semiclassical formula (44). In the semiclassical calculation, 
we show the splittings evaluated using the complex path, which are drawn as red and blue zig–
zag lines in the complex time plane (see figure 16). Note that both paths connect the left- and 
right wells and satisfy the boundary conditions necessary for the semiclassical formula.

As noticed from figure 16, the time path shown in blue satisfies the condition that Im T 
monotonically decreases whereas the path in red breaks the monotonicity. According to the 
criterion adopted in sections 4 and 5, the red-colored path should be dropped from the final 

Figure 15.  The projection of complex paths onto (Re q, Re p, Im p) space in the case 
(a) where the corresponding time path is taken as the red line in figure 16 and (b) where 
the blue path is taken, respectively. The energy for red and blue colored curves is given 
as E = 6.19 × 10−3.
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contribution because the path contains an interval in which Im T increases and expected to 
provide an exponentially exploding contribution which should be excluded from the final sum. 
However, as seen in figure 13, the curve based on the red-path contribution gives a larger slope 
as compared to the blue one, and shows better fitting to the exact plot. This result provides 
evidence implying that a naive criterion to treat the Stokes phenomenon does not work in the 
case studied here. The result also strongly suggests that exponentially decreasing solutions do 
not necessarily remain as contributions. This is counterintuitive in the conventional semiclas-
sical argument as well.

9.  Summary and discussion

In this paper we have investigated the topology of complex paths in one-dimensional systems 
to enumerate possible complex paths which contribute to the semiclassical sum formula for 
tunnelling splittings. Here Hamiltonian functions were assumed to be written as polynomi-
als of the variables p and q, thereby we could make use of knowledge on algebraic functions, 
especially the fundamental group for the Riemann surface. Since the action integral is the most 
important ingredient in the semiclassical formula, we examined the Riemann surface of the 
function p(q) closely and showed that it has a finite number of leaves and homeomorphic to a 
multi-handled compact surface. The number of loops of the homology basis for the associated 
fundamental group turns out to be finite, reflecting the fact that the function p(q) is algebraic.

To enumerate independent action integrals, it would be natural to consider independent 
elements in the fundamental group of the function p(q). However this is not enough for our 
semiclassical analysis because the action integral is defined by the integration of p(q) along an 
integration contour, so one has to take into account not only branch points generating the mul-
tivaluedness of the function p(q), but also other singularities of p(q) with non-zero residues. 
Such singularities indeed appear in the Riemann surface as divergent points of p(q).

As model systems, we here studied the double- and triple-well potential systems, together 
with the normal form Hamiltonians as well. For the former two cases, we have obtained 
the complete list of the possible complex paths based on the idea employing the fundamen-
tal group. As a bi-product out of such a systematic treatment, we derived action relations 
involving the residue contribution from divergent points of p(q). Note that the relation for 
the double-well case has already been obtained in [32], but its origin could more simply be 

Figure 16.  Complex time paths which are taken to test the semiclassical formula 
(see text). The imaginary time monotonically decreases in the blue path case while 
monotonicity condition is not satisfied in the red path case.
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understood through the fundamental group argument. In the case of the double-well potential 
system for instance, we usually consider the quantization condition for each well indepen-
dently since the equi-energy surfaces in left- and right-side wells are classically disjoined. 
However our analysis exploring the topology of the whole complex equi-energy surfaces has 
unveiled that quantization conditions in left and right wells are linked through the action int
egral associated with infinity of the Riemann surface. Similar action relations were similarly 
derived in the triple-well potential system, and they lead to simultaneous quantization of left- 
and right-wells if the potential is symmetric.

