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WEIGHTED FUNCTIONAL INEQUALITIES:
CONSTRUCTIVE APPROACH

MITIA DUERINCKX AND ANTOINE GLORIA

Abstract. Consider an ergodic stationary random field A on the ambient space Rd. In
a companion article we introduced the notion of weighted functional inequalities, which
extend standard functional inequalities like spectral gap, covariance, and logarithmic
Sobolev inequalities, and we studied the associated concentration properties for nonlin-
ear functions X(A) of the field. In the present contribution we develop a constructive
approach to produce random fields that satisfy such weighted functional inequalities.
The construction typically relies on devising approximate chain rules for nonlinear and
random changes of variables for random fields. This approach allows us to cover Gauss-
ian fields with non-necessarily integrable covariance function, Poisson random inclusions
with (unbounded) random radii, random parking and Matérn-type processes, as well
as Poisson random tessellations (Voronoi or Delaunay). These weighted functional in-
equalities, which we primarily develop here in view of their application to quantitative
stochastic homogenization, are of independent interest.
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1. Introduction

In the companion article [7] we introduced the notion of weighted functional inequalities,
which are generalizations of standard functional inequalities like spectral gap, covariance,
or logarithmic Sobolev inequalities, and imply strong concentration properties. The aim
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2 M. DUERINCKX AND A. GLORIA

of the present contribution is to complete this work by developing a constructive approach
that generates random fields that do satisfy weighted functional inequalities.

In many fields of mathematical analysis, complex objects in a low-dimensional space can be
described as the projection of simpler objects of a higher-dimensional space. A prototypical
example is given by quasi-periodic structures. Conversely, suitable projections can be a
powerful way to generate many (possibly complex) lower-dimensional objects from simpler
higher-dimensional objects while preserving some essential properties, which is a useful
point of view for modeling. For quasi-periodic functions, the simple high-dimensional
objects are periodic functions (on a high-dimensional torus), the projection corresponds
to the composition with a winding matrix, and the preserved essential property is some
quantitative averaging property. In this contribution, we apply this idea to functional
inequalities.

Consider a random field A = Φ(A0) on Rd obtained as the image by some “projection” Φ of
some higher-dimensional random field A0 on Rd×Rl. In this article we argue that standard
functional inequalities satisfied by A0 can be transferred to A in the form of the weighted
functional inequalities introduced in the companion article [7]. To this aim, we develop
in Section 2 an abstract yet constructive approach to such inequalities, which amounts to
making suitable assumptions on the “projection operator” Φ. In Section 3, we make use
of this constructive approach to prove the validity of weighted functional inequalities for
various examples of random fields considered in the literature.

To conclude this introduction, we describe three classes of random fields A that satisfy
weighted functional inequalities.

(I) Gaussian-like fields: A is (possibly the image by a Lipschitz function of) the convo-
lution of some white noise with some deterministic kernel, which leads to Gaussian
fields with arbitrary covariance function.

(II) Independent coloring of random geometric patterns: A is characterized by a random
geometric pattern completed by an independent product structure. The random
geometric pattern is typically constructed starting from a point process (e.g. Poisson,
random parking, or Matérn-type processes) by considering inclusions centered at the
points, or (Voronoi or Delaunay) tessellations. The associated product structure then
determines the values of A on the cells of the random pattern, or even completes the
description of the random pattern (e.g. conferring random sizes and shapes to the
inclusions). This leads to possibly long-range correlations of the geometric pattern.

(III) Dependent coloring of random geometric patterns: This corresponds to (II) for a
coloring that does not come from a product structure but from a field that is itself
correlated (e.g. of the class (I)). This leads to possibly long-range correlations of the
colors of the inclusions (in the sense of e.g. value of A, size, or orientation of the
inclusions), on top of the correlations of the geometric pattern.

Details are provided in Section 3. The above three classes of random fields encompass all
the examples considered in [26], a reference textbook on random heterogeneous structures
for materials sciences, which brings the use of functional inequalities (in their weighted
versions) in stochastic homogenization to the state-of-the-art of materials science.
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Notation.
• d is the dimension of the ambient space Rd;
• C denotes various positive constants that only depend on the dimension d and
possibly on other controlled quantities; we write . and & for ≤ and ≥ up to
such multiplicative constants C; we use the notation ' if both relations . and &
hold; we add a subscript in order to indicate the dependence of the multiplicative
constants on other parameters;
• the notation a� b (or equivalently b� a) stands for a ≤ 1

C b for some large enough
constant C ' 1;
• Qk := [−1/2, 1/2)k denotes the unit cube centered at 0 in dimension k, and for all
x ∈ Rd and r > 0 we set Qk(x) := x+Qk, Qkr := rQk and Qkr (x) := x+ rQk; when
k = d or when there is no confusion possible on the meant dimension, we drop the
superscript k;
• we use similar notation for balls, replacing Qk by Bk (the unit ball in dimension k);
• the Euclidean distance between subsets of Rd is denoted by d(·, ·);
• B(Rk) denotes the Borel σ-algebra on Rk;
• E [·] denotes the expectation, Var [·] the variance, and Cov [·; ·] the covariance in
the underlying probability space (Ω,A,P), and the notation E [·‖·] stands for the
conditional expectation;
• for all subsets A of a reference set B, we let Ac := B \ A denote the complement
of A in B;
• for all a, b ∈ R, we set a ∧ b := min{a, b}, a ∨ b := max{a, b}, and a+ := a ∨ 0;
• for all matrices F , we denote by F t its transpose matrix;
• dae denotes the smallest integer larger or equal to a;
• F denotes Fourier transformation.

2. Constructive approach to weighted functional inequalities

In this section we consider random fields that can be constructed as transformations of
product structures. Under suitable assumptions we describe how the standard spectral
gaps, covariance inequalities, and logarithmic Sobolev inequalities satisfied by “hidden
product structures” are deformed into weighted functional inequalities for the random
fields of interest. The analysis of the examples mentioned in the introduction is postponed
to Section 3.

2.1. Weighted functional inequalities. We start by recalling the definition of weighted
functional inequalities introduced in the companion article [7]. Let A : Rd × Ω → R be a
jointly measurable random field on Rd, constructed on some probability space (Ω,A,P).
A spectral gap in probability for A is a functional inequality that allows one to control the
variance of any function X(A) in terms of its local dependence on A, that is, in terms of
some “derivative” of X(A) with respect to local restrictions of A. In the continuum setting
that we consider here, there is no canonical choice of such a (wide-sense) derivative with
respect to the field A, and we recall below three such possible notions.

• The so-called Glauber derivative ∂G is defined as follows, letting A′ denote an i.i.d.
copy of A, and denoting by E′ [·] the expectation wrt A′ only,

∂GA,SX(A) = E′
[(
X(A)−X(A′)

)2 ∥∥A′|Rd\S = A|Rd\S
] 1

2 .
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• The oscillation ∂osc is formally defined by

∂oscA,S X(A) := sup ess
A,S

X(A)− inf ess
A,S

X(A)

“=” sup ess
{
X(A′) : A′ ∈ Mes(Rd;R), A′|Rd\S = A|Rd\S

}
− inf ess

{
X(A′) : A′ ∈ Mes(Rd;R), A′|Rd\S = A|Rd\S

}
, (2.1)

where the essential supremum and infimum are taken with respect to the measure
induced by the field A on the space Mes(Rd;R) (endowed with the cylindrical σ-
algebra). This definition (2.1) of ∂oscA,SX(A) is not measurable in general, and we
rather define

∂oscA,S X(A) :=M[X‖A|Rd\S ] +M[−X‖A|Rd\S ]

in terms of the conditional essential supremum M[·‖ARd\S ] given σ(A|Rd\S), as
introduced in [1]. Alternatively, we may simply define ∂oscA,SX(A) as the measurable
envelope of (2.1).
• The (integrated) functional (or Malliavin) derivative ∂fct is the closest generaliza-
tion of the usual partial derivatives commonly used in the discrete setting. Let
us denote by M ⊂ L∞(Rd) some open set such that the random field A takes
its values in M . Given a σ(A)-measurable random variable X(A), and given an
extension X̃ : M → R, its Fréchet derivative ∂X̃(A)/∂A ∈ L1

loc(Rd) is defined for
any compactly supported perturbation δA ∈ L∞(Rd) by

lim
t→0

X̃(A+ tδA)− X̃(A)

t
=

ˆ
Rd
δA(x)

∂X̃(A)

∂A
(x) dx,

if the limit exists. Since we are interested in the local averages of this derivative,
we rather define for all bounded Borel subset S ⊂ Rd,

∂fctA,SX(A) =

ˆ
S

∣∣∣∂X̃(A)

∂A
(x)
∣∣∣dx.

This derivative is additive with respect to the set S: for all disjoint Borel subsets
S1, S2 ⊂ Rd we have ∂fctA,S1∪S2

X(A) = ∂fctA,S1
X(A) + ∂fctA,S2

X(A).

It is clear by definition that the oscillation dominates the Glauber derivative. Henceforth
we use the notation ∂̃ for any of the above-defined (wide-sense) derivatives with respect to
the random field A. We define weighted functional inequalities as follows.

Definition 2.1. Given an integrable function π : R+ → R+, we say that A satisfies the
weighted spectral gap (∂̃-WSG) with weight π if for all σ(A)-measurable random variable
X(A) we have

Var [X(A)] ≤ E
[ˆ ∞

0

ˆ
Rd

(
∂̃A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`) d`

]
;
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it satisfies the weighted covariance inequality (∂̃-WCI) with weight π if for all σ(A)-measurable
random variables X(A) and Y (A) we have

Cov [X(A);Y (A)]

≤
ˆ ∞
0

ˆ
Rd

E
[(
∂̃A,B`+1(x)X(A)

)2] 1
2

E
[(
∂̃A,B`+1(x)Y (A)

)2] 1
2

dx (`+ 1)−dπ(`) d`;

it satisfies the weighted logarithmic Sobolev inequality (∂̃-WLSI) with weight π if for all
σ(A)-measurable random variable Z(A) we have

Ent
[
Z(A)2

]
:= E

[
Z(A)2 logZ(A)2

]
− E

[
Z(A)2

]
logE

[
Z(A)2

]
≤ E

[ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)Z(A)

)2
dx (`+ 1)−dπ(`) d`

]
. �

Standard functional inequalities (spectral gap (SG), covariance (CI), and logarithmic Sobo-
lev inequality (LSI)) are recovered by taking a compactly supported weight π (or equiva-
lently, skipping the integral over `).

Remark 2.2. In each of the examples considered in the sequel, if the functional inequality
(∂̃-WSG), (∂̃-WCI), or (∂̃-WLSI) is proved to hold with some weight π, then for all L ≥ 1
the rescaled field AL := A(L·) satisfies the same functional inequality with the same weight
π. See Remarks 2.10 and B.3 for detail. �

Classical arguments yield the following sufficient criterion for standard functional inequal-
ities. A standard proof is included for completeness in Appendix A and will be referred
to at several places in this contribution. (Note that the logarithmic Sobolev inequality
(LSI) is only established here with the oscillation ∂osc, while the version with the Glauber
derivative ∂G is well-known to be much more restrictive, crucially depending on the law of
the underlying product structure.)

Proposition 2.3. Let A0 be a random field on Rd with values in some measurable space
such that restrictions A0|S and A0|T are independent for all disjoint Borel subsets S, T ⊂
Rd. Let A be a random field on Rd that is an R-local transformation of A0, in the sense that
for all S ⊂ Rd the restriction A|S is σ(A0|S+BR)-measurable. Then, the field A satisfies
(∂G-CI) and (∂osc-LSI) with radius R+ ε for all ε > 0. �

Note that any field satisfying the assumption in the above criterion has finite range of
dependence. Conversely any field that satisfies (CI) has necessarily finite range of depen-
dence (cf. [7, Proposition 2.3]). One does not expect, however, finite range of dependence
to be a sufficient condition for the validity of (SG) in general (compare indeed with the
constructions in [5, 3]).

Although the Glauber derivative ∂G and the functional derivative ∂fct are particularly
convenient measures of sensitivity of a random variable X(A) with respect to local restric-
tions of A, they are essentially only adapted to product structures and to Gaussian-like
random fields, respectively. On the other hand, the oscillation ∂osc is adapted to a much
larger variety of random fields (cf. Section 2.3), but it involves taking (essential) suprema,
which might be difficult to control in various applications (and in particular in stochastic
homogenization, cf. [8]).

In the course of the article, we consider various classes of random fields on Rd that can be
constructed as (possibly random) projections of random fields having a product structure
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in a higher-dimensional space Rd × Rl. Such projections naturally allow one to “deform”
the underlying Glauber derivative in a way that cannot be strictly speaking written as a
Glauber derivative, but which shares important properties (and in particular avoids taking
suprema). The following definition (which can be skipped at the first reading) gives such
a proxy for the Glauber derivative, which can typically be used in functional inequalities
with loss of integrability.

Definition 2.4. Given l ≥ 0, let X be some random field on Rd × Rl with values in
some measure space, and assume that the random field A under consideration is σ(X )-
measurable, A = A(X ). Choose X ′ an i.i.d. copy of the field X , and for all x, t let the
perturbed field X x,t be defined by X x,t|(Rd×Rl)\(Qd(x)×Ql(t)) = X|(Rd×Rl)\(Qd(x)×Ql(t)) and
X x,t|Qd(x)×Ql(t) = X ′|Qd(x)×Ql(t). We use the short-hand notation

∂dis`,x,tX(A) := (X(A)−X(A(X x,t))1A|Rd\Q2`+1(x)
=A(Xx,t)|Rd\Q2`+1(x)

, (2.2)

which we abusively call a discrete derivative, and we define a spectral gap with loss (∂dis-
WSG’) as follows: given a family (πλ)λ of integrable functions πλ : Rl × R+ → R+,
the spectral gap with loss (∂dis-WSG’) with weights (πλ)λ is said to hold if for all σ(A)-
measurable random variables X(A) and all λ ∈ (0, 1) we have

Var [X(A)] ≤
ˆ ∞
0

ˆ
Rd

ˆ
Rl

E
[(
∂dis`,x,tX(A)

) 2
1−λ
]1−λ

πλ(t, `)dtdxd`. �

2.2. Transformation of product structures. Let the random field A on Rd be σ(X )-
measurable for some random field X defined on some measure space X and with values
in some measurable space M . Assume that we have a partition X =

⊎
x∈Zd,t∈Zl Xx,t, on

which X is completely independent, that is, the family of restrictions (X|Xx,t)x∈Zd,t∈Zl are
all independent.

In the sequel, the case l = 0 (that is, the case when there is no variable t) is referred to as the
non-projective case, while the case l ≥ 1 is referred to as the projective case. Note however
that the non-projective case is a particular case of the projective one, simply defining
Xx,0 = Xx and Xx,t = ∅ for all t 6= 0. The random field X can be e.g. a random field on
Rd×Rl with values in some measure space (choosingX = Rd×Rl, Xx,t = Qd(x)×Ql(t), and
M the space of values), or a random point process (or more generally a random measure) on
Rd×Rl×X ′ for some measure space X ′ (choosing X = Zd×Zl×X ′, Xx,t = {x}×{t}×X ′,
and M the space of measures on Qd ×Ql ×X ′).

Let X ′ be some given i.i.d. copy of X . For all x, t, we define a perturbed random field X x,t
by setting X x,t|X\Xx,t = X|X\Xx,t and X x,t|Xx,t = X ′|Xx,t . By complete independence, the
random fields X and X x,t (resp. A = A(X ) and A(X x,t)) have the same law. Arguing as in
the proof of Proposition 2.3 (cf. (A.3) and (A.4) in Appendix A), the complete independence
assumption ensures that X satisfies the following standard functional inequalities.



