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WEIGHTED FUNCTIONAL INEQUALITIES:
CONCENTRATION PROPERTIES

MITIA DUERINCKX AND ANTOINE GLORIA

Abstract. Consider an ergodic stationary random field A on the ambient space Rd.
We are interested in the concentration of measure phenomenon for nonlinear functions
X(A) in terms of assumptions on A. In mathematical physics, this phenomenon is often
associated with functional inequalities like spectral gap or logarithmic Sobolev inequal-
ity. These inequalities are however only known to hold for a restricted class of laws (like
product measures, Gaussian measures with integrable covariance, or more general Gibbs
measures with nicely behaved Hamiltonians). In this contribution, we introduce a more
general class of functional inequalities (which we call weighted functional inequalities)
that strictly contains standard functional inequalities, and we study their concentration
properties. As an application, we prove specific concentration results for averages of
approximately local functions of the field A, which constitutes the main stochastic in-
gredient to the quenched large-scale regularity theory for random elliptic operators by
the second author, Neukamm, and Otto. In a companion article, we develop a con-
structive approach to weighted functional inequalities based on product structures in
higher-dimensional spaces, which allows us to treat all the examples of heterogeneous
materials encountered in stochastic homogenization in the applied sciences.
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1. Introduction

Functional inequalities like spectral gap, covariance, or logarithmic Sobolev inequalities
are powerful tools to prove nonlinear concentration of measure properties and central limit
theorem scalings. Besides their well-known applications in mathematical physics (e.g. for
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2 M. DUERINCKX AND A. GLORIA

the study of interacting particle systems like the Ising model, or for interface models),
the sensitivity calculus provided by such inequalities is a quite convenient tool that was
recently used to establish quantitative stochastic homogenization results, starting with the
inspiring unpublished work by Naddaf and Spencer [22], and followed by [15, 16, 12, 18, 13].

These functional inequalities have nevertheless two main limitations for stochastic ho-
mogenization. On the one hand, whereas only few examples are known to satisfy them
(besides product measures, Gaussian measures, and more general Gibbs measures with
nicely behaved Hamiltonians), these inequalities are not robust with respect to various
simple constructions: for instance, a Poisson point process satisfies a spectral gap, but the
random field corresponding to the Voronoi tessellation of a Poisson point process does not.
On the other hand, these functional inequalities require random fields to have an integrable
covariance, which prevents one from considering fields with heavier tails.

This article constitutes the first of a series of works dedicated to weighted functional in-
equalities. In view of the application to quantitative stochastic homogenization, we shall
consider a stationary random field A on Rd, and study random variables that are nonlin-
ear functions thereof. In this contribution, we introduce the notion of weighted functional
inequalities and study the concentration properties that they imply. In the companion
article [9], we develop a constructive approach to prove the validity of weighted functional
inequalities for various examples of random fields considered in the literature (such as the
Voronoi tessellation of a Poisson point process mentioned earlier, as well as Gaussian fields
with non-integrable correlations, and the random parking point process). In particular,
this allows us to address all the examples of [24], a reference textbook on random hetero-
geneous structures for materials science, which brings the use of functional inequalities (in
their weighted versions) in stochastic homogenization to the state-of-the-art of materials
science. In the third and last contribution [10], we turn to fluctuations and more precisely
to weighted second-order Poincaré inequalities.

In Section 2, we start by recalling the standard definition of functional inequalities for
(continuum) stationary random fields on Rd (in which case there is no canonical choice for
the derivative with respect to the field), we introduce the notion of weighted functional
inequalities, and quickly establish the relation between the weight and the decay of corre-
lations, as well as the relation to standard notions of mixing. In Section 3, we investigate
the concentration properties implied by the weighted functional inequalities, which are in
particular shown to be stronger than those implied by the corresponding α-mixing. In
the last section of this article, we specialize the analysis to spatial averages of (possibly
nonlinear approximately local transformations of) the random field itself, in a form that is
needed to establish sharp integrability estimates on the validity of the quenched large-scale
regularity for random elliptic systems in [14] (see also [3, 2]).

Notation.
• d is the dimension of the ambient space Rd;
• C denotes various positive constants that only depend on the dimension d and
possibly on other controlled quantities; we write . and & for ≤ and ≥ up to
such multiplicative constants C; we use the notation ' if both relations . and &
hold; we add a subscript in order to indicate the dependence of the multiplicative
constants on other parameters;
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• the notation a� b (or equivalently b� a) stands for a ≤ 1
C b for some large enough

constant C ' 1;
• Qk := [−1/2, 1/2)k denotes the unit cube centered at 0 in dimension k, and for all
x ∈ Rd and r > 0 we set Qk(x) := x+Qk, Qkr := rQk and Qkr (x) := x+ rQk; when
k = d or when there is no confusion possible on the meant dimension, we drop the
superscript k;
• we use similar notation for balls, replacing Qk by Bk (the unit ball in dimension k);
• the Euclidean distance between subsets of Rd is denoted by d(·, ·);
• B(Rk) denotes the Borel σ-algebra on Rk;
• E [·] denotes the expectation, Var [·] the variance, and Cov [·; ·] the covariance in
the underlying probability space (Ω,A,P), and the notation E [·‖·] stands for the
conditional expectation;
• for all a, b ∈ R, we set a ∧ b := min{a, b}, a ∨ b := max{a, b}, and a+ := a ∨ 0;
• dae denotes the smallest integer larger or equal to a.