In performing the semiclassical analysis, it is not sufficient to enumerate the complex paths 
satisfying the boundary conditions required in the semiclassical formula. Since the semiclas-
sical formula is obtained by applying the saddle point method, one needs to handle the Stokes 
phenomenon in an appropriate manner. In the semiclassical arguments for tunnelling split-
tings so far, this issue has not been discussed seriously even in one-dimensional situations. 
The most typical approach would be just to remove exponentially exploding solutions, which 
is based only on a rather naive speculation in analogy with a treatment of the Airy function. 
The well-known instanton theory and its variants applied to more general situations have 
adopted essentially the same strategy. However, as shown in the present paper, the possible 
classical actions are expressed as a linear combination of elements of the fundamental group 
together with contributions from divergent singularities. This brings infinitely many possible 
candidates, and infinitely many exploding solutions are necessarily contained among them. As 
a result, it becomes a crucial step to deal with the Stokes phenomenon properly. This is entirely 
beyond the scope of this paper, and here we only tested the most conventional prescription. 
For the double- and triple-well potential systems, we extracted the complex paths remaining 
as semiclassical contributions in such a way that the imaginary direction of the corresponding 
time path should be negative, which guarantees the monotonicity of imaginary action of com-
plex paths. We confirmed that the results were both consistent with known results.

In the normal form Hamiltonian case, we could also find all the possible complex paths 
based on the fundamental group because the Hamiltonian is also given as a polynomial 
function. However, a naive treatment of the Stokes phenomenon was shown to break down. 
In particular, we demonstrated that there is a situation where even exponentially decaying 
contributions should be dropped, which is one piece of evidence suggesting that the Stokes 
phenomenon for the normal form Hamiltonian systems must be highly non-trivial [36].

Our motivation for studying the normal form Hamiltonian was to promote our understand-
ing of the so-called resonance-assisted tunnelling as was done in [20]. As stressed in this 
paper, equi-energy contours of the normal form Hamiltonian apparently look like patterns 
typically appearing in Poincaré sections  of two-dimensional nearly integrable system, but 
nonlinear resonance like structures in one-dimensional systems are not caused by nonlin-
ear resonances. It would therefore be unreasonable to explain the mechanism of tunnelling 
occurring in two-dimensional nonintegrable systems based on one-dimensional systems even 
though apparent similarity exists in their phase space patterns.

Even if one concedes that the normal form Hamiltonian could somehow serve as an analo-
gous model to the system with nonlinear resonances, the analysis based on the fundamental 
group tells us that what is relevant is the topology of the Riemann surface, which is entirely 
controlled by the branch points of the function p(q). This implies that instanton in the conven-
tional sense might play only a relative role. The understanding of instanton has been updated 
from the perspective of the relevance of the Riemann sheet structure, which is based on a 
similar spirit as our present arguments [37, 38].

One important message out of this paper would be that one does not need to consider the 
time path any more and has only to focus on the function p(q). Instanton has a long history 
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and the idea using the complex time plane has been and still must be dominant, but this would 
not be a right strategy as discussed in the present paper and [37, 38] as well. What we need 
is information on the function p(q), not the complex structure of functions q(t) and p(t), so 
analyzing the fundamental group for the Riemann surface of p(q) would become unavoidable.
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Appendix A.  Semiclassical formula of tunnel splittings

In this appendix, we briefly sketch the derivation of the formula (3), following [15]. Let |φ±
n 〉 

be symmetric and asymmetric quasi-degenerated states for a Hamiltonian commuting with 
the parity operator Ŝ  such that Ŝ2 = 1. The eigenstates of Ĥ  can be classified according to 
their parity,

Ŝ|φ±
n 〉 def

= ±|φ±
n 〉.� (A.1)

The spectral decomposition of the evolution operator after a time T writes
Û(T) =

∑
n

(e
1

i� E+
n T |φ+

n 〉〈φ+
n |+ e

1
i� E−

n T |φ−
n 〉〈φ−

n |).� (A.2)

To discuss the tunnelling splitting between the states |φ+
n 〉 and |φ−

n 〉, we further define the 
projection operator

Π̂n
def
= |φ+

n 〉〈φ+
n |+ |φ−

n 〉〈φ−
n |.� (A.3)

and we have

Tr(Π̂nÛ) =
∑

m

〈φ±
m |Π̂nÛ|φ±

m 〉 = e−
i
� E+

n T + e−
i
� E−

n T ,� (A.4)

Tr(ŜΠ̂nÛ) = e−
i
� E+

n T − e−
i
� E−

n T .� (A.5)

We then obtain

Tr(ŜΠ̂nÛ)