WEIGHTED FUNCTIONAL INEQUALITIES 7

Proposition 2.5. For all σ(X )-measurable random variables Y (X ) and Z(X ), we have

Var [Y (X )] ≤ 1

2

∑
x∈Zd

∑
t∈Zl

E
[(
Y (X )− Y (X x,t)

)2]
, (2.3)

Ent[Y (X )] ≤ 2
∑
x∈Zd

∑
t∈Zl

E
[
sup ess
X ′

(
Y (X )− Y (X x,t)

)2]
, (2.4)

Cov [Y (X );Z(X )] ≤ 1

2

∑
x∈Zd

∑
t∈Zl

E
[(
Y (X )− Y (X x,t)

)2] 1
2 E
[(
Z(X )− Z(X x,t)

)2] 1
2
. (2.5)

�

2.3. Abstract criteria and action radius. We now describe general situations for which
the functional inequalities for the hidden product structure X are deformed into weighted
inequalities for the random field A. We distinguish the following two cases:

• deterministic localization, that is, when the random field A is a deterministic con-
volution of some product structure, so that the dependence pattern is prescribed
deterministically a priori; it leads to weighted functional inequalities with the func-
tional derivative ∂fct;
• random localization, that is, when the dependence pattern is encoded by the un-
derlying product structure X itself (and therefore may depend on the realization,
whence the terminology “random”); the localization of the dependence pattern is
then measured in terms of what we call the action radius; it leads to weighted
inequalities with the derivatives ∂osc and ∂dis, and generalizes the idea of local
transformations of Proposition 2.3.

The case of deterministic localization essentially concerns Gaussian fields, which have been
thoroughly studied in the literature. Weighted functional inequalities for such random
fields then follow from standard functional inequalities (typically formulated in terms of
Malliavin calculus on Wiener space, see e.g. [12, 13, 19]) combined with a deterministic
radial change of variables to reformulate the RHS (extracting a 1D weight from Hilbert
norms encoding the covariance structure, see the proof of Theorem B.2 below). The RHS
of weighted functional inequalities is indeed more explicit (and flexible when it turns to
estimates — see e.g. bounds by duality in [8]). A self-contained approach to deterministic
localization is included in Appendix B.

In the rest of this section we focus on the more original setting of random localization
(which involves a random change of variable, due to the randomness of the dependence
pattern). More precisely, we introduce the notion of action radius as a probabilistic measure
of the localization of the dependence pattern. General criteria for weighted spectral gaps
are then obtained in terms of the properties of this action radius. Various examples that
are included in this framework are described in Section 3 below.

We use the notation of Section 2.2: A is a σ(X )-measurable random field on Rd, where
X is a completely independent random field on some measure space X =

⊎
x∈Zd,t∈Zl Xx,t

with values in some measurable spaceM . The following definition is inspired by the notion
of stabilization radius first introduced by Lee [15, 16] and crucially used in the works by
Penrose, Schreiber, and Yukich on random sequential adsorption processes [22, 21, 23, 25]
(see also [14]).
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Definition 2.6. Given an i.i.d. copy X ′ of the field X , an action radius for A with respect
to X on Xx,t (with reference perturbation X ′), if it exists, is defined as a nonnegative
σ(X ,X ′)-measurable random variable ρ such that we have a.s.,

A(X x,t)
∣∣
Rd\(Q(x)+Bρ)

= A(X )|Rd\(Q(x)+Bρ)
,

where as before the perturbed random field X x,t is defined by X x,t|X\Xx,t := X|X\Xx,t and
X x,t|Xx,t := X ′|Xx,t . �

Note that if X = A0 is a random field on Rd, and if for some R > 0 the random field
A is an R-local transformation of A0 in the sense of Proposition 2.3, then the constant
ρ = R is an action radius for A with respect to A0 on any set. Reinterpreted in the case
when X = P is a random point process on Rd × Rl ×X ′ for some measure space X ′, the
above definition takes on the following guise: given a subset E × F ⊂ Rd × Rl and given
an i.i.d. copy P ′ of P, an action radius for A with respect to P on E × F , if it exists, is a
nonnegative random variable ρ such that we have a.s.,

A
((
P \ (E × F ×X ′)

)⋃(
P ′ ∩ (E × F ×X ′)

))∣∣∣
Rd\(E+Bρ)

= A(P)|Rd\(E+Bρ)
.

We display two general results, Theorems 2.7 and 2.9 below. The first result is a general
criterion for the validity of weighted spectral gaps in terms of the properties of an action
radius, whereas the second result is based on more elaborate properties of action radii
and is useful to avoid loss of integrability in some situations. Note that the condition for
the validity of the weighted logarithmic Sobolev inequality below is rather stringent (see
Section 3 for examples).

Theorem 2.7. Let the fields A,X be as above. Given an i.i.d. copy X ′ of the field X ,
assume that:
(a) For all x, t, there exists an action radius ρx,t for A with respect to X in Xx,t.
(b) The transformation A of X is stationary, that is, the random fields A(X (·+ z, ·)) and

A(X )(·+ z) have the same law for all z ∈ Zd. Moreover, the law of the action radius
ρx,t is independent of x.

Then the following holds.
(i) Setting

π(t, `) := P
[
`− 1 ≤ ρ0,t < `, A(X 0,t) 6= A(X )

]
,

we have for all σ(A)-measurable random variable Z(A) and all λ ∈ (0, 1),

Var [Z(A)] ≤ 1

2

∑
x∈Zd

∞∑
`=1

∑
t∈Zl

π(t, `)λ E
[(
∂dis`,x,tZ(A)

) 2
1−λ
]1−λ

(2.6)

and

Cov [Y (A);Z(A)] ≤ 1

2

∑
x∈Zd

∑
t∈Zl

( ∞∑
`=1

π(t, `)λ E
[(
∂dis`,x,tY (A)

) 2
1−λ
]1−λ) 1

2

×
( ∞∑
`′=1

π(t, `′)λ E
[(
∂dis`′,x,tZ(A)

) 2
1−λ
]1−λ) 1

2

, (2.7)
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where ∂dis`,x,tZ(A) is the notation defined in (2.2), that is,

∂dis`,x,tZ(A) :=
(
Z(A)− Z(A(X x,t)

)
1A|Rd\Q2`+1(x)

=A(Xx,t)|Rd\Q2`+1(x)
.

In particular, for all λ ∈ (0, 1), if we set

πλ(`) := (`+ 1)d
∑
t∈Zl

P
[
`− 1 ≤ ρ0,t < `, A(X 0,t) 6= A(X )

]λ
,

we obtain for all σ(A)-measurable random variables Z(A),

Var [Z(A)] ≤ 1

2

∞∑
`=1

(`+ 1)−dπλ(`)
∑
x∈Zd

E
[(

∂oscA,Q2`+1(x)
Z(A)

) 2
1−λ
]1−λ

. (2.8)

If in addition the random variable ρx,t is σ(X )-measurable for all x, t, then we have

Ent[Z(A)] ≤ 2
∞∑
`=1

(`+ 1)−dπλ(`)
∑
x∈Zd

E
[(

∂oscA,Q2`+1(x)
Z(A)

) 2
1−λ
]1−λ

. (2.9)

(ii) Assume that for all x, t the action radius ρx,t is independent of A|Rd\(Q(x)+Bf(ρx,t)
)

for some influence function f : R+ → R+ with f(u) ≥ u for all u. Then, with the
convention 0/0 = 0, if we set

π̃(t, `) := P
[
X 0,t 6= X

] P [`− 1 ≤ ρ0,t < ` ‖ X 0,t 6= X
]

P [ρ0,t < `]
,

π(`) := (`+ 1)d
∑
t∈Zl

π̃(t, `),

we have for all σ(A)-measurable random variables Z(A),

Var [Z(A)] ≤ 1

2

∞∑
`=1

(`+ 1)−dπ(`)
∑
x∈Zd

E
[(

∂oscA,Q2f(`)+1(x)
Z(A)

)2]
(2.10)

and

Cov [Y (A);Z(A)] ≤ 1

2

∑
x∈Zd

∑
t∈Zl

( ∞∑
`=1

π̃(t, `)E
[(

∂oscA,Q2f(`)+1(x)
Y (A)

)2]) 1
2

×
( ∞∑
`′=1

π̃(t, `′)E
[(

∂oscA,Q2f(`′)+1(x)
Z(A)

)2]) 1
2

. (2.11)

If in addition the random variable ρx,t is σ(X )-measurable for all x, t, then we have

Ent[Z(A)] ≤ 2

∞∑
`=1

(`+ 1)−dπ(`)
∑
x∈Zd

E
[(

∂oscA,Q2f(`)+1(x)
Z(A)

)2]
. (2.12)

�
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Remark 2.8. The covariance inequalities (2.7) and (2.11) are not in the canonical form
of Definition 2.1. However note that if π̃(t, `) is non-increasing with respect to ` then the
inequality (2.11) (and likewise for (2.7)) easily leads to

Cov [Y (A);Z(A)] ≤
∑
x∈Zd

∞∑
`=1

(`+ 1)−d
( ∑̀
`′=1

π(`′)
)
E
[(

∂oscA,Q2f(`)+1(x)
Y (A)

)2] 1
2

× E
[(

∂oscA,Q2f(`)+1(x)
Z(A)

)2] 1
2

,

which is now in the correct form, although the weight
∑`

`′=1 π(`′) seems to be suboptimal
whenever π has algebraic decay. �

We now turn to a more complex situation when the dependence pattern is intricate but
sufficiently well controlled in terms of a family of action radii. The aim of the following is
to avoid the loss of integrability which would follow from Theorem 2.7(i) in the case of the
random parking process and of Poisson tessellations.

Theorem 2.9. Let A = A(X ) be a σ(X )-measurable random field on Rd, where X is a
completely independent random field on some measure space X =

⊎
x∈Zd Xx with values in

some measurable space M . For all x ∈ Zd, ` ∈ N, set X`
x :=

⋃
y∈Zd:|x−y|∞≤`Xy. Given an

i.i.d. copy X ′ of the field X , let the perturbed field X x,` be defined by

X x,`|X\X`
x

= X|X\X`
x
, and X x,`|X`

x
= X ′|X`

x
,

and assume that:
(a) For all x, `, there exists an action radius ρ`x for A with respect to X in X`

x, that is, a
nonnegative random variable ρ`x such that we have a.s.,

A(X x,`)|Rd\(Q2`+1(x)+Bρ`x
) = A(X )|Rd\(Q2`+1(x)+Bρ`x

).

(b) The transformation A of X is stationary, that is, the random fields A(X (·+ z, ·)) and
A(X )(· + z) have the same law for all z ∈ Zd. Moreover, the law of the action radius
ρ`x is independent of x.

Further assume that

(c) For all x, `, the random variable ρ`x is σ
(
X
∣∣
X
`+ρ`x
x \X`

x

)
-measurable.

(In particular, for all x, `,R, given the event ρ`x ≤ R, the random variables ρ`x and ρ`+Rx

are independent.)
Let R ≥ 1 be chosen large enough so that

sup
`≥R

P
[
ρ`x ≥ `

]
≤ 1

4
, (2.13)

let π0 : R+ → R+ be a non-increasing function such that P
[
`/4 ≤ ρ`0x < `

]
≤ π0(`) holds

for all 0 ≤ `0 ≤ `/4, and define the weight

π(`) := (`+ 1)d

{
1, if ` ≤ 4R;

8`−1π0(`/4), if ` > 4R.
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Then for all σ(A)-measurable random variables Y (A), Z(A), we have

Var [Z(A)] ≤ 1

2

ˆ ∞
0

ˆ
Rd

E
[(

∂oscA,B√d(2`+3)(x)
Z(A)

)2]
dx (`+ 1)−dπ(`)d`, (2.14)

Ent[Z(A)] ≤ 2

ˆ ∞
0

ˆ
Rd

E
[(

∂oscA,B√d(2`+3)(x)
Z(A)

)2]
dx (`+ 1)−dπ(`)d`, (2.15)

Cov [Y (A);Z(A)] ≤ 1

2

ˆ
Rd

(ˆ ∞
0

E
[(

∂oscA,B√d(2`+3)(x)
Y (A)

)2]
(`+ 1)−dπ(`)d`

) 1
2

×
( ˆ ∞

0
E
[(

∂oscA,B√d(2`+3)(x)
Z(A)

)2]
(`+ 1)−dπ(`)d`

) 1
2

dx. (2.16)

�

Remark 2.10. We briefly address the claim contained in Remark 2.2 in the context of
examples of random fields with random localization. By definition, for all L ≥ 1, an action
radius for A with respect to X on X0,t is always also an action radius for the rescaled field
AL := A(L·) with respect to X on X0,t. This proves that in Theorems 2.7 and 2.9 any
result stated for the field A also holds in the very same form (with the same constants and
weights) for AL with L ≥ 1. �

We start with the proof of Theorem 2.7, and then turn to the proof of Theorem 2.9.

Proof of Theorem 2.7. Recall that for all x, t the perturbed random field X x,t is defined
by X x,t|X\Xx,t = X|X\Xx,t and X x,t|Xx,t = X ′|Xx,t . By complete independence of X , the
fields X and X x,t (hence A = A(X ) and A(X x,t)) have the same law. The strategy of the
proof consists in deforming the functional inequalities of Proposition 2.5 with respect to
the transformation A(X ) in terms of the action radius. We split the proof into four steps.

Step 1. Proof of the spectral gap (2.6).
Conditioning the RHS of (2.3) with respect to the values of the action radius ρx,t, applying
the Hölder inequality, and using the stationarity assumption (b) to recognize the weight
π(t, `), we obtain for all 0 < λ < 1,

Var [Z(A)]
(2.3)
≤ 1

2

∑
x∈Zd

∑
t∈Zl

E
[(
Z(A)− Z(A(X x,t))

)2]
=

1

2

∑
x∈Zd

∞∑
`=1

∑
t∈Zl

E
[(
Z(A)− Z(A(X x,t))

)2
1`−1≤ρx,t<`

]
(2.17)

≤ 1

2

∑
x∈Zd

∞∑
`=1

∑
t∈Zl

π(t, `)λ E
[(
Z(A)− Z(A(X x,t))

) 2
1−λ1ρx,t<`

]1−λ
.

Noting that the event ρx,t < ` entails that A|Rd\Q2`+1(x)
= A(X x,t)|Rd\Q2`+1(x)

, the above
can be rewritten as follows,

Var [Z(A)] ≤ 1

2

∑
x∈Zd

∞∑
`=1

∑
t∈Zl

π(t, `)λ E
[(
∂dis`,x,tZ

) 2
1−λ
]1−λ

,

that is, (2.6).
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Step 2. Proof of the spectral gap (2.10).
For all x, t, conditioning with respect to the values of ρx,t, we may decompose

E
[(
Z(A)− Z(A(X x,t))

)2]
= g1x(t) + g2x(t), (2.18)

g1x(t) :=
∞∑
`=2

E
[(
Z(A)− Z(A(X x,t))

)2
1`−1≤ρx,t<`

]
,

g2x(t) := E
[(
Z(A)− Z(A(X x,t))

)2
1ρx,t<1

]
.

We first estimate the term g1x(t). Recalling that the influence function f satisfies f(u) ≥ u
for all u, we obtain

g1x(t) =
∞∑
`=2

E
[(
Z(A)− Z(A(X x,t))

)2
1X|Xx,t 6=X ′|Xx,t1`−1≤ρx,t<`

]
≤
∞∑
`=2

E
[(

∂oscA,Q2f(`)+1(x)
Z(A)

)2
1X|Xx,t 6=X ′|Xx,t1`−1≤ρx,t<`

]

=
∞∑
`=2

E
[(

∂oscA,Q2f(`)+1(x)
Z(A)

)2
1X|Xx,t 6=X ′|Xx,t

∥∥∥∥ `− 1 ≤ ρx,t < `

]
P [`− 1 ≤ ρx,t < `] .