2. Weighted functional inequalities

2.1. Functional inequalities. Let A : Rd ×Ω→ R be a jointly measurable random field
on Rd, constructed on some probability space (Ω,A,P). A spectral gap in probability for A
is a functional inequality which allows one to control the variance of any function X(A) in
terms of its local dependence on A, i.e. in terms of some “derivative” of X(A) with respect
to local restrictions of A.

Let us be more precise. A map ∂̃ : B(Rd) × Mes(Ω;R) → Mes(Ω; [0,∞]) is called a
(wide-sense) derivative with respect to A if, for all σ(A)-measurable random variables
X(A), Y (A), all λ, µ ∈ R, and all Borel subsets S ⊂ Rd,
(i) the random variable ∂̃A,SX(A) is σ(A)-measurable, and it vanishes a.s. whenever

X(A) is σ(A|Rd\S)-measurable;
(ii) we have ∣∣∂̃A,S(λX(A) + µY (A))

∣∣ ≤ |λ| ∂̃A,SX(A) + |µ| ∂̃A,SY (A);

(iii) for all R > 0 the maps Rd × Ω → [0,∞] : (x, ω) 7→
(
∂̃A,BR(x)X(A)

)
(ω) and R+ ×

Rd × Ω→ [0,∞] : (r, x, ω) 7→
(
∂̃A,Br(x)X(A)

)
(ω) are measurable.

We then call ∂̃A,SX(A) a (wide-sense) derivative of X(A) with respect to A on S, which
we think of as a quantification of the functional dependence of X(A) with respect to the
restriction A|S of A on S. Given such a (wide-sense) derivative ∂̃ (see below for typical
choices), we may recall the definition of the following standard functional inequalities.

Definition 2.1. We say that A satisfies the (standard) spectral gap (∂̃-SG) with radius
R > 0 and constant C <∞ if for all σ(A)-measurable random variable X(A) we have

Var [X(A)] ≤ C
ˆ
Rd

E
[(
∂̃A,BR(x)X(A)

)2]
dx; (2.1)

it satisfies the (standard) covariance inequality (∂̃-CI) with radius R > 0 and constant
C <∞ if for all σ(A)-measurable random variables X(A) and Y (A) we have

Cov [X(A);Y (A)] ≤ C
ˆ
Rd

E
[(
∂̃A,BR(x)X(A)

)2] 1
2

E
[(
∂̃A,BR(x)Y (A)

)2] 1
2

dx; (2.2)
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it satisfies the (standard) logarithmic Sobolev inequality (∂̃-LSI) with radius R > 0 and
constant C <∞ if for all σ(A)-measurable random variable Z(A) we have

Ent
[
Z(A)2

]
:= E

[
Z(A)2 logZ(A)2

]
− E

[
Z(A)2

]
logE

[
Z(A)2

]
≤ C

ˆ
Rd

E
[(
∂̃A,BR(x)Z(A)

)2]
dx. (2.3)

�

Recall that (∂̃-CI) and (∂̃-LSI) both imply (∂̃-SG). The spectral gap (2.1) indeed follows
from the covariance inequality (2.2) for the choice Y = X, while it follows from the
logarithmic Sobolev inequality (2.3) for the choice Z = 1 + εX in the limit ε ↓ 0.

In the continuum setting that we consider in this contribution, there is no canonical choice
of a derivative with respect to the field A, and we describe below three such possible
notions. We start with the derivative most commonly used in the literature (see e.g. [21]).

• As in the discrete setting, the so-called Glauber derivative ∂G is defined as follows,
letting A′ denote an i.i.d. copy of A, and denoting by E′ [·] the expectation with
respect to A′ only,

∂GA,SX(A) := E′
[(
X(A)−X(A′)

)2 ∥∥A′|Rd\S = A|Rd\S
] 1
2 , (2.4)

or equivalently, expanding the square,

∂GA,SX(A) =
(
X(A)2 − 2X(A)E

[
X(A)

∥∥A|Rd\S]+ E
[
X(A)2

∥∥A|Rd\S]) 1
2
.