Tr(Π̂nÛ)
= i tan(

∆En

2�
T).� (A.6)

where ∆En = E−
n − E+

n . If the condition

|T|∆En

2�
� 1� (A.7)

is satisfied, the tunnelling splitting ∆En can be explicitly written as

∆En ∼ 2�
iT

Tr(ŜΠ̂nÛ)

Tr(Π̂nÛ)
.� (A.8)

We now rewrite the right-hand side of (A.8) in the path integral form. Introducing the 

quasi-mode |Φn〉
def
=(|φ+

n 〉+ |φ−
n 〉)/

√
2 , the projection operator is expressed as
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|φ+
n 〉〈φ+

n |+ |φ−
n 〉〈φ−

n | = |Φn〉〈Φn|+ Ŝ|Φn〉〈Φn|Ŝ.� (A.9)

Let Φsc
n (q) be WKB approximation of Φn(q) [39, 40], which is localized on the energy curve 

satisfying E ∼ E±, then the numerator and denominator of the formula (A.8) are semiclassi-
cally evaluated as

2
∫

dqdq′Φsc
n (q)(Φ

sc
n (q

′))∗G(ηq′, q; T),� (A.10)

where G(ηq′, q; T) represents the Van Vleck-Gutzwiller propagator

G(ηq′, q; T) =
∑
γ

(−1)kγ

√
det

(
i

2π�
∂2Sγ
∂qf∂qi

)
e

i
� Sγ(ηq′,q;T).� (A.11)

Here η = −1 for the numerator and η = +1 for the denominator of the formula (A.8), respec-
tively. The index kγ denotes the number of conjugation points along the trajectory γ.

We further evaluate the integral (A.10) again using the saddle point approximation, which 
requires the condition

lim
qf →ηqi

δSγ

δqi
=

∂Sγ

∂qi
+

∂qf

∂qi

∂Sγ

∂qf
= 0.� (A.12)

Then the generating relations

∂Sγ

∂qi
= −pi,

∂Sγ

∂qf
= ηpf ,

� (A.13)
leads to the condition

pf = ηpi� (A.14)
for each η. By taking the trace of integral (A.10), the classical paths contributing to the final 
semiclassical sum should altogether satisfy the conditions E ∼ E±

n , qf = ηqi and pf = ηpi. In 
section 2, qf  and qi are expressed as q(T) and q(0), respectively (same as for p). After calcu-
lating the prefactor in evaluating the integral (A.10) (see details in [15]), we finally reach the 
formula (3).

Appendix B.  Integral along γ loops

In this appendix we calculate the integral whose integration contour encircles a single branch 
point qi of the function p(q). In the text, such a loop is called the γi  loop.

Branch points of the algebraic function are algebraic singularities around which p has the 
Puiseux expansion in the following form

p(q) =
∞∑

n=s

cn(q − qi)
n
w , (s > −∞)� (B.1)

where w is a positive number.
Putting t = (q − qi)

1/w, we evaluate each term of the expansion as

1
2πi

∫

C
(q − qi)

n
w dq =

w
2πi

∮
tn+w−1dt =

{
w if n + w = 0
0 otherwise,� (B.2)

where C is a closed curve circling around the point q = qi  w times.
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Figure C1.  The integration contour C and the phase of p(q) at each position. The black 
dots are branch points. The dash lines represent the branch cuts.

For a Hamiltonian of the form H = p2/2 + V(q) where V(q) is a polynomial function of 
q, the function p(q) does not contain negative order terms in the corresponding Puiseux series. 
Therefore the action integrals for the γi  loops all vanish. For the normal form Hamiltonian (35), 
if the condition 2k > m holds, the γi  contributions are all zero as well since p(q) does not con-
tain negative order terms in the Puiseux series. On the other hand, for 2k � m, the coefficient for 
the highest order of p contains the variable q, resulting in a non-zero contribution from γi  loops.

Appendix C. The action relation and the residue at infinity

In this appendix, we provide an explicit derivation of action relations. The following calcul
ations can easily be generalized to the multi-well potential systems. We here present double- 
and triple-well cases as examples.