By definition, given ρx,t < `, the restriction A|Rd\Q2f(`)+1(x)
is independent of X|Xx,t and

X ′|Xx,t . The above thus yields

g1x(t) ≤
∞∑
`=2

E
[(

∂oscA,Q2f(`)+1(x)
Z(A)

)2 ∥∥∥∥ `− 1 ≤ ρx,t < `

]
× P

[
`− 1 ≤ ρx,t < `, X|Xx,t 6= X ′|Xx,t

]
.

By assumption in item (ii), the restriction A|Rd\Q2f(ρx,t)+1(x)
is independent of ρx,t, so that

we may deduce

g1x(t) ≤
∞∑
`=2

E
[(

∂oscA,Q2f(`)+1(x)
Z(A)

)2 ∥∥∥∥ ρx,t < `

]
P
[
`− 1 ≤ ρx,t < `, X|Xx,t 6= X ′|Xx,t

]
.

To simplify notation, we set for all ` ≥ 1,

Y` :=
(
∂oscA,Q2f(`)+1(x)

Z(A)
)2
.

Estimating

E [Y` ‖ ρx,t < `] ≤ E [Y`]

P [ρx,t < `]
,
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and using the stationarity assumption (b) for the action radius, we may conclude

g1x(t) ≤
∞∑
`=2

E [Y`]

P [ρx,t < `]
P
[
`− 1 ≤ ρx,t < `, X|Xx,t 6= X ′|Xx,t

]
=
∞∑
`=2

E [Y`]

P [ρ0,t < `]
P
[
`− 1 ≤ ρ0,t < `, X|X0,t 6= X ′|X0,t

]
=

∞∑
`=2

E
[(

∂oscA,Q2f(`)+1(x)
Z(A)

)2]
P
[
X|X0,t 6= X ′|X0,t

]
×

P
[
`− 1 ≤ ρ0,t < ` ‖ X |X0,t 6= X ′|X0,t

]
P [ρ0,t < `]

. (2.19)

We now turn to the estimate of the term g2x(t). Since the influence function f satisfies
f(u) ≥ u for all u, we find

g2x(t) = E
[(
Z(A)− Z(A(X x,t))

)2
1X|Xx,t 6=X ′|Xx,t1ρx,t<1

]
≤ E

[(
∂oscA,Q2f(1)+1(x)

Z(A)
)2
1X|Xx,t 6=X ′|Xx,t

∥∥∥∥ ρx,t < 1

]
P [ρx,t < 1] .

By definition, given ρx,t < 1, the restriction A|Rd\Q2f(1)+1(x)
is independent of X|Xx,t and

X ′|Xx,t . The above thus yields

g2x(t) ≤ E
[(

∂oscA,Q2f(1)+1(x)
Z(A)

)2]
P
[
X|Xx,t 6= X ′|Xx,t

∥∥ ρx,t < 1
]

= E
[(

∂oscA,Q2f(1)+1(x)
Z(A)

)2]
P
[
X|Xx,t 6= X ′|Xx,t

] P [ρx,t < 1 ‖ X |Xx,t 6= X ′|Xx,t
]

P [ρx,t < 1]
.

Using the stationarity assumption (b) again, and combining this with (2.18) and (2.19),
the conclusion (2.10) follows.

Step 3. Proof of the logarithmic Sobolev inequalities (2.9) and (2.12).
Conditioning the RHS of (2.4) with respect to the values of the action radius ρx,t, we
obtain

Ent[Z(A)] ≤ 2
∑
x∈Zd

∞∑
`=1

∑
t∈Zl

E
[
sup ess
X ′

((
Z(A(X ))− Z(A(X x,t))

)2
1`−1≤ρx,t<`

)]

≤ 2
∑
x∈Zd

∞∑
`=1

∑
t∈Zl

E
[(

∂oscA,Q2`+1(x)
Z(A)

)2
sup ess
X ′

(
1`−1≤ρx,t<`

)]
.

Hence, if for all x, t the random variable ρx,t is σ(X )-measurable, we may deduce

Ent[Z(A)] ≤ 2
∑
x∈Zd

∞∑
`=1

∑
t∈Zl

E
[(

∂oscA,Q2`+1(x)
Z(A)

)2
1`−1≤ρx,t<`

]
.

The result (2.9) follows from the Hölder inequality, while the result (2.12) follows as in
Step 2.
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Step 4. Proof of the covariance inequalities (2.7) and (2.11).
Conditioning the RHS of (2.5) with respect to the values of the action radius ρx,t, we
obtain

Cov [Y (A);Z(A)] ≤ 1

2

∑
x∈Zd

∑
t∈Zl

( ∞∑
`=1

E
[(
Y (A)− Y (A(X x,t))

)2
1`−1≤ρx,t<`

]) 1
2

×
( ∞∑
`′=1

E
[(
Z(A)− Z(A(X x,t))

)2
1`′−1≤ρx,t<`′

]) 1
2

.

Now the sums over `, `′ are estimated exactly as in Steps 1 and 2, and the results (2.7)
and (2.11) follow. �

We now prove Theorem 2.9.

Proof of Theorem 2.9. We only prove the spectral gap (2.14). The proof of the logarithmic
Sobolev inequality (2.15) and of the covariance inequality (2.16) is similar, based on (2.4)
and (2.5), respectively. For all x, let the field X x be defined by X x|X\Xx = X|X\Xx and
X x|Xx = X ′|Xx , and recall that the spectral gap (2.3) for X takes the form

Var [Z(A)] ≤ 1

2

∑
x∈Zd

E
[(
Z(A)− Z(A(X x))

)2]
.

The conclusion (2.14) then follows provided we prove that for all x ∈ Zd,

E
[(
Z(A)− Z(A(X x))

)2] ≤ ˆ ∞
0

E
[(

∂oscA,Q2`+1(x)
Z(A)

)2]
(`+ 1)−dπ(`)d`. (2.20)

Without loss of generality, it suffices to consider the case x = 0. Moreover, by an ap-
proximation argument, we may assume that the random variable Z(A) is bounded. For
simplicity, we set ρ(r) := r+ ρr0 and ∂oscr :=∂oscA,Q2r+1

. Note that the choice (2.13) of R then
takes the form

sup
`≥R

P
[
ρ(`) ≥ 2`

]
≤ 1

4
. (2.21)

We split the proof into two steps.

Step 1. Conditioning argument.
In this step, we prove for all r2 ≥ 2r1 ≥ 2R,

E
[(

∂oscr2 Z(A)
)2
1 1

2
r2≤ρ(r1)<r2

]
≤ 2P

[
1
2r2 ≤ ρ(r1) < r2

]
×
(
E
[(

∂osc2r2 Z(A)
)2]

+

∞∑
`=2

E
[(

∂osc2`r2
Z(A)

)2
12`−1r2≤ρ(r2)<2`r2

])
. (2.22)

Conditioning the LHS with respect to the value of ρ(r2), we decompose

E
[(

∂oscr2 Z(A)
)2
1 1

2
r2≤ρ(r1)<r2

]
≤ E

[(
∂oscr2 Z(A)

)2
1 1

2
r2≤ρ(r1)<r21ρ(r2)<2r2

]
+

∞∑
`=2

E
[(

∂oscr2 Z(A)
)2
1 1

2
r2≤ρ(r1)<r212`−1r2≤ρ(r2)<2`r2

]
. (2.23)
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We estimate each of the RHS terms separately. For that purpose, note that the definition
of ρ and assumption (c) ensure that, given ρ(`1) ≤ `2 and ρ(`2) ≤ `3, the random variable
ρ(`1) is independent of ∂osc`3

Z(A). This observation directly yields

E
[(

∂oscr2 Z(A)
)2
1 1

2
r2≤ρ(r1)<r21ρ(r2)<2r2

]
≤ E

[(
∂osc2r2 Z(A)

)2
1ρ(r1)≥ 1

2
r2

∥∥∥∥ ρ(r1) < r2, ρ(r2) < 2r2

]
P
[
ρ(r1) < r2, ρ(r2) < 2r2

]
≤ E

[(
∂osc2r2 Z(A)

)2] P
[
1
2r2 ≤ ρ(r1) < r2

]
P [ρ(r1) < r2, ρ(r2) < 2r2]

≤ E
[(

∂osc2r2 Z(A)
)2] P

[
1
2r2 ≤ ρ(r1) < r2

]
1− P [ρ(r1) ≥ r2]− P [ρ(r2) ≥ 2r2]

.

For r2 ≥ 2r1 ≥ 2R, the choice (2.21) of R yields

P [ρ(r1) ≥ r2] + P [ρ(r2) ≥ 2r2] ≤ P [ρ(r1) ≥ 2r1] + P [ρ(r2) ≥ 2r2] ≤
1

2
,

so that the above takes the simpler form

E
[(

∂oscr2 Z(A)
)2
1 1

2
r2≤ρ(r1)<r21ρ(r2)<2r2

]
≤ 2E

[(
∂osc2r2 Z(A)

)2]
P
[
1
2r2 ≤ ρ(r1) < r2

]
. (2.24)

On the other hand, further recalling that assumption (c) ensures that given ρ(`1) ≤ `2 the
random variables ρ(`1) and ρ(`2) are independent, we similarly obtain

E
[(

∂oscr2 Z(A)
)2
1 1

2
r2≤ρ(r1)<r212`−1r2≤ρ(r2)<2`r2

]
≤ E

[(
∂osc2`r2

Z(A)
)2
1ρ(r2)≥2`−1r2

∥∥∥∥ ρ(r1) < r2, ρ(r2) < 2`r2

]
×P
[
ρ(r1) ≥ 1

2r2
∥∥ ρ(r1) < r2, ρ(r2) < 2`r2

]
P
[
ρ(r1) < r2, ρ(r2) < 2`r2

]
≤ E

[(
∂osc2`r2

Z(A)
)2
12`−1r2≤ρ(r2)<2`r2

] P
[
1
2r2 ≤ ρ(r1) < r2

]
P [ρ(r1) < r2, ρ(r2) < 2`r2]

≤ E
[(

∂osc2`r2
Z(A)

)2
12`−1r2≤ρ(r2)<2`r2

] P
[
1
2r2 ≤ ρ(r1) < r2

]
1− P [ρ(r1) ≥ r2]− P [ρ(r2) ≥ 2`r2]

.

With the choice (2.21) of R, for r2 ≥ 2r1 ≥ 2R and ` ≥ 1, this turns into

E
[(

∂oscr2 Z(A)
)2
1 1

2
r2≤ρ(r1)<r212`−1r2≤ρ(r2)<2`r2

]
≤ 2E

[(
∂osc2`r2

Z(A)
)2
12`−1r2≤ρ(r2)<2`r2

]
P
[
1
2r2 ≤ ρ(r1) < r2

]
.

Combining this with (2.23) and (2.24), the conclusion (2.22) follows.
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Step 2. Proof of (2.20).
Conditioning the LHS of (2.20) with respect to the value of the action radius ρ(0), we
obtain

E
[(
Z(A)− Z(A(X x))

)2] ≤ E
[(

∂oscR Z(A)
)2]

+

∞∑
`=1

E
[(

∂osc2`R Z(A)
)2
12`−1R≤ρ(0)<2`R

]
.

We now iteratively apply (2.22) to estimate the last RHS terms: with the short-hand
notation π(`2; `1) := P

[
1
2`2 ≤ ρ(`1) < `2

]
, we obtain for all n ≥ 1,

E
[(
Z(A)− Z(A(X x))

)2] ≤ E
[(

∂oscR Z(A)
)2]

+ 2

∞∑
`1=1

π(2`1R; 0)E
[(

∂osc
2`1+1R

Z(A)
)2]

+ 22
∞∑
`1=1

π(2`1R; 0)

∞∑
`2=`1+2

π(2`2R; 2`1R)E
[(

∂osc
2`2+1R

Z(A)
)2]

+ . . .

+2n
∞∑
`1=1

π(2`1R; 0)

∞∑
`2=`1+2

π(2`2R; 2`1R) . . .

∞∑
`n=`n−1+2

π(2`nR; 2`n−1R)E
[(

∂osc2`n+1R Z(A)
)2]

+ 2n
∞∑
`1=1

π(2`1R; 0)

∞∑
`2=`1+2

π(2`2R; 2`1R) . . .

∞∑
`n=`n−1+2

π(2`nR; 2`n−1R)

×
∞∑

`n+1=`n+2

E
[(

∂osc
2`n+1R

Z(A)
)2
12`n+1−1R≤ρ(2`nR)<2`n+1R

]
.

With the choice (2.21) of R in the form

sup
`0≥0

∞∑
`=`0+2

π(2`R; 2`0R) = sup
`0≥0

P
[
ρ(2`0R) ≥ 2`0+1R

]
≤ 1

4
,

the definition π̃(`) := sup`0:0≤`0≤`/4 π(`; `0) of the weight, and recalling that the random
variable Z(A) is bounded, we deduce

E
[(
Z(A)− Z(A(X x))

)2] ≤ E
[(

∂oscR Z(A)
)2]

+ 2

( n−1∑
m=0

2−m
) ∞∑
`=1

π̃(2`R)E
[(

∂osc2`+1R Z(A)
)2]

+ 2−n−2‖Z‖L∞ .

Letting n ↑ ∞, we thus obtain

E
[(
Z(A)− Z(A(X x))

)2] ≤ E
[(

∂oscR Z(A)
)2]

+ 4

∞∑
`=1

π̃(2`R)E
[(

∂osc2`+1R Z(A)
)2]

.

Comparing sums to integrals and using the definition of π, the conclusion (2.20) follows. �

2.4. Local operations. In this subsection, we describe two typical operations on random
fields that do preserve functional inequalities: local transformations and gluing of indepen-
dent random fields with respect to an independent pattern. These operations allow one to
generate many variations around the examples of Section 3.
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2.4.1. Local transformations. Given a random field A0 on Rd, we say that a random field
A on Rd is a R-local transformation of A0 (as in Proposition 2.3) if A|S is σ(A|S+BR)-
measurable for all Borel subsets S ⊂ Rd. Important particular cases are local smoothing
(e.g. by convolution with a smooth kernel with bounded support) and truncation (e.g. by
applying a Lipschitz function).

Lemma 2.11. If A0, A are two random fields on Rd, and if A is a R-local transformation
of A0, then we have for all Borel subsets S ⊂ Rd and all σ(A)-measurable random variables
X(A),

∂oscA0,S X(A(A0)) ≤ ∂oscA,S+BR
X(A)

and
∂fctA0,SX(A(A0)) ≤ Rd

∥∥∥∥ ∂A∂A0

∥∥∥∥
L∞

∂fctA,S+BRX(A),

so that functional inequalities for A0 with the oscillation or the functional derivative im-
ply the corresponding functional inequalities for A with the oscillation or the functional
derivative (provided ∂A/∂A0 is bounded if the functional derivative is used). �

Proof. By assumption, A|Rd\(S+BR) is σ(A0|Rd\S)-measurable, so that the sub-σ-algebra
σ(A|Rd\(S+BR)) is contained in σ(A0|Rd\B), and the inequality follows. �

2.4.2. Independent gluing. The following result shows how independent localized fields can
be glued together. Since it is a direct consequence of the standard tensorization arguments
used e.g. in the proof of Proposition 2.3, details are omitted.