• The oscillation ∂osc, as used for instance in [17, 18], is formally defined by

∂oscA,S X(A) := sup ess
A,S

X(A)− inf ess
A,S

X(A)

“=” sup ess
{
X(Ã) : Ã ∈ Mes(Rd;R), Ã|Rd\S = A|Rd\S

}
− inf ess

{
X(Ã) : Ã ∈ Mes(Rd;R), Ã|Rd\S = A|Rd\S

}
, (2.5)

where the essential supremum and infimum are taken with respect to the measure
induced by the field A on the space Mes(Rd;R) (endowed with the cylindrical σ-
algebra). This definition (2.5) of ∂oscA,SX(A) is not measurable in general, and we
rather define

∂oscA,S X(A) :=M[X‖A|Rd\S ] +M[−X‖A|Rd\S ]

in terms of the conditional essential supremum M[·‖ARd\S ] given σ(A|Rd\S), as
introduced in [6] (using a Radon-Nikodym theorem in L∞ due to [5]). Alternatively,
we may follow [17, 18] and simply define ∂oscA,SX(A) as the measurable envelope
of (2.5).
• The (integrated) functional (or Malliavin) derivative ∂fct, as used in the first version
of [14] and in [11], is the closest generalization of the usual partial derivatives
commonly used in the discrete setting. Let us denote by M ⊂ L∞(Rd) some open
set such that the random field A takes its values in M . Given a σ(A)-measurable
random variable X(A), and given an extension X̃ : M → R, its Fréchet derivative
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∂X̃(A)/∂A ∈ L1
loc(Rd) is defined for any compactly supported perturbation δA ∈

L∞(Rd) by

lim
t→0

X̃(A+ tδA)− X̃(A)

t
=

ˆ
Rd
δA(x)

∂X̃(A)

∂A
(x) dx,

if the limit exists. Since we are interested in the local averages of this derivative,
we rather define for all bounded Borel subset S ⊂ Rd,

∂fctA,SX(A) =

ˆ
S

∣∣∣∂X̃(A)

∂A
(x)
∣∣∣dx.

This derivative is additive with respect to the set S: for all disjoint Borel subsets
S1, S2 ⊂ Rd we have ∂fctA,S1∪S2

X(A) = ∂fctA,S1
X(A) + ∂fctA,S2

X(A).
It is clear by definition that the oscillation dominates the Glauber derivative. Henceforth
we use the notation ∂̃ for any of the above-defined (wide-sense) derivatives with respect to
the random field A.

Satisfied for Gaussian random fields with integrable correlations and for product structures
(see e.g. [9]), the standard functional inequalities (SG), (LSI), and (CI) are restrictive
in the sense that they only hold for fields with sufficiently fast decaying correlations,
which excludes many examples of practical interest (typically to stochastic homogenization,
cf. [24]). One possible explanation why the standard spectral gap is particularly restrictive
is that the RHS in (2.1) only takes into account functional dependences at distance at
most R. The definition below relaxes the standard spectral gap by explicitly taking into
account dependences upon derivatives with respect to A restricted on arbitrarily large sets,
according to some given weight.

Definition 2.2. Given an integrable function π : R+ → R+, we say that A satisfies the
weighted spectral gap (∂̃-WSG) with weight π if for all σ(A)-measurable random variable
X(A) we have

Var [X(A)] ≤ E
[ˆ ∞

0

ˆ
Rd

(
∂̃A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`) d`

]
. (2.6)

Likewise, we define the corresponding weighted covariance inequality (∂̃-WCI) and the
weighted logarithmic Sobolev inequality (∂̃-WLSI). �

Note that, as for standard functional inequalities, (∂̃-WCI) and (∂̃-WLSI) both imply (∂̃-
WSG). The standard functional inequalities of Definition 2.1 are recovered by taking a
compactly supported weight π.

2.2. Decay of correlations. In this subsection we quantify the relation between the de-
cay of correlations of the random field and the weight π in the corresponding weighted
inequalities, extending the well-known result that the standard spectral gap and covari-
ance inequality imply the integrability of the covariance and the finiteness of the range of
dependence, respectively. Note in particular that (∂̃-WCI) gives much more information
than (∂̃-WSG) on the covariance function. As shown in the companion article [9, Corol-
lary 3.1], this result is sharp: in the Gaussian case each of the necessary conditions below
is (essentially) sufficient.



6 M. DUERINCKX AND A. GLORIA

Proposition 2.3. Let A be a jointly measurable stationary random field on Rd with
E
[
|A|2

]
< ∞, and let C(x) := Cov [A(0);A(x)] denote its covariance function. When

using the derivative ∂̃ = ∂osc, further assume that A is bounded (except in item (iii)).

(i) If A satisfies (∂̃-SG), and if the covariance function C is nonnegative, then C is
integrable.