C.1.  Double-well case

Let us consider the Hamiltonian:

H =
p2

2
+ V(q),� (C.1)

where V(q) = E + (q − q1)(q − q2)(q − q3)(q − q4). Branch points of p(q) at the energy 
E are located at q = qi (1 � i � 4). Let C be a closed curve rotating clockwise around all 
branch points (figure C1). The loop C is homotopic to the loop around infinity on the Riemann 
sphere, so the integration along this loop is equal to the residue of infinity. We calculate the 
residue at q = +∞ as follows. Introducing a new coordinate q = 1/η , we find

∮

Γ(∞)

p(q)dq =

∮
1
η2

√
−W(η)(

−1
η2 )dη

=

∮
−1
η4

(∑
k

Ckη
k

)
dη,

where W(η) := 2(1 − q1η)(1 − q2η)(1 − q3η)(1 − q4η), and Ck (k � 0) are coefficients of 
the Taylor expansion of 

√
−W(η). Γ(∞) denotes a single loop encircling η = 0. For the inte-

gration over η, the loop rotates anticlockwise around η = 0, and the residue is evaluated as 
−2πiC3. An explicit form of C3 is
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C3 = i
(1

4
(q1 + q2 + q3 + q4)(q1q2 + q1q3 + q2q3 −

1
4
(q1 + q2 + q3 + q4)

2

+ q1q4 + q2q4 + q3q4) +
1
2
(−q1q2q3 − q1q2q4 − q1q3q4 − q2q3q4)

)
.

Hence we obtain S(∞) :=
∮
Γ(∞) p(q)dq = −2πiC3.

On the other hand, we evaluate the same integral by taking the integration along the real 
axis. We introduce new coordinates rqi and θqi as rqi e

iθqi := q − qi (1 � i � 4). Here we have 
to take a close look at the phase of the function p(q) and the upper limit of the integration. If 
we take the phase as p(q) = i√rq1 rq2 rq3 rq4 , the upper limit should satisfy the condition q4 < q 
in order that the phase of p(q) is consistent with the residue calculation at infinity, as shown 
in figure C1. We therefore obtain

∮

C
p(q)dq = 2

∫ q2

q1

pdq − 2
∫ q4

q3

pdq

= SL − SR.
� (C.2)

Finally we get the relation (15)

S(∞) =

∮

Γ(∞)

p(q)dq =

∮

C
p(q)dq = SL − SR.� (C.3)

C.2. Triple-well case

For the triple well case where V(q) = E + (q − q1)(q − q2)(q − q3)(q − q4)(q − q5)(q − q6), 
we find

∮

Γ(∞)

p(q)dq =

∮
1
η3

√
−W(η)(

−1
η2 )dη

=

∮
−1
η5

(∑
k

Ckη
k

)
dη.

Here W(η) := 2(1 − ηq1)(1 − ηq2)(1 − ηq3)(1 − ηq4)(1 − ηq5)(1 − ηq6), and Ck (k � 0) 
are coefficients of the Taylor expansion of 

√
−W(η). The residue is evaluated as −2πiC4. 

Hence we obtain S(∞) :=
∮
Γ(∞) p(q)dq = −2πiC4.

Figure C2.  The integration contour C and the phase of p(q) at each position. The black 
dots are branch points. The dash lines represent the branch cuts.
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On the other hand, we calculate the same integral along the real axis. As shown in fig-
ure C2, we choose a closed curve C rotating clockwise around all branch points, and intro-
duce new coordinates rqi and θqi as rqi e

iθqi := q − qi (1 � i � 6). If we take the phase as 
p(q) = i√rq1 rq2 rq3 rq4 rq5 rq6 , the upper limit should satisfy the condition q6 < q in order that 
the phase of p(q) should be consistent with the residue calculation at infinity, as shown in 
figure C2. Then we obtain

∮

C
p(q)dq = −2

∫ q2

q1

pdq + 2
∫ q4

q3

pdq − 2
∫ q6

q5

pdq

= −SL + SC − SR.
�

(C.4)

Finally we reach the relation (28)

S(∞) = −SL + SC − SR.� (C.5)
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