Lemma 2.12. Let A1, A2, and A3 be three independent random fields on Rd. Assume
that |A1−A3| ≤ C a.s. for some deterministic constant C > 0, that A2 has values in [0, 1],
and consider the “glued” random field A := A2A1 + (1 − A2)A3. If A1, A2, and A3 sat-
isfy different forms of weighted spectral gaps (resp. covariance inequality, resp. logarithmic
Sobolev inequality), then the random field A satisfies the worst of these spectral gaps (resp.
covariance inequality, resp. logarithmic Sobolev inequality), that is, with the RHS replaced
by the sum of the corresponding RHSs. �

3. Examples

In this section we consider four representative examples: Gaussian fields, tessellations
associated with a Poisson point process, random parking bounded inclusions, and Poisson
or random parking inclusions with unbounded radii. The main results are summarized in
the table below.

Example of field Key property Functional inequalities
Gaussian

random field
covariance function C
supB(x) |C| ≤ c(|x|)

(∂fct-WSG), (∂fct-WLSI)
weight π(`) ' (−c′(`))+

Poisson tessellations
(Voronoi/Delaunay) σ(X )-measurable action radius

(∂osc-WSG), (∂osc-WLSI)
weight π(`) ' e−

1
C
`d

Random parking
bounded inclusions

σ(X )-measurable action radius
& exponential stabilization

(∂osc-WSG), (∂osc-WLSI)
weight π(`) ' e−

1
C
`

Poisson
random inclusions
with random radii

radius law V
γ(`) := P [`− 4 ≤ V < `+ 2]

(∂osc-WSG)
weight π(`) ' (`+ 1)dγ(`)

(and (∂osc-LSI) if V bounded)
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3.1. Gaussian random fields. Gaussian random fields are the main examples of deter-
ministically localized fields as introduced in Section 2.3 (and studied in Appendix B). Note
that this result is a weighted reformulation of the “coarsened” functional inequalities used
in the first version of [9] for Gaussian fields.

Corollary 3.1. Let A be a jointly measurable stationary Gaussian random field on Rd
with covariance function C(x) := Cov [A(x);A(0)].

(i) If x 7→ supB(x) |C| is integrable, then A satisfies (∂fct-SG) and (∂fct-LSI) with any
radius R > 0.

(ii) If supB(x) |C| ≤ c(|x|) holds for some Lipschitz function c : R+ → R+, then A satisfies
(∂fct-WSG) and (∂fct-WLSI) with weight π(`) ' (−c′(`))+.
If FC ∈ L1(Rd) and if supB(x) |F−1(

√
FC)| ≤ r(|x|) holds for some non-increasing

Lipschitz function r : R+ → R+, then A satisfies (∂fct-WCI) with weight π(`) '
(`+ 1)d r(`)(−r′(`)). �

As shown in the companion article [7, Proposition 2.3], this result is sharp: each sufficient
condition is (essentially) necessary.

Proof. Let W denote a Gaussian white noise with intensity 1, that is, a random noise W
on Rd such that for all bounded Borel subsets E ⊂ Rd the random variable W (E) has
a centered Gaussian law with variance E[W (E)2] = |E|. As shown in [6, Section XI.8],
a stationary Gaussian random field A on Rd can be rewritten as a convolution (B.1)
with a Gaussian white noise whenever the field A has an absolutely continuous spectral
measure, or equivalently, whenever the Fourier transform of the covariance function C
is in L1(Rd). Under such a restriction on C, since Gaussian random variables satisfy
the standard spectral gap (B.3) and logarithmic Sobolev inequality (B.7) (cf. [11]), we
can directly apply Proposition B.1 and Theorem B.2 to establish the validity of weighted
spectral gaps, covariance, and logarithmic Sobolev inequalities.

It remains to show that this restriction on C can be relaxed in the case of spectral gaps
and logarithmic Sobolev inequalities. To this end, it suffices to prove that the conclusion
of Proposition B.1 (that is, the validity of Brascamp-Lieb type inequalities) always holds
for any jointly measurable Gaussian stationary random field A. This is achieved by an
approximation argument. We focus on the Brascamp-Lieb inequality (B.4), while the
argument is analogous for (B.8). As an approximation argument shows, it is enough to
establish (B.4) for those random variables X(A) that depend on A only via their spatial
averages on the partition {Qε(z)}z∈BR∩εZd with ε,R > 0. Let us introduce the following
notation for these averages,

Aε(z) :=

 
Qε(z)

A, for z ∈ εZd. (3.1)

In this case, the Fréchet derivative {∂X∂A (x)}x∈Rd and the partial derivatives { ∂X
∂Aε(z)

}z∈εZd
of X(A) are related via

εd
∂X

∂A
(x) =

∂X

∂Aε(z)
, for x ∈ Qε(z), z ∈ εZd. (3.2)
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We infer from (3.1) that {Aε(z)}z∈εZd is a discrete centered Gaussian random field (which
is now stationary with respect to the action of εZd), characterized by its covariance

Cε(z − z′) :=

 
Qε(z)

 
Qε(z′)

C(x− x′)dx′dx. (3.3)

By the discrete result (B.9) obtained in the proof of Proposition B.1 (based on the standard
spectral gap for Gaussian random variables [11]), we deduce for all ε,R > 0 and all
random variables X(A) that depend on A only via its spatial averages on the partition
{Qε(z)}z∈BR∩εZd ,

Var [X] ≤ C
∑

z∈BR∩εZd

∑
z′∈BR∩εZd

|Cε(z − z′)|E
[∣∣∣ ∂X

∂Aε(z)

∣∣∣∣∣∣ ∂X

∂Aε(z′)

∣∣∣] .
Injecting (3.2) and (3.3), the conclusion (B.4) follows. �

3.2. Poisson random tessellations. In this section, we consider random fields that take
i.i.d. values on the cells of a tessellation associated with a stationary random point process
P on Rd. Such random fields can be formalized as projections of decorated random point
processes. Given a point process P on Rd and given a random element G with values
in some measurable space X, we call decorated random point process associated with P
and G a point process P̂ on Rd ×X defined as follows: choose a measurable enumeration
P = {Xj}j , pick independently a sequence (Gj)j of i.i.d. copies of the random element G,
and set P̂ := {Xj , Gj}j (that is, in measure notation, P̂ :=

∑
j δ(Xj ,Gj)). Note that by

definition P̂ is completely independent whenever P is completely independent.

We focus here on the case when the underlying point process P is some Poisson point
process P = P0 on Rd with intensity µ = 1. Choose a measurable random field V on Rd,
corresponding to the values on the cells. We study both Voronoi and Delaunay tessellations.
(1) Voronoi tessellation: Let P̂1 := {Xj , Vj}j denote a decorated point process associated

with the random point process P0 := {Xj}j and the random element V (hence (Vj)j
is a sequence of i.i.d. copies of the random field V ). We define a σ(P̂1)-measurable
random field A1 as follows,

A1(x) =
∑
j

Vj(x)1Cj (x),

where {Cj}j denotes the partition of Rd into the Voronoi cells associated with the
Poisson points {Xj}j , that is,

Cj := {x ∈ Rd : |x−Xj | < |x−Xk|, ∀k 6= j}.

(2) Delaunay tessellation: Let Ṽ := (Ṽζ)ζ denote a family of i.i.d. copies of the random
element V , indexed by sets ζ of d + 1 distinct integers. We define a random field A2

as follows,
A2(x) =

∑
j

Ṽζ(Dj)(x)1Dj (x),

where {Dj}j denotes the partition of Rd into the Delaunay d-simplices associated with
the Poisson points {Xj}j (the Delaunay triangulation is indeed almost surely uniquely
defined), and where ζ(Dj) denotes the set of the d+1 indices i1, . . . , id+1 of the vertices
Xi1 , . . . , Xid+1

of Dj .
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Since large holes in the Poisson process have exponentially small probability, large cells in
the corresponding Voronoi or Delaunay tessellations also have exponentially small proba-
bility. This allows one to prove the following weighted functional inequalities with stretched
exponential weights.

Proposition 3.2. For s = 1, 2, the above-defined random field As satisfies (∂osc-WSG),
(∂osc-WLSI), and (∂osc-WCI) with weight π(`) = e−

1
C
`d for some constant C > 0. Moreover

for all σ(As)-measurable random variables Z(As) and all λ ∈ (0, 1) we have

Var [Z(As)] ≤ C
∑
x∈Zd

∞∑
`=1

e−
λ
C
`d E

[(
∂dis`,xZ(As)

) 2
1−λ
]1−λ

,

with the notation ∂dis`,xZ(As) defined in (2.2) (with l = 0). �

Proof. We focus on the case of the Voronoi tessellation (the argument for the Delaunay
tessellation is similar). We shall appeal to Theorem 2.9, and need to construct and control
action radii, which we do in two separate steps. (The weighted spectral gap with loss and
discrete derivative follows from Theorem 2.7(i).)

Step 1. Definition and properties of the action radius.
Let x ∈ Rd, ` ∈ N be fixed. Changing the point configuration of P̂1 = {Xj , Vj}j inside
Q2`+1(x)× RRd only modifies the Voronoi tessellation (hence the field A1) inside the set

VP0,`(x) :=
{
y ∈ Rd : ∃z ∈ Q2`+1(x)

such that |y − z| ≤ |y −X| for all X ∈ P0 \Q2`+1(x)
}
.

An action radius for A1 with respect to P̂1 on Q2`+1(x)× RRd is thus given by

ρ`x := 2 diamVP0,`(x) + 1− `,
and property (a) of Theorem 2.9 is proved. The stationarity property (b) follows by
construction, and it remains to prove the measurability property (c). In particular, we need
to prove that ρ`x is σ(P0|Q

2(`+ρ`x)+1
(x)\Q2`+1(x))-measurable. Since ρ`x is σ(P0|Rd\Q2`+1(x)

)-
measurable by construction, it remains to prove it is σ(P0|Q

2(`+ρ`x)+1
(x))-measurable. To

this aim, let P̃ be an arbitrary locally finite point set and consider the compound point set
P̃0,`(x) = P0|Q

2(`+ρ`x)+1
(x)∪P̃|Rd\Q

2(`+ρ`x)+1
(x). The claimed measurability then follows from

the identity VP̃0,`(x),`
(x) = VP0,`(x). We start with the proof that VP0,`(x) ⊂ VP̃0,`(x),`

(x).

Let y ∈ VP0,`(x). Then for allX ∈ P̃0,`(x)|Rd\Q
2(`+ρ`x)+1

(x) we have by the triangle inequality

|X − y| ≥ |X − x| − |x− y| ≥ `+ ρ`x − diamVP0,`(x) = diamVP0,`(x) + 1 ≥ |x− y|,
so that y ∈ VP̃0,`(x),`

(x). Let us turn to the converse inclusion. By definition, VP0,`(x)

and VP̃0,`(x),`
(x) are convex, and thus simply connected. Set η = 1

2 and consider y ∈
(Bη + VP0,`(x)) \ VP0,`(x) (the η-fattened boundary of VP0,`(x)). By definition we have
y /∈ VP0,`(x), so that for all z ∈ Q2`+1(x) there exists X ∈ P0 \ Q2`+1(x) such that
|y− z| > |y−X|. Let us argue that X ∈ Q2(`+ρ`x)+1(x). Indeed, by the triangle inequality,

|X − x| ≤ |X − y|+ |y − x| < |y − z|+ |y − x|

≤ diamVP0,`(x) + η + diamVP0,`(x) + η = ρ`x + `.
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Hence, we deduce X ∈ P̃0,`(x), which in turn implies y /∈ VP̃0,`(x),`
(x). This proves the

inclusion VP̃0,`(x),`
(x) ⊂ VP0,`(x) ∪ (Rd \ (Bη + VP0,`(x))). Combined with the inclusion

VP0,`(x) ⊂ VP̃0,`(x),`
(x) and the fact that both sets are simply connected, this yields the

desired identity VP0,`(x) = VP̃0,`(x),`
(x) and therefore proves the claimed measurability

property (c). We then appeal to Theorem 2.9, and it remains to estimate the weights.

Step 2. Control of the weight.
By scaling and change of intensity, it is enough to consider ` = 0 (we omit the sub- and
superscripts ` in the notation) and a Poisson point process P0 of general intensity µ > 0.
Denote by Ci = {x ∈ Rd : xi ≥ 5

6 |x|} the d cones in the canonical directions ei of Rd, and
consider the 2d cones C±i := ±(2ei +Ci). By an elementary geometric argument, for some
constant C ' 1 the following implication holds: for all L > C,

]
(
P0 ∩ C±i ∩ {x : C ≤ |xi| ≤ L}

)
> 0 for all i and ± =⇒ diamVP0(0) ≤ CL.

A union bound then yields for all L > C,

P [diamVP0(0) ≥ L] ≤ P
[
∃1 ≤ i ≤ d,∃± : ]

(
P0 ∩ C±i ∩ {x : |xi| ≤

1

C
L}
)

= 0

]
≤ 2d e−

µ
C
Ld .

Combined with the definition of the action radius in Step 1, this implies the desired esti-
mate. �

3.3. Random parking process. In this section we let P be the random parking point
process on Rd with given radius R > 0. As shown by Penrose [20] (see also [10, Section 2.1]),
the random parking point process P can be constructed as a transformation P = Φ(P0)
of a Poisson point process P0 on Rd × R+ with intensity 1. Let us recall the graphical
construction of this transformation Φ. We first construct an oriented graph on the points
of P0 in Rd × R+, by putting an oriented edge from (x, t) to (x′, t′) whenever B(x,R) ∩
B(x′, R) 6= ∅ and t < t′ (or t = t′ and x precedes x′ in the lexicographic order, say). We
say that (x′, t′) is an offspring (resp. a descendant) of (x, t), if (x, t) is a direct ancestor
(resp. an ancestor) of (x′, t′), that is, if there is an edge (resp. a directed path) from (x, t)
to (x′, t′). The set P := Φ(P0) is then constructed as follows. Let F1 be the set of all
roots in the oriented graph (that is, the points of P0 without ancestor), let G1 be the set
of points of P0 that are offsprings of points of F1, and let H1 := F1 ∪ G1. Now consider
the oriented graph induced on P0 \H1, and define F2, G2, H2 in the same way, and so on.
By construction, the sets (Fj)j and (Gj)j are all disjoint and constitute a partition of P0.
We finally define P := Φ(P0) :=

⋃∞
j=1 Fj .

In this setting we show that there exists an action radius with exponential moments for P
with respect to P0. The proof follows from the exponential stabilization results of [25].

Proposition 3.3. For all x ∈ Zd and ` ≥ 0, the random parking point process P with radius
R > 0 as constructed above admits an action radius ρ`x with respect to P0 on Q2`+1(x)×R+,
which satisfies for all L ≥ 0,

P[ρ`x ≥ L] ≤ CR(`+ 1)de−L/CR ,
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and which is σ
(
P0|((Q

2(`+ρ`x)+1
(x)\Q2`+1(x))×R+

)
-measurable.

In particular, the point process P satisfies (∂osc-WSG), (∂osc-WLSI), and (∂osc-WCI) with
weight π(`) =: e−`/CR . �

Proof. The proof relies on the notion of causal chains defined in the proof of [25, Lemma 3.5]
to which we refer the reader. Note that for all consecutive points (x, t) and (y, s) in
a causal chain we necessarily have |x − y| < 2R. By definition, it follows that an ac-
tion radius for P given P0 on Q2`+1(x) × R+ can be defined by the maximum of the
distances 2R + d(y,Q2`+1(x)) on the set of points (y, s) ∈ P0 such that there exists a
causal chain between a point of P0 in ((Q2`+1(x) +B2R) \Q2`+1(x))×R+ and (y, s). We
denote by ρ`x this maximum. By construction, we note that this random variable ρ`x is
σ
(
P0|((Q2`+1(x)+Bρ`x

)\Q2`+1(x))×R+

)
-measurable.

It remains to estimate the decay of its probability law. First, note that by definition
the event ρ`x > L entails the existence of some (y, s) ∈ P0 with y ∈ (Q2`+1(x) + BL+2R) \
(Q2`+1(x)+BL) and of a causal chain between a point of ((Q2`+1(x)+B2R)\Q2`+1(x))×R+

and (y, s). Second, the exponential stabilization result of [25, Lemma 3.5] states that for
all z ∈ Rd and all L > 0 the probability that there exists (y, s) ∈ Q(z)× R+ and a causal
chain from a point outside (Q(z) +BL)×R+ towards (y, s) is bounded by CRe−L/CR . For
L ≥ R, covering (Q2`+1(x) +BL+2R) \ (Q2`+1(x) +BL) with C(L+ `)d−1R unit cubes and
covering Q2`+1(x) +B2R with C(R+ `)d unit cubes, a union bound then yields

P
[
ρ`x > L

]
≤ CR

(
Ld−1 + `d

)
e−L/CR ≤ CR(`+ 1)de−L/CR .

All the assumptions of Theorem 2.9 are then satisfied with π(`) = CRe
−`/CR , and the

conclusion follows. �

3.4. Random inclusions with random radii. We consider typical examples of random
fields on Rd taking random values on random inclusions centered at the points of some
random point process P. The inclusions are allowed to have i.i.d. random shapes (hence
in particular i.i.d. random radii). For the random point process P, we consider projections
Φ(P0) of some Poisson point process P0 on Rd×Rl with intensity µ > 0, and shall assume
that for all x ∈ Zd the process P admits an action radius ρx with respect to P0 on Q(x)×Rl.
We turn to the construction of the random inclusions. Let V be a nonnegative random vari-
able (corresponding to the random radius of the inclusions). In order to define the random
shapes, we consider the set Y of all nonempty Borel subsets E ⊂ Rd with supx∈E |x| = 1,
and endow it with the σ-algebra Y generated by all subsets of the form {E ∈ Y : x0 ∈ E}
with x0 ∈ Rd. Let S be a random nonempty Borel subset of Rd with supx∈S |x| = 1
a.s., that is, a random element in the measurable space Y . (Note that V and S need not
be independent.) Let P̂0 := {Xj , Vj , Sj}j be a decorated point process associated with
the random point process P0 = {Xj}j and the random element (V, S). The collection of
random inclusions is then given by {Ij}j with Ij := Xj + VjSj .

It remains to associate random values to the random inclusions. Since inclusions may
intersect each other, several constructions can be considered; we focus on the following
three typical choices.
(1) Given α, β ∈ R, we set P̂1 := P̂0, and we consider the σ(P̂1)-measurable random field

A1 that is equal to α inside the inclusions, and to β outside. More precisely,

A1 := β + (α− β)1⋃
j Ij
.
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The simplest example is the random field A1 obtained for P a Poisson point process
on Rd with intensity µ = 1, and for S the unit ball centered at the origin in Rd; this
is referred to as the Poisson unbounded spherical inclusion model.

(2) Let β ∈ R, let f : R → R be a Borel function, and let W be a measurable random
field on Rd. Let P̂2 := {Xj , Vj , Sj ,Wj} be a decorated point process associated with
P̂0 and W . We then consider the σ(P̂2)-measurable random field A2 that is equal to
f(
∑

j:x∈Ij Wj) at any point x of the inclusions, and to β outside. More precisely,

A2(x) := β +

(
f
(∑

j

Wj(x)1Ij (x)
)
− β

)
1⋃

j Ij
(x).

(Of course, this example can be generalized by considering more general functions
than simple sums of the values Wj ; the corresponding concentration properties will
then remain the same.)

(3) Let β ∈ R, letW be a measurable random field on Rd, and let U denote a uniform ran-
dom variable on [0, 1]. Let P̂3 := {Xj , Vj , Sj ,Wj , Uj} be a decorated point process asso-
ciated with P̂0 and (W,U). Given a σ(V S,W )-measurable random variable P (V S,W ),
we say that inclusion Ij has the priority on inclusion Ii if P (VjSj ,Wj) < P (ViSi,Wi)
or if P (VjSj ,Wj) = P (ViSi,Wi) and Uj < Ui. Since the random variables {Uj}j are
a.s. all distinct, this defines a priority order on the inclusions on a set of maximal
probability. Let us then relabel the inclusions and values {(Ij , Vj)}j into a sequence
(I ′j , V

′
j )j in such a way that for all j the inclusion I ′j has the j-th highest priority. We

then consider the σ(P̂3)-measurable random field A3 defined as follows,

A3 := β +
∑
j

(W ′j − β)1I′j\
⋃
i:i<j I

′
i
.

(Note that this example includes in particular the case when the priority order is purely
random (choosing P ≡ 0), as well as the case when the priority is given to inclusions
with e.g. larger or smaller radius (choosing P (V S,W ) = V or −V , respectively).)

In each of these three examples, s = 1, 2, 3, the random field As is σ(P̂s)-measurable, for
some completely independent random point process P̂s on Rd × Rl × R+ × Ys and some
measurable space Ys (the set Rd×Rl stands for the domain of the point process P0 = {Xj}j ,
and the set R+ stands for the domain of the radius variables {Vj}j). In order to recast
this into the framework of Section 2.2, we may define Xs(x, t, v) := Ps|Q(x)×Q(t)×Q(v)×Ys , so
that Xs is a completely independent measurable random field on the space X = Zd×Zl×Z
with values in the space of (locally finite) measures on Qd ×Ql ×Q1 × Ys.

Rather than stating a general result, we focus on the representative examples of the Poisson
and of the random parking point processes. For the latter, a refined analysis is needed
to avoid a loss of integrability. Note that the proof below yields slightly more general
statements than contained in the proposition (and can easily be adapted to various other
situations).

Proposition 3.4. Set γ(v) := P[v − 1/2 ≤ V < v + 1/2].
(i) Assume that P = P0 is a Poisson point process on Rd with constant intensity µ (hence

l = 0). Then, for each s = 1, 2, 3, the above-defined random field As satisfies (∂osc-
WSG) and (∂osc-WCI) with weight ` 7→ µ (`+ 1)d sup0≤u≤2 γ( 1√

d
`− u). In addition,
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for all λ ∈ (0, 1),

Cov [Y (As);Z(As)]

≤ (2µ)λ

2

∑
x∈Zd

∞∑
v=0

γ(v)λE
[(
∂disv+1,x,vY

) 2
1−λ
] 1−λ

2

E
[(
∂disv+1,x,vZ

) 2
1−λ
] 1−λ

2

, (3.4)

where ∂disv+1,x,vZ is the notation defined in (2.2), that is,

∂disv+1,x,vZ :=
(
Z(As)− Z(As(X x,v)

)
1As|Rd\Q2v+3(x)

=As(Xx,v)|Rd\Q2v+3(x)

= Z(As)− Z(As(X x,v)).
In the case when the radius law V is almost surely bounded by a deterministic constant,
the standard logarithmic Sobolev inequality (∂osc-LSI) holds.

(ii) Assume that P is a random parking point process on Rd with radius R > 0 as con-
structed in Section 3.3. Then, for each s = 1, 2, 3, the above-defined random field As
satisfies (∂osc-WSG) with weight πR(`) := CR

(
e−`/CR + (` + 1)d γ(`)

)
. More gener-

ally it satisfies the following covariance inequality: for all σ(As)-measurable random
variables Y (As), Z(As) we have

Cov [Y (As);Z(As)] ≤
ˆ
Rd

( ˆ ∞
0

E
[(

∂oscAs,B2`+1(x)
Y (As)

)2]
(`+ 1)−dπR(`)d`

) 1
2

×
(ˆ ∞

0
E
[(

∂oscAs,B2`+1(x)
Z(As)

)2]
(`+ 1)−dπR(`)d`

) 1
2

dx. (3.5)

In addition, for all λ ∈ (0, 1),

Cov [Y (As);Z(As)] ≤
∑
x∈Zd

∞∑
v=0

( ∞∑
`=1

πR(v, `)λ E
[(
∂dis`,x,vY

) 2
1−λ
]1−λ) 1

2

×
( ∞∑
`′=1

πR(v, `′)λ E
[(
∂dis`′,x,vZ

) 2
1−λ
]1−λ) 1

2

, (3.6)

where we have set

πR(v, `) := CR

(
γ(v)1`−1≤v<` + γ(v) ∧

(
e−`/CR + sup

r≥`/2
γ(r)

))
,

and where ∂dis`,x,vZ is the notation defined in (2.2), that is,

∂dis`,x,vZ :=
(
Z(As)− Z(As(X x,v)

)
1As|Rd\Q2`+1(x)

=As(Xx,v)|Rd\Q2`+1(x)
.

In the case when the radius law V is almost surely bounded by a deterministic constant,
the logarithmic Sobolev inequality (∂osc-WLSI) holds with weight ` 7→ CRe

−`/CR . �

Proof. We split the proof into three steps. We first apply the general results of Theorem 2.7,
and then treat more carefully the case of the random parking point process in order to
avoid the loss of integrability.

Step 1. Proof of the covariance estimates with loss.
Assume for simplicity that the transformation Φ of P0 into P = Φ(P0) does not add
points and does not move points in the direction of Rd: more precisely, this means that
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for any locally finite sequence (xj)j ⊂ Rd × Rl we have Φ((xj)j) = (p(xj))j∈I for some
subset I of indices (depending on (xj)j), where p : Rd × Rl → Rd denotes the projection
onto the first factor. Further assume that for all locally finite (xj)j ⊂ Rd × Rl, denoting
Φ((xj)j) = (p(xj))j∈I , we have Φ((xj)j∈J) = (p(xj))j∈I for all subset J ⊃ I. In this step,
we show that, for each s = 1, 2, 3, the random field As satisfies for all σ(As)-measurable
random variables Y (As), Z(As) and all λ ∈ (0, 1),

Cov [Y (As);Z(As)] ≤
1

2

∑
x∈Zd

∞∑
v=0

( ∞∑
`=1

π(v, `)λ E
[(
∂dis`,x,vY

) 2
1−λ
]1−λ) 1

2

×
( ∞∑
`′=1

π(v, `′)λ E
[(
∂dis`′,x,vZ

) 2
1−λ
]1−λ) 1

2

, (3.7)

where we have set

π(v, `) := 2
(
E [](P ∩Q)] + 1

)
×
(
γ(v)1`−1≤v<` + γ(v) ∧ E [](P ∩Q2ρx+1(x))P [`− 1 ≤ ρx + V < ` ‖ ρx]]

)
,

and where ∂dis`,x,vZ is the notation defined in (2.2). Applying this in the case of the random
parking process together with Proposition 3.3, the weight becomes

π(v, `) ≤ CR
(
γ(v)1`−1≤v<` + γ(v) ∧

ˆ `

0
γ(`− r) e−r/CR dr

)
,

and estimating the last integral leads to the desired result (3.6).
Let X ′s denote an i.i.d. copy of the field Xs, and let P̂ ′s := {X ′j , V ′j , Y ′j,s}j denote the
corresponding i.i.d. copy of P̂s := {Xj , Vj , Yj,s}j . For all x, v, let the perturbations X x,vs

and P̂x,vs be then defined as usual, and let Px,v0 be the corresponding projected point
process on Rd×Rl. Let us consider Jv(x, r) the set of all indices j such that the projection
p(Xj) belongs to (Φ(P0) ∪ Φ(Px,v0 )) ∩ (Q(x) + Br) \Q(x). Given the assumptions on the
transformation Φ, an action radius for As with respect to Xs on {x}×{v} (or equivalently,
with respect to P̂s on Q(x)×Q(v)× Ys) is then given by

ρsx,v :=
(
v ∨ (ρx + max{Vj : j ∈ Jv(x, ρx)})

)
1Xs 6=Xx,vs

.

In order to prove (3.7), by Theorem 2.7(i), it remains to estimate the corresponding weights.
First, for all ` ≥ 0, a union bound yields

P [`− 1 ≤ ρx + max{Vj : j ∈ Jv(x, ρx)} < `]

≤ E []Jv(x, ρx)P [`− 1 ≤ ρx + V < ` ‖ ρx]]

≤ E []((Φ(P0) ∪ Φ(Px,v0 )) ∩Q2ρx+1(x))P [`− 1 ≤ ρx + V < ` ‖ ρx]]

≤ 2E [](P ∩Q2ρx+1(x))P [`− 1 ≤ ρx + V < ` ‖ ρx]] .

Let us now define Iv(x) as the set of all indices j such that either p(Xj) or p(X ′j) belongs
to (Φ(P0) ∪ Φ(Px,v0 )) ∩ Q(x). Given the assumptions on the transformation Φ, we may
then compute, in terms of the probability law γ(v) = P [V ∈ Q(v)],

P [As(X x,vs ) 6= As(X )] ≤ P [∃j ∈ Iv(x) : Vj ∈ Q(v)]

≤ γ(v)E []Iv(x)] ≤ 2γ(v)E [](P ∩Q)] .
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Combining the above estimates, we conclude

P
[
`− 1 ≤ ρsx,v < `, A(X x,vs ) 6= A(Xs)

]
≤

(
2γ(v)E [](P ∩Q)]

)
∧
(
1`−1≤v<` + P [`− 1 ≤ ρx + max{Vj : j ∈ Jv(x, ρx)} < `]

)
≤ 2

(
E [](P ∩Q)] + 1

)
×
(
γ(v)1`−1≤v<` + γ(v) ∧ E [](P ∩Q2ρx+1(x))P [`− 1 ≤ ρx + V < ` ‖ ρx]]

)
.

The result (3.7) then follows from Theorem 2.7(i).

Step 2. Proof of (i).
We repeat the analysis of Step 1 in the particular case of a Poisson point process P = P0
on Rd with constant intensity µ > 0. In this case, we have ρx = 0, hence Jv(x, r) = ∅, so
that the action radius ρsx,v takes the simpler form

ρsx,v = v 1Xs 6=Xx,vs
.

Estimating

P
[
`− 1 ≤ ρsx,v < `, As(X x,vs ) 6= As(Xs)

]
≤ P

[
`− 1 ≤ ρsx,v < `, X x,vs 6= Xs

]
≤ P [X x,vs 6= Xs]1`−1≤v<`
≤ 2µγ(v)1`−1≤v<`,

the conclusion (3.4) follows from Theorem 2.7(i). It remains to prove (∂osc-WCI). Since
obviously P

[
ρsx,v < `

]
= 1 if v < `, we compute for all x ∈ Zd, v ≥ 0, ` ≥ 1,

P
[
`− 1 ≤ ρsx,v < `, X x,vs 6= X

]
P
[
ρsx,v < `

] ≤ 2µγ(v)1`−1≤v<`

P
[
ρsx,v < `

] = 2µγ(v)1`−1≤v<`,

and Theorem 2.7(ii) with influence function f(u) = u then yields

Cov [Y (As);Z(As)]

≤ µ
∑
x∈Zd

∞∑
v=0

γ(v)E
[(

∂oscAs,Q2v+3(x)
Y (As)

)2] 1
2

E
[(

∂oscAs,Q2v+3(x)
Z(As)

)2] 1
2

.

The desired covariance estimate (∂osc-WCI) follows by taking local averages.

Step 3. Proof of (ii).
In this step, we consider the case when the stationary point process P satisfies a hard-core
condition ](P ∩Q) ≤ C a.s. for some deterministic constant C > 0, and also satisfies the
following covariance inequality (resp. the corresponding (∂osc-WSG)) with some integrable
weight π0: for all σ(P)-measurable random variables Y (P), Z(P),

Cov [Y (P);Z(P)] ≤
ˆ
Rd

(ˆ ∞
0

E
[(

∂oscP,B`+1(x)
Y (P)

)2]
(`+ 1)−dπ0(`)d`

) 1
2

×
(ˆ ∞

0
E
[(

∂oscP,B`+1(x)
Z(P)

)2]
(`+ 1)−dπ0(`)d`

) 1
2

dx,
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We then show that, for each s = 1, 2, 3, the random field As satisfies the following covari-
ance inequality (resp. the corresponding (∂osc-WSG)): for all σ(As)-measurable random
variables Y (As), Z(As) we have

Cov [Y (As);Z(As)] ≤ C
ˆ
Rd

( ˆ ∞
0

E
[(

∂oscAs,B2`+1(x)
Y (As)

)2]
(`+ 1)−dπ(`)d`

) 1
2

×
(ˆ ∞

0
E
[(

∂oscAs,B2`+1(x)
Z(As)

)2]
(`+ 1)−dπ(`)d`

) 1
2

dx, (3.8)

where we have set π(`) := π0(`) + (`+ 1)d P [`− 1 ≤ V < `]. In particular, combined with
Proposition 3.3, this implies the covariance inequality (3.5) in the case of the random
parking point process.

To simplify notation, we only treat the case of the spectral gap inequality. Consider a
measurable enumeration of the point process P = {Zj}j , let {Zj , Vj , Ys,j} be a decorated
point process associated with P and the decoration law (V, Ys), and let D := {Vj , Ys,j}j
denote the decoration sequence. Since P and D are independent, the expectation E splits
into E = EPED, where EP [·] = E[·‖D] denotes the expectation with respect to P, and
where ED[·] = E[·‖P] denotes the expectation with respect to D. By tensorization of the
variance as in (3.15), the spectral gap assumption for P and the standard spectral gap (2.3)
for the i.i.d. sequence D then yields for all random variables Z = Z(As),

Var [Z(As)] = EP
[

VarD[Z(As)]
]

+ VarP
[
ED[Z(As)]

]
≤ 1

2

∑
k

E
[(
Z(As)− Z(Aks)

)2]
+

ˆ ∞
0

ˆ
Rd

E
[(

∂oscP,B`+1(x)
ED[Z(As)]

)2]
dx (`+ 1)−dπ0(`)d`, (3.9)

where Aks corresponds to the field As with the decoration (Vk, Ys,k) replaced by an i.i.d.
copy (V ′k, Y

′
s,k). We separately estimate the two RHS terms in (3.9), and we begin with

the first. For all x ∈ Rd, we define the following two random variables,

N(x) := ](P ∩B(x)), R(x) := max{Vj : Zj ∈ B(x)}.

Let R0 ≥ 1 denote the smallest value such that P [V < R0] ≥ 1
2 , which implies in particular

by a union bound and by the hard-core assumption

P [R(x) < R0] = E
[
P [V < R0]

N(x)
]
≥ E

[
2−N(x)

]
≥ 2−C . (3.10)
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Conditioning with respect to the value of R(x), we obtain∑
k

E
[(
Z(As)− Z(Aks)

)2]
.

ˆ ∞
R0

ˆ
Rd

∑
k

E
[(
Z(As)− Z(Aks)

)2
1Zk∈B(x)1`−1≤R(x)<`

]
dx d`

+

ˆ
Rd

∑
k

E
[(
Z(As)− Z(Aks)

)2
1Zk∈B(x)1R(x)<R0

]
dx

≤
ˆ ∞
R0

ˆ
Rd

E
[(

∂oscAs,B`+1(x)
Z(As)

)2
N(x)1`−1≤R(x)<`

]
dx d`

+

ˆ
Rd

E
[(

∂oscAs,BR0+1(x)
Z(As)

)2
N(x)

]
dx

=

ˆ ∞
R0

ˆ
Rd

E
[(

∂oscAs,B`+1(x)
Z(As)

)2
N(x)1R(x)≥`−1

∥∥∥∥ R(x) < `

]
P [R(x) < `] dx d`

+

ˆ
Rd

E
[(

∂oscAs,BR0+1(x)
Z(As)

)2
N(x)

]
dx.

Using the hard-core assumption in the form N(x) ≤ C a.s., and noting that given R(x) < `
the random variable R(x) is independent of As|Rd\B`+1(x)

, we deduce∑
k

E
[(
Z(As)− Z(Aks)

)2]
.
ˆ ∞
R0

ˆ
Rd

E
[(

∂oscAs,B`+1(x)
Z(As)

)2] P [`− 1 ≤ R(x) < `]

P [R(x) < `]
dx d`

+

ˆ
Rd

E
[(

∂oscAs,BR0+1(x)
Z(As)

)2]
dx.

Estimating by a union bound P [`− 1 ≤ R(x) < `] ≤ C P [`− 1 ≤ V < `], and making use
of the property (3.10) of the choice of R0 ≥ 1, we conclude

∑
k

E
[(
Z(As)− Z(Aks)

)2]
.
ˆ ∞
R0

ˆ
Rd

E
[(

∂oscAs,B`+1(x)
Z(As)

)2]
P [`− 1 ≤ V < `] dx d`

+

ˆ
Rd

E
[(

∂oscAs,BR0+1(x)
Z(As)

)2]
dx. (3.11)

It remains to estimate the second RHS term in (3.9). The hard-core assumption for P
yields by stationarity ](P ∩B`(x)) ≤ C`d a.s. Further noting that a union bound gives

P
[
r − 1 ≤ max

1≤j≤C`d
Vj < r

]
≤

C`d∑
j=1

P
[
Vj ≥ r − 1, and Vk < r ∀1 ≤ k ≤ C`d

]
= C`d P [V < r]C`

d−1 P [r − 1 ≤ V < r] ,

and hence for all r ≥ R0,

P
[
r − 1 ≤ max1≤j≤C`d Vj < r

]
P
[
max1≤j≤C`d Vj < r

] ≤ C`dP [r − 1 ≤ V < r]

P [V < r]
≤ 2C`dP [r − 1 ≤ V < r] ,
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we find, arguing similarly as above,
ˆ ∞
0

ˆ
Rd

E
[(

∂oscP,B`(x) ED[Z(As)]
)2]

dx (`+ 1)−dπ0(`)d`

.
ˆ ∞
0

ˆ ∞
R0

ˆ
Rd

E
[(

∂oscAs,B`+r(x)
Z(As)

)2]
dxP [r − 1 ≤ V < r] dr π0(`)d`

+

ˆ ∞
0

ˆ
Rd

E
[(

∂oscAs,B`+R0
(x) Z(As)

)2]
dxπ0(`)d`. (3.12)

Combining this with (3.9) and (3.11), the conclusion (3.8) follows in variance form. �

3.5. Dependent coloring of random geometric patterns. Up to here, besides Gauss-
ian random fields, all the examples of random fields that we have been considering corre-
sponded to random geometric patterns (various random point processes constructed from a
higher-dimensional Poisson process or random tessellations) endowed with an independent
coloring determining e.g. the size and shape of the cells and the value of the field in the
cells. In the present subsection, we turn to the examples of type (III) mentioned at the end
of the introduction, and consider dependent colorings of the random geometric patterns.
The random field A is now a function of both a product structure (typically some decorated
Poisson point process P̂), and of a random field G (e.g. a Gaussian random field) which
typically has long-range correlations but is assumed to satisfy some weighted functional
inequality. In other words, this amounts to mixing up all the previous examples. Rather
than stating general results in this direction, we only treat a number of typical concrete
examples in order to illustrate the robustness of the approach.
(1) The first example A1 is a random field on Rd corresponding to random spherical in-

clusions centered at the points of a Poisson point process P of intensity µ = 1, with
i.i.d. random radii of law V , but such that the values on the inclusions are determined
by some random field G1 with long-range correlations.
More precisely, we let P̂1 := {X̃j , Ṽj , Ũj}j denote a decorated point process associated
with P and (V,U), where U denotes an independent uniform random variable on [0, 1].
Independently of P̂1 we choose a jointly measurable stationary bounded random field
G1 on Rd, with typically long-range correlations. The collection of random inclusions
is given by {Ĩj1}j with Ĩj1 := X̃j + ṼjB. As in the third example of Section 3.4, we
choose a σ(V,U)-measurable random variable P (V,U), and we say that the inclusion
Ĩj1 has the priority on inclusion Ĩi1 if P (Ṽj , Ũj) < P (Ṽi, Ũi) or if P (Ṽj , Ũj) = P (Ṽi, Ũi)

and Ũj < Ũi. This defines a priority order on the inclusions on a set of maximal
probability, and we then relabel the inclusions and the points of P̂1 into a sequence
(Ij1 , Xj , Vj , Uj)j such that for all j the inclusion Ij1 has the j-th highest priority. Given
β ∈ R, we then consider the σ(P̂1, G1)-measurable random field A1 defined as follows,

A1 := β +
∑
j

(
G1(Xj)− β

)
1
Ij1\

⋃
i:i<j I

i
1
.

(2) The second example A2 is a random field on Rd corresponding to random inclusions
centered at the points of a Poisson point process P of intensity µ = 1, with i.i.d.
random radii of law V , but with orientations determined by some random field G2

with long-range correlations.
More precisely, we let P̂2 := {Xj , Vj}j denote a decorated point process associated with
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P and V , we choose a reference shape S ∈ B(Rd) with 0 ∈ S, and independently of P̂2
we choose a jointly measurable stationary bounded random field G2 on Rd with values
in the orthogonal groupO(d) in dimension d, and with typically long-range correlations.
The collection of random inclusions is then given by {Ij2}j with I

j
2 := Xj +G2(Xj)S.

Given α, β ∈ R, and given a function φ : R→ R with φ(t) = 1 for t ≤ 1 and φ(t) = 0

for t ≥ 2, and with ‖φ′‖L∞ . 1, we then consider the σ(P̂2, G2)-measurable random
field A2 defined as follows,

A2(x) := β + (α− β)φ
(
d
(
x , ∪jIj2

))
.

(Note that the smoothness of this interpolation φ between the values α and β is crucial
for the arguments below.)

(3) The third example A3 is a random field on Rd corresponding to the Voronoi tessel-
lation associated with the points of a Poisson point process P of unit intensity, such
that the values on the cells are determined by some random field G3 with long-range
correlations.
More precisely, we let P̂3 := P = {Xj}j , and we let {Cj}j denote the partition of Rd

into the Voronoi cells associated with the Poisson points {Xj}j . Independently of P̂3
we choose a jointly measurable stationary bounded random field G3 on Rd. We then
consider the σ(P̂3, G3)-measurable random field A3 defined as follows,

A3(x) :=
∑
j

G3(Xj)1Cj .

For each of these examples, we show functional inequalities with as derivative the supremum
of the functional derivative ∂fct, which we define as

∂supA,SX(A) := sup ess
A,S

ˆ
S

∣∣∣∂X̃(A)

∂A

∣∣∣.
Note that provided A is bounded we have ∂osc, ∂fct . ∂sup. From the proofs in the com-
panion article [7], it is clear that weighted functional inequalities with ∂sup imply the same
concentration properties as the corresponding functional inequalities with ∂osc.

Proposition 3.5. For s = 1, 2, 3, assume that the random field Gs satisfies (∂fct-WSG)
for some integrable weight πs. For s = 1, 2, set γ(v) := P [v − 4 ≤ V < v + 4]. Then the
following holds.

(i) For s = 1, 2, the above-defined random field As satisfies the following weighted spectral
gap: for all σ(As)-measurable random variable Z(As) we have

Var [Z(As)]

.
ˆ ∞
0

ˆ ∞
0

ˆ
Rd

E
[(
∂supA,B`+C(v+1)(x)

Z(As)
)2]

dx
(
(`+ 1)−d ∧ γ(v)

)
πs(`)dvd`. (3.13)
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In the case when the random variable V is almost surely bounded by a deterministic
constant, we rather obtain

Var [Z(As)] .
ˆ
Rd

E
[(

∂oscAs,BC(x)
Z(As)

)2]
dx

+

ˆ ∞
0

ˆ
Rd

E
[(
∂fctAs,B`+C(x)Z(As)

)2]
dx (`+ 1)−dπs(`)d`, (3.14)

and if the random field Gs further satisfies (∂fct-WLSI) with weight πs, then the
corresponding logarithmic Sobolev inequality also holds, that is,

Ent[Z(As)] .
ˆ
Rd

E
[(

∂oscAs,BC(x)
Z(As)

)2]
dx

+

ˆ ∞
0

ˆ
Rd

E
[(
∂fctAs,B`+C(x)Z(As)

)2]
dx (`+ 1)−dπs(`)d`.

(ii) The above-defined random field A3 satisfies (∂sup-WSG) with weight π(`) := C(π3(`)+

e−
1
C
`d). If the random field G3 further satisfies (∂fct-WLSI) with weight π3, then A3

also satisfies (∂sup-WLSI) with weight π. �

The proof of Proposition 3.5 is quite robust and many variants of the above results could
be considered.

Proof. For s = 1, 2, 3, since P̂s and Gs are independent, the expectation E splits into
E = EP̂sEGs , where EP̂s [·] = E[·‖Gs] denotes the expectation with respect to P̂s, and
where EGs [·] = E[·‖P̂s] denotes the expectation with respect to Gs. The variance and the
entropy also tensorize: for all σ(As)-measurable random variables Z(As),

Var [Z(As)] = VarGs [EP̂s [Z(As)]] + EGs [VarP̂s [Z(As)]], (3.15)
Ent[Z(As)] = EntGs [EP̂s [Z(As)]] + EGs [EntP̂s [Z(As)]].

In each of the examples under consideration, the estimate on the terms VarP̂s [Z(As)]

and EntP̂s [Z(As)] (with Gs “frozen”) follows from the same arguments as in the proof of
Propositions 3.2 and 3.4(i). We therefore focus on the estimates of VarGs [EP̂s [Z(As)]] and
EntGs [EP̂s [Z(As)]], and only treat the case of the variance in the proof.

Since the random field Gs is assumed to satisfy (∂fct-WSG) with weight πs, we obtain

VarGs [EP̂s [Z(As)]] ≤ EP̂s [VarGs [Z(As)]]

≤ E
[ˆ ∞

0

ˆ
Rd

(
∂fctGs,B`+1(x)

Z(As)
)2
dx (`+ 1)−dπs(`)d`

]
. (3.16)

The chain rule yields

∂fctGs,B`+1(x)
Z(As) =

ˆ
B`+1(x)

∣∣∣∂Z(As(P̂s, Gs))
∂Gs

(y)
∣∣∣dy

≤
ˆ
B`+1(x)

ˆ
Rd

∣∣∣∂Z(As)

∂As
(z)
∣∣∣∣∣∣∂As(P̂s, Gs)(z)

∂Gs
(y)
∣∣∣dzdy.
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Since As is σ(P̂s, {Gs(Xj)}j)-measurable, we obtain

∂fctGs,B`+1(x)
Z(As) ≤

∑
j

1Xj∈B`+1(x)

ˆ
Rd

∣∣∣∂Z(As)

∂As
(z)
∣∣∣∣∣∣∂As(P̂s, Gs)(z)

∂Gs(Xj)

∣∣∣dz (3.17)

in terms of the usual partial derivative of As(P̂s, Gs)(z) with respect to Gs(Xj). We now
need to compute this derivative in each of the considered examples. We claim that∣∣∣∂As(P̂s, Gs)(z)

∂Gs(Xj)

∣∣∣ ≤ C1Rjs(z), (3.18)

where

Rjs :=


Ij1 \

⋃
i:i<j I

i
1, if s = 1;{

x : 0 < d(x, Ij2) < 2 ∧ d(x, Ik2 ), ∀k 6= j
}
, if s = 2;

Cj , if s = 3.

This claim (3.18) is obvious for s = 1 and s = 3. For s = 2, the properties of φ and the
definition of Rj2 yield

∣∣∣∂A2(P̂2, G2)(z)

∂G2(Xj)

∣∣∣ ≤ |α− β|∣∣∣φ′(d(z , ∪kIk2 ))∣∣∣1Rj2(z) = |α− β|
∣∣φ′(d(z, Ij2)

)∣∣1
Rj2

(z),

which indeed implies (3.18). Now injecting (3.18) into (3.17), and noting that in each case
the sets {Rjs}j are disjoint, we obtain

∂fctGs,B`+1(x)
Z(As) ≤ C

∑
j

1Xj∈B`+1(x)

ˆ
Rjs

∣∣∣∂Z(As)

∂As

∣∣∣ = C

ˆ
⋃
j:Xj∈B`+1(x) R

j
s

∣∣∣∂Z(As)

∂As

∣∣∣
≤ C

ˆ
BDs(`,x)(x)

∣∣∣∂Z(As)

∂As

∣∣∣, (3.19)

with

Ds(`, x) := sup
{
d(y, x) : y ∈

⋃
j:Xj∈B`+1(x)

Rjs

}
.

For s = 1, 2 with radius law V almost surely bounded by a deterministic constant R > 0,
we obtain D1(`, x) ≤ `+ R + 1 and D2(`, x) ≤ `+ R + 3, and injecting (3.19) into (3.16)
directly yields the result (3.14).

We now consider the cases s = 1, 2 with general unbounded radii. Without loss of generality
we only treat s = 1, in which case

D1(`, x) ≤ `+ 1 + D̄1(`, x), D̄1(`, x) := max
{
Vj : Xj ∈ B`+1(x)

}
.

Noting that the restriction A1|Rd\B`+1+D̄1(`,x)(x)
is by construction independent of D̄1(`, x),

we obtain, conditioning on the values of D̄1(`, x) and arguing as in Step 2 of the proof of
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Theorem 2.7,

E

[(ˆ
B`+1+D̄1(`,x)(x)

∣∣∣∂Z(A1)

∂A1

∣∣∣)2
]

≤
∞∑
i=1

P
[
i− 1 ≤ D̄1(`, x) < i

]
E

[(ˆ
B`+i+1(x)

∣∣∣∂Z(A1)

∂A1

∣∣∣)2
∥∥∥∥∥ i− 1 ≤ D̄1(`, x) < i

]

≤
∞∑
i=1

P
[
i− 1 ≤ D̄1(`, x) < i

]
E

[
sup ess

A1,B`+i+1(x)

( ˆ
B`+i+1(x)

∣∣∣∂Z(A1)

∂A1

∣∣∣)2
∥∥∥∥∥ D̄1(`, x) < i

]

≤
∞∑
i=1

P
[
i− 1 ≤ D̄1(`, x) < i

]
P
[
D̄1(`, x) < i

] E

[
sup ess

A1,B`+i+1(x)

(ˆ
B`+i+1(x)

∣∣∣∂Z(A1)

∂A1

∣∣∣)2
]
. (3.20)

Now by definition of the decorated Poisson point process P̂1, we may compute for all i ≥ 1,

P
[
D̄1(`, x) ≥ i− 1

]
= P

[
∃j : Vj ≥ i− 1 and Xj ∈ B`+1(x)

]
= e−|B`+1|

∞∑
n=0

|B`+1|n

n!

(
1− (1− P [V ≥ i− 1])n

)
= 1− e−|B`+1|P[V≥i−1],

and hence

P
[
i− 1 ≤ D̄1(`, x) < i

]
P
[
D̄1(`, x) < i

] = 1− e−|B`+1|P[i−1≤V <i] ≤ 1 ∧
(
C(`+ 1)d P [i− 1 ≤ V < i]

)
.

Combining this computation with (3.16), (3.19) and (3.20), we obtain, setting γ(v) :=
P [v − 2 ≤ V < v + 1],

VarG1 [EP̂1
[Z(A1)]]

. E

[ ˆ ∞
0

∞∑
i=1

ˆ
Rd

sup ess
A1,B`+i+1(x)

(ˆ
B`+i+1(x)

∣∣∣∂Z(A1)

∂A1

∣∣∣)2

dx

×
(
(`+ 1)−d ∧ P [i− 1 ≤ V < i]

)
πs(`)d`

]

≤ E

[ˆ ∞
0

ˆ ∞
0

ˆ
Rd

sup ess
A1,B`+v+2(x)

(ˆ
B`+v+2(x)

∣∣∣∂Z(A1)

∂A1

∣∣∣)2

dx
(
(`+ 1)−d ∧ γ(v)

)
πs(`)dvd`

]
,

and the conclusion (3.13) follows.

We now turn to the case s = 3, for which

D3(`, x) ≤ `+ 1 + D̄3(`, x), D̄3(`, x) := max
{

diam(Cj) : Xj ∈ B`+1(x)
}
.
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Noting that the restriction A3|Rd\B`+1+2D̄3(`,x)(x)
is by construction independent of D̄3(`, x)

we obtain, after conditioning on the values of D̄3(`, x) and arguing as in (3.20),

E

[(ˆ
B`+1+D̄3(`,x)(x)

∣∣∣∂Z(A3)

∂A3

∣∣∣)2
]
≤ E

[
sup ess

A3,B3`+1(x)

( ˆ
B3`+1(x)

∣∣∣∂Z(A3)

∂A3

∣∣∣)2
]

+
∞∑
i=2`

P
[
i− 1 ≤ D̄3(`, x) < i

]
P
[
D̄3(`, x) < i

] E

[
sup ess

A3,B`+i+1(x)

(ˆ
B`+i+1(x)

∣∣∣∂Z(A3)

∂A3

∣∣∣)2
]
. (3.21)

Similar computations as in Step 2 of the proof of Proposition 3.2 yield

P
[
D̄3(`, x) ≥ i

]
≤ Ce−

1
C
(i−`)d+ .

Combining this with (3.16), (3.19) and (3.21), we obtain

VarG3 [EP̂3
[Z(A3)]]

. E

[ˆ ∞
0

ˆ
Rd

sup ess
A3,B3`+1(x)

(ˆ
B3`+1(x)

∣∣∣∂Z(A3)

∂A3

∣∣∣)2

dx (`+ 1)−dπ3(`)d`

]

+E

[ˆ ∞
0

∞∑
i=2`

e−
1
C
id
ˆ
Rd

sup ess
A3,B2i+1(x)

( ˆ
B2i+1(x)

∣∣∣∂Z(A3)

∂A3

∣∣∣)2

dx (`+ 1)−dπ3(`)d`

]

. E

[ˆ ∞
0

ˆ
Rd

sup ess
A3,B3`+1(x)

(ˆ
B3`+1(x)

∣∣∣∂Z(A3)

∂A3

∣∣∣)2

dx
(
(`+ 1)−dπ3(`) + e−

1
C
`d
)
d`

]
,

and the result follows. �

Appendix A. Proof of the criterion for standard functional inequalities

In this appendix, we give a proof of Proposition 2.3.

Proof of Proposition 2.3. Let ε > 0 be fixed, and consider the partition (Qz)z∈Zd of Rd
defined by Qz = εz + εQ. Choose an i.i.d. copy A′0 of the field A0, and for all z define
the random field Az0 by Az0|Rd\Qz := A0|Rd\Qz and Az0|Qz := A′0|Qz . We split the proof into
three steps.

Step 1. Tensorization argument.
Choose an enumeration (zn)n of Zd, and for all n let Πn and En denote the linear maps
on L2(Ω) defined by

Πn[X] := E
[
X
∥∥A0|⋃n

k=1 Qzk

]
, En[X] := E

[
X
∥∥A0|Rd\Qzn

]
.

Also define

Covn[X;Y ] := En[XY ]− En[X]En[Y ], Varn[X] := Covn[X;X],

Entn[X2] := En
[
X2 log(X2/En[X2])

]
.

In this step, we make use of a martingale argument à la Lu-Yau [17] to show the following
tensorization identities for the covariance and for the entropy: for all σ(A0)-measurable
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random variables X(A0) and Y (A0), we have

|Cov [X(A0);Y (A0)] | ≤
∞∑
k=1

E
[ ∣∣Covk

[
Πk[X(A0)]; Πk[Y (A0)]

]∣∣ ] , (A.1)

Ent
[
X(A0)

2
]
≤

∞∑
k=1

E
[
Entk

[
Πk[X(A0)

2]
]]
. (A.2)

First note that for all σ(A0)-measurable random variables X(A0) ∈ L2(Ω), the properties
of conditional expectations ensure that Πn[X(A0)]→ X(A0) in L2(Ω) as n ↑ ∞. We then
decompose the covariance into the following telescopic sum

Cov [Πn[X(A0)]; Πn[Y (A0)]]

=
n∑
k=1

(
E [Πk[X(A0)]Πk[Y (A0)]]− E [Πk−1[X(A0)]Πk−1[Y (A0)]]

)
=

n∑
k=1

E
[
Covk

[
Πk[X(A0)]; Πk[Y (A0)]

]]
,

so that the result (A.1) follows by taking the limit n ↑ ∞. Likewise, we decompose the
entropy into the following telescopic sum

Ent
[
Πn[X(A0)

2]
]

=

n∑
k=1

(
E
[
Πk[X(A0)

2] log(Πk[X(A0)
2])
]
− E

[
Πk−1[X(A0)

2] log(Πk−1[X(A0)
2])
] )

=
n∑
k=1

E
[
Entk

[
Πk[X(A0)

2]
]]
,

and the result (A.2) follows in the limit n ↑ ∞.

Step 2. Preliminary versions of (CI) and (LSI).
In this step, we prove that for all σ(A0)-measurable random variables X(A0) and Y (A0)
we have

|Cov [X(A0);Y (A0)] |

≤ 1

2

∞∑
k=1

E
[∣∣Πk

[
X(A0)−X(Azk0 )

]∣∣ ∣∣Πk

[
Y (A0)− Y (Azk0 )

]∣∣]
≤ 1

2

∑
z∈Zd

E
[(
X(A0)−X(Az0)

)2] 1
2 E
[(
Y (A0)− Y (Az0)

)2] 1
2
, (A.3)

and

Ent[X(A0)] ≤ 2
∑
z∈Zd

E

[
sup ess
A′0

(
X(A0)−X(Az0)

)2]
. (A.4)
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We first prove (A.3): we appeal to (A.1) in the form

|Cov [X(A0);Y (A0)] | ≤
1

2

∞∑
k=1

E
[∣∣Ek[Πk[X(A0)−X(Azk0 )] Πk[Y (A0)− Y (Azk0 )]

]∣∣]
≤ 1

2

∞∑
k=1

E
[∣∣Πk[X(A0)−X(Azk0 )]

∣∣ ∣∣Πk[Y (A0)− Y (Azk0 )]
∣∣] ,

which directly yields (A.3) by Cauchy-Schwarz’ inequality. Likewise, we argue that (A.4)
follows from (A.2). To this aim, we have to reformulate the RHS of (A.2): using the
inequality a log a− a+ 1 ≤ (a− 1)2 for all a ≥ 0, we obtain for all k ≥ 0,

Entk
[
Πk[X(A0)

2]
]
≤ Ek[Πk[X(A0)

2]]Ek
[( Πk[X(A0)

2]

Ek[Πk[X(A0)2]]
− 1
)2]

=
Vark

[
Πk[X(A0)

2]
]

Ek[Πk[X(A0)2]]

=
Ek
[
(Πk[X(A0)

2]−Πk[X(Azk0 )2])2
]

2Ek[Πk[X(A0)2]]

=
Ek
[
(Πk[(X(A0)−X(Azk0 ))(X(A0) +X(Azk0 ))])2

]
2Ek[Πk[X(A0)2]]

≤
Ek
[
Πk[(X(A0)−X(Azk0 ))2] Πk[(X(A0) +X(Azk0 ))2]

]
2Ek[Πk[X(A0)2]]

.

Since (A0, A
zk
0 ) and (Azk0 , A0) have the same law by complete independence, the above

implies, using the inequality (a+ b)2 ≤ 2(a2 + b2) for all a, b ∈ R,

Entk
[
Πk[X(A0)

2]
]
≤

2Ek
[
Πk[(X(A0)−X(Azk0 ))2] Πk[X(Azk0 )2]

]
Ek[Πk[X(Azk0 )2]]

≤ 2 sup ess
A′0|Qzk

Πk[(X(A0)−X(Azk0 ))2]

≤ 2 Πk

[
sup ess
A′0|Qzk

(X(A0)−X(Azk0 ))2
]
.

Estimate (A.4) now follows from (A.2).

Step 3. Proof of (CI) and (LSI).
We start with the proof of (CI). Since A = A(A0) is σ(A0)-measurable, (A.3) yields for all
σ(A)-measurable random variables X(A) and Y (A),∣∣Cov [X(A);Y (A)]

∣∣ ≤ 1

2

∑
z∈Zd

E
[(
X(A)−X(A(Az0))

)2] 1
2 E
[(
Y (A)− Y (A(Az0))

)2] 1
2
.

Using that E
[
X(A)

∥∥A0|Rd\Qz
]

= E
[
X(A(Az0))

∥∥A0|Rd\Qz
]
by complete independence of

the field A0,

E
[(
X(A)−X(A(Az0))

)2]
= E

[(
∂GA0,QzX(A(A0))

)2]
.
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Since the conditional expectation E
[
·
∥∥A0|Rd\Qz

]
coincides with the L2-projection onto the

σ(A0|Rd\Qz)-measurable functions, and since E
[
X(A)

∥∥A|Rd\(Qz+BR)] is σ(A|Rd\(Qz+BR))-
measurable and therefore σ(A0|Rd\Qz)-measurable by assumption, we have

E
[(
∂GA0,QzX(A(A0))

)2]
≤ E

[(
∂GA,Qz+BRX(A)

)2]
.

Combining these two observations, we deduce that for all σ(A)-measurable random vari-
ables X(A) and Y (A),

∣∣Cov [X(A);Y (A)]
∣∣ ≤ 1

2

∑
z∈Zd

E
[(
∂GA,Qz+BRX(A)

)2] 1
2

E
[(
∂GA,Qz+BRY (A)

)2] 1
2

.

By taking local averages, this turns into∣∣Cov [X(A);Y (A)]
∣∣

≤ ε−d

2

∑
z∈Zd

ˆ
εQ

E
[(
∂GA,y+εz+εQ+BR

X(A)
)2] 1

2

E
[(
∂GA,y+εz+εQ+BR

Y (A)
)2] 1

2

dy

=
ε−d

2

ˆ
Rd

E
[(
∂GA,y+εQ+BR

X(A)
)2] 1

2

E
[(
∂GA,y+εz+εQ+BR

Y (A)
)2] 1

2

dy

≤ ε−d

2

ˆ
Rd

E
[(
∂GA,BR+ε

√
d/2(y)

X(A)
)2] 1

2

E
[(
∂GA,BR+ε

√
d/2(y)

Y (A)
)2] 1

2

dy,

that is, (CI) for any radius larger than R.
We then turn to the proof of (LSI). For all σ(A)-measurable random variables X(A), the
estimate (A.4) yields

Ent[X(A)] ≤ 2
∑
z∈Zd

E

[
sup ess
A′0

(
X(A(A0))−X(A(Az0))

)2]

≤ 2
∑
z∈Zd

E
[(

∂oscA,Qz+BR
X(A)

)2]
.

The desired result (LSI) then follows from taking local averages. �

Appendix B. Abstract criteria for deterministically localized fields

In this appendix, we discuss general criteria for weighted functional inequalities in the
case when the random field A is deterministically localized in the sense of Section 2.3. To
be precise we focus on the typical example of a convolution of a random noise. In this
case we prove the validity of a Brascamp-Lieb inequality from which the desired weighted
functional inequalities follow. Although Gaussian random fields are the most prominent
examples of this framework, we develop the general argument in a slightly more abstract
setting. (Note that we choose to argue by approximation and reduce to discrete fields,
rather than appeal to Malliavin calculus and associated functional analysis.)

Let W be a random noise on Rd, that is, a mean-zero stationary completely independent
second-order random Borel measure on Rd (see e.g. [24, Section 2]). More precisely, W
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associates a random variable W (E) to any bounded Borel subset E ⊂ Rd, in such a way
that

(i) E [W (E)] = 0 and E
[
|W (E)|2

]
<∞ for all bounded Borel subset E ⊂ Rd;

(ii) if (En)n is a family of disjoint Borel subsets of Rd, thenW (
⋃∞
n=1En) =

∑∞
n=1W (En)

in the L2-sense;
(iii) (W (x + E),W (x + E′)) has the same law as (W (E),W (E′)) for any two bounded

Borel subsets E,E′ ⊂ Rd and any x ∈ Rd;
(iv) W (E1), . . . ,W (En) are independent for any disjoint Borel sets E1, . . . , En ⊂ Rd and

any n ∈ N.

Stationarity implies in particular that the Borel measure E[|dW |2] is proportional to the
Lebesgue measure: E[|dW |2] = λdx, for some constant λ ≥ 0 that is called the intensity of
the random noise W .

Given a (deterministic) nonnegative Borel function F ∈ L2(Rd) and a constant m ∈ Rd,
we now define a measurable random field A on Rd by the following convolution,

A(y) = m+

ˆ
Rd
F (y − z)dW (z), (B.1)

the covariance function of which is then given by

C(x) := Cov [A(x);A(0)] = λ

ˆ
Rd
F (x− z)F (z)dz. (B.2)

The following result (which is rather standard) shows that a Brascamp-Lieb inequality
holds for such random fields whenever the random noise W satisfies a standard spectral
gap, thus mimicking the well-known situation of Gaussian fields. (For Gaussian fields, a
discrete version of the Brascamp-Lieb inequality (B.4) below was first due to [4], while a
discrete version of the inequality in covariance form (B.5) and in entropy form (B.8) is due
to [18] and to [2, Proposition 3.4], respectively.)

Proposition B.1 (Brascamp-Lieb type inequalities). LetW be a random noise on Rd with
intensity λ, let the stationary random field A on Rd be given by (B.1), and let C denote its
covariance function.

(i) Assume that for all η > 0 the random variable W (ηQ) satisfies the following spectral
gap: for any smooth function φ,

Var [φ(W (ηQ))] ≤ CληdE
[
φ′(W (ηQ))2

]
. (B.3)

Then the random field A satisfies the following Brascamp-Lieb inequality: for all
σ(A)-measurable random variables X(A),

Var [X(A)] ≤ CE
[ˆ

Rd

ˆ
Rd

∣∣∣∂X(A)

∂A
(z)
∣∣∣∣∣∣∂X(A)

∂A
(z′)
∣∣∣|C(z − z′)|dzdz′] . (B.4)
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Moreover, the following Brascamp-Lieb inequality in covariance form holds: for all
σ(A)-measurable random variables X(A), Y (A) we have

Cov [X(A);Y (A)] ≤ C
ˆ
Rd

E

[(ˆ
Rd

∣∣∣∂X(A)

∂A
(z)
∣∣∣ |F−1(√FC)(x− z)| dz)2

] 1
2

× E

[( ˆ
Rd

∣∣∣∂Y (A)

∂A
(z′)
∣∣∣ |F−1(√FC)(x− z′)| dz′)2

] 1
2

dx, (B.5)

and in particular

Cov [X(A);Y (A)] ≤ C
ˆ
Rd

ˆ
Rd

E
[∣∣∣∂X(A)

∂A
(z)
∣∣∣2] 1

2

× E
[∣∣∣∂Y (A)

∂A
(z′)
∣∣∣2] 1

2

C̃(z − z′)dzdz′, (B.6)

in terms of

C̃(x) :=

ˆ
|F−1(

√
FC)(x− y)||F−1(

√
FC)(y)|dy.

(ii) Assume that for all η > 0 the random variable W (ηQ) satisfies the corresponding
logarithmic Sobolev inequality: for any smooth function φ,

Ent
[
φ(W (ηQ))2

]
≤ CληdE

[
φ′(W (ηQ))2

]
. (B.7)

Then the random field A satisfies the corresponding Brascamp-Lieb inequality in log-
arithmic Sobolev form: for all σ(A)-measurable random variables X(A),

Ent[X(A)] ≤ CE
[ˆ

Rd

ˆ
Rd

∣∣∣∂X(A)

∂A
(z)
∣∣∣∣∣∣∂X(A)

∂A
(z′)
∣∣∣|C(z − z′)|dzdz′] . (B.8)

�

In the following theorem, we show that Brascamp-Lieb inequalities imply weighted func-
tional inequalities, using a suitable radial change of variables. Note that in item (ii), the
weights obtained for (∂fct-WSG) and (∂fct-WCI) typically have the same scaling.

Theorem B.2. Let A be a jointly measurable stationary random field on Rd, let C denote
its covariance function. Assume that A satisfies the Brascamp-Lieb inequality (B.4) (resp.
in logarithmic Sobolev form (B.8)).
(i) If the map x 7→ supB(x) |C| is integrable, then the field A satisfies (∂fct-SG) (resp.

(∂fct-LSI)) for any radius R > 0.
(ii) If supB(x) |C| ≤ c(|x|) holds for some non-increasing Lipschitz function c : R+ → R+,

then the field A satisfies (∂fct-WSG) (resp. (∂fct-WLSI)) with weight π(`) ' (−c′(`)).
If the field A further satisfies the Brascamp-Lieb inequality in covariance form (B.5),
and if supB(x) |F−1(

√
FC)| ≤ r(|x|) holds for some non-increasing Lipschitz function

r : R+ → R+, then A satisfies (∂fct-WCI) with weight π(`) ' (`+1)d r(`)(−r′(`)). �

Remark B.3. We briefly address the claim contained in Remark 2.2 in the context of
examples of random fields with deterministic localization. More precisely, we consider a
random field A as in the statement of Theorem B.2 above, and we assume that supB(x) |C| ≤
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c(|x|) holds for some non-increasing Lipschitz function c : R+ → R+. By definition, for all
L ≥ 1, the rescaled field AL := A(L·) has covariance CL := C(L·) and for |x| ≥ 1 it satisfies
supB(x) |CL| = supBL(Lx) |C| ≤ c((L|x| − L + 1)+) ≤ c(|x|) since c is non-increasing. This
shows that the same conclusions as for A in Theorem B.2 also hold for AL uniformly with
respect to L ≥ 1. �

We start with the proof of Proposition B.1, and then turn to the proof of Theorem B.2.

Proof of Proposition B.1. For all ε > 0, consider the following approximations of the ran-
dom field A,

Aε(x) :=
∑

y,z∈εZd
1Qε(z)(x)W (Qε(y))

 
Qε(z)

 
Qε(y)

F (z′ − y′)dz′dy′.

By an approximation argument, we may reduce the proof of the proposition to the proof
of the following discrete counterpart: given a random vector W := (W1, . . . ,WN ) with N
independent components, and given a linear transformation F ∈ RN×N , the transformed
random vector A := (A1, . . . , AN ) := FW satisfies:
(i’) If for all 1 ≤ j ≤ N the random variable Wj satisfies the standard spectral gap

Var [φ(Wj)] ≤ CE
[
φ′(Wj)

2
]

for all smooth functions φ : R→ R, then the random vector A satisfies for all smooth
functions X,Y : RN → R

Var [X(A)] ≤ C
N∑

i,j=1

|(FF t)ij | E
[∣∣∣∂X(A)

∂Ai

∣∣∣∣∣∣∂X(A)

∂Aj

∣∣∣] , (B.9)

and also

Cov [X(A);Y (A)] ≤
N∑
i=1

E

( N∑
j=1

∂X(A)

∂Aj
Fji

)2 1
2

E

[( N∑
k=1

∂Y (A)

∂Ak
Fki

)2] 1
2

. (B.10)

(ii’) If for all 1 ≤ j ≤ N the random variable Wj satisfies the standard logarithmic
Sobolev inequality

Ent
[
φ(Wj)

2
]
≤ CE

[
φ′(Wj)

2
]

for all smooth functions φ : R→ R, then the random vector A satisfies for all smooth
functions X : RN → R,

Ent
[
X(A)2

]
≤ C

N∑
i,j=1

|(FF t)ij | E
[∣∣∣∂X(A)

∂Ai

∣∣∣∣∣∣∂X(A)

∂Aj

∣∣∣] . (B.11)

We start with the proof of item (i’). Using the tensorization identity (A.1), the spectral
gap assumption yields

Var [X(A)] ≤
N∑
i=1

E [Var [X(A) ‖ (Wj)j:j 6=i]] ≤
N∑
i=1

E
[(∂X(A)

∂Wi

)2]
,
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and hence, by the chain rule,

Var [X(A)] ≤
N∑
i=1

E

( N∑
j=1

∂X(A)

∂Aj
Fji

)2 = E
[
∇X(A) · (FF t)∇X(A)

]
(B.12)

≤
N∑

i,j=1

|(FF t)ij | E
[∣∣∣∂X(A)

∂Ai

∣∣∣∣∣∣∂X(A)

∂Aj

∣∣∣] .
In covariance form, using again the tensorization identity (A.1), the spectral gap assump-
tion yields

Cov [X(A);Y (A)] ≤
N∑
i=1

E [Var [X(A) ‖ (Wj)j:j 6=i]]
1
2 E [Var [Y (A) ‖ (Wj)j:j 6=i]]

1
2

≤
N∑
i=1

E
[(∂X(A)

∂Wi

)2] 1
2

E
[(∂Y (A)

∂Wi

)2] 1
2

,

and the result (B.10) follows from the chain rule. We now turn to the proof of item (ii’).
Using the tensorization identity (A.2), the logarithmic Sobolev inequality assumption yields

Ent
[
X(A)2

]
≤

N∑
i=1

E
[
Ent

[
E
[
X(A)2

∥∥ (Wj)j:j≤i
] ∥∥ (Wj)j:j 6=i

]]
≤ C

N∑
i=1

E
[∣∣∣ ∂

∂Wi
E
[
X(A)2

∥∥ (Wj)j:j≤i
] 1

2

∣∣∣2]

= C
N∑
i=1

E
[
E
[
X(A)2

∥∥ (Wj)j:j≤i
]−1 ∣∣∣E [X(A)

∂X(A)

∂Wi

∥∥∥∥ (Wj)j:j≤i

] ∣∣∣2]

≤ C
N∑
i=1

E
[∣∣∣∂X(A)

∂Wi

∣∣∣2] .
Now arguing as in (B.12), the result of item (ii’) follows. �

We now prove Theorem B.2.

Proof of Theorem B.2. We focus on items (i) and (ii) for the variance and the covariance
(the arguments for the entropy are similar). Assume that A satisfies the Brascamp-Lieb
inequality (B.4). If x 7→ supB(x) |C| is integrable, the inequality |ab| ≤ (a2 + b2)/2 for
a, b ∈ R directly yields for all σ(A)-measurable random variables X(A) and all R > 0
(after taking local averages),

Var [X(A)] ≤ C E
[ˆ

Rd

ˆ
Rd

∣∣∣∂X(A)

∂A
(z)
∣∣∣∣∣∣∂X(A)

∂A
(z′)
∣∣∣|C(z − z′)|dzdz′]

≤ 2C
∥∥∥ sup
B2R(·)

|C|
∥∥∥
L1
E

[ˆ
Rd

( 
BR(z)

∣∣∣∂X(A)

∂A

∣∣∣)2

dz

]
.

Now assume that the covariance function C is not integrable, and that supB(x) |C| ≤ c(|x|)
for some Lipschitz function c : R+ → R+. Given a σ(A)-measurable random variableX(A),
we consider the projection XR(A) := E[X(A)‖A|BR ], for R > 0. Taking local averages,
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using polar coordinates, and integrating by parts (note that there is no boundary term
since the Fréchet derivative ∂XR(A)/∂A is compactly supported in BR), the Brascamp-
Lieb inequality (B.4) yields

Var [XR(A)]

≤ CE

[ˆ
Rd

ˆ
Sd−1

ˆ ∞
0

∣∣∣∂XR(A)

∂A
(z)
∣∣∣  

B(z+`u)

∣∣∣∂XR(A)

∂A
(u′)

∣∣∣du′`d−1c(`)d`dσ(u)dz

]

= CE

[ˆ
Rd

∣∣∣∂XR(A)

∂A
(z)
∣∣∣ ˆ

Sd−1

ˆ ∞
0

ˆ `

0

 
B(z+su)

∣∣∣∂XR(A)

∂A
(u′)

∣∣∣du′sd−1ds(−c′(`))d`dσ(u)dz

]

≤ CE

[ˆ
Rd

∣∣∣∂XR(A)

∂A
(z)
∣∣∣ ˆ ∞

0

( ˆ
B`+1(z)

∣∣∣∂XR(A)

∂A

∣∣∣)(−c′(`))d`dz

]
.

Reorganizing the integrals, and taking local spatial averages, we conclude

Var [XR(A)]

. E
[ˆ ∞

0

ˆ
Rd

∣∣∣∂XR(A)

∂A
(z)
∣∣∣(∂fctA,B`+1(z)

XR(A)
)
dz(−c′(`))+d`

]
. E

[ˆ ∞
0

ˆ
Rd

ˆ
B`+1

∣∣∣∂XR

∂A
(z + y)

∣∣∣(∂fctA,B`+1(z+y)
XR(A)

)
dydz (`+ 1)−d(−c′(`))+d`

]

. E
[ˆ ∞

0

ˆ
Rd

(
∂fctA,B2(`+1)(z)

XR(A)
)2
dz (`+ 1)−d(−c′(`))+d`

]
. E

[ˆ ∞
0

ˆ
Rd

(
∂fctA,B`+1(z)

XR(A)
)2
dz (`+ 1)−d(−c′(`))+d`

]
,

where in the last line we used the (sub)additivity of S 7→ ∂fctA,S . By Jensen’s inequality in
the form

E
[(
∂fctA,SXR(A)

)2]
≤ E

[(
E
[
∂fctA,SX(A)

∥∥∥ A|BR] )2] ≤ E
[(
∂fctA,SX(A)

)2]
,

and passing to the limit R ↑ ∞, the conclusion (∂fct-WSG) follows. Let us now turn to
the case when the field A satisfies the Brascamp-Lieb inequality in covariance form (B.5).
Assuming that supB(x) |F−1(

√
FC)| ≤ r(|x|) for some Lipschitz function r : R+ → R+, a

radial integration by parts similar as above yields

Cov [XR(A);YR(A)] .
ˆ
Rd

E

[(ˆ ∞
0

(
∂fctA,B`+1(x)

XR(A)
)

(−r′(`))+ d`
)2
] 1

2

× E

[(ˆ ∞
0

(
∂fctA,B`′+1(x)

YR(A)
)

(−r′(`′))+ d`′
)2
] 1

2

dx.
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By the triangle inequality, this turns into

Cov [XR(A);YR(A)] .
ˆ ∞
0

ˆ ∞
0

ˆ
Rd

E
[(
∂fctA,B`+1(x)

XR(A)
)2] 1

2

× E
[(
∂fctA,B`′+1(x)

YR(A)
)2] 1

2

dx(−r′(`))+ d`(−r′(`′))+ d`′

≤ 2

ˆ ∞
0

ˆ
Rd

E
[(
∂fctA,B`+1(x)

XR(A)
)2] 1

2

E
[(
∂fctA,B`+1(x)

YR(A)
)2] 1

2

dx

×
( ˆ `

0
(−r′(`′))+ d`′

)
(−r′(`))+ d`,

and the conclusion (∂fct-WCI) follows after passing to the limit R ↑ ∞. �
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