(ii) If A satisfies (∂̃-WSG) with weight π, and if the covariance function C is nonnegative,
then C is integrable whenever

´∞
0 `dπ(`)d` <∞. More generally, C satisfies

ˆ
Rd

(1 + |x|)−αC(x)dx ≤ Cα


´∞
0 (`+ 1)d−απ(`)d`, if 0 ≤ α < d;´∞
0 log2(2 + `)π(`)d`, if α = d;´∞
0 π(`)d`, if α > d.

(iii) If A satisfies (∂̃-CI) with radius R+ ε for all ε > 0, then the range of dependence of
A is bounded by 2R (that is, for all Borel subsets S, T ⊂ Rd the restrictions A|S and
A|T are independent whenever d(S, T ) > 2R).

(iv) If A satisfies (∂̃-WCI) with weight π, then the covariance function satisfies for all
x ∈ Rd,

|C(x)| ≤ C
ˆ ∞

1
2
(|x|−2)∨0

π(`)d`. �

Proof. We split the proof into four steps.

Step 1. Proof of (i).
Let the field A satisfy (∂̃-SG) with radius R. For any L ≥ 1, the standard spectral gap
applied to the σ(A)-measurable random variable X(A) =

´
BL

A (which is well-defined by
measurability and moment bounds on A) yields

Var

[ˆ
BL

A

]
≤ CE

[ˆ
Rd

(
∂̃A,BR(x)

ˆ
BL

A
)2
dx

]
.

For each choice of the derivative ∂̃ (further assuming that A is bounded in the case ∂̃ =
∂osc), we have

E
[(
∂̃A,BR(x)

ˆ
BL

A
)2]
≤ C|BR(x) ∩BL|2 ≤ CR1|x|≤R+L.

Hence, for L ≥ 1,
ˆ
BL

ˆ
BL

Cov [A(x);A(y)] dxdy = Var

[ˆ
BL

A

]
≤ CR|BR+L| ≤ CR|BL|.

Therefore, if C is nonnegative, we deduce
ˆ
BL

C .
ˆ
BL

 
BL

C(x− y)dydx =

ˆ
BL

 
BL

Cov [A(x);A(y)] dydx ≤ CR.

Letting L ↑ ∞, we conclude that C is integrable.
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Step 2. Proof of (ii).
Let the field A satisfy (∂̃-WSG) with weight π, and assume that C is nonnegative. Repeat-
ing the argument of Step 1, we deduce for all L ≥ 1,

Ld
ˆ
BL

C(x)dx . E
[(ˆ

BL

(A(x)− E [A])dx
)2]

≤
ˆ ∞
0

ˆ
Rd
|B`+1(x) ∩BL|2dx (`+ 1)−dπ(`)d`

.
ˆ L

0
Ld(`+ 1)dπ(`)d`+

ˆ ∞
L

L2dπ(`)d`

. Ld
ˆ ∞
0

(`+ 1)dπ(`)d`,

which shows that C is integrable if
´∞
0 (`+ 1)dπ(`)d` <∞.

Let now α > 0 be fixed, and let γ := 1
2(d + α). Assume that α 6= d (the case α = d can

be treated similarly and yields the logarithmic correction). For all L ≥ 1, the weighted
spectral gap applied to the σ(A)-measurable random variableX(A) =

´
BL

(1+|y|)−γA(y)dy

yields

Var

[ˆ
BL

(1 + |y|)−γA(y)dy

]
≤ E

[ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)

ˆ
BL

(1 + |y|)−γA(y)dy
)2
dx (`+ 1)−dπ(`)d`

]
≤ C

ˆ ∞
0

ˆ
Rd

(ˆ
BL∩B`+1(x)

(1 + |y|)−γdy
)2
dx (`+ 1)−dπ(`)d`.

Hence,
ˆ
B2L

(ˆ
BL(−x)

(1 + |x+ y|)−γ(1 + |y|)−γdy
)
C(x)dx

= Var

[ˆ
BL

(1 + |y|)−γA(y)dy

]
≤ Cα

ˆ ∞
0

(`+ 1)(d−α)∨0π(`)d`,

which yields the claim by passing to the limit L ↑ ∞.

Step 3. Proof of (iii).
Let the field A satisfy (∂̃-CI) with radius R + ε for any ε > 0. Given two Borel subsets
S, T ⊂ Rd with d(S, T ) > 2R, choosing ε := 1

3(d(S, T ) − 2R), and noting that the sets
S + BR+ε and T + BR+ε are disjoint, the covariance inequality (∂̃-CI) with radius R + ε
implies for any G ∈ σ(A|S) and H ∈ σ(A|T ),

|Cov [1G;1H ] |

≤ Cε
ˆ
(S+BR+ε)∩(T+BR+ε)

E
[(
∂̃A,BR+ε(x)1G)

)2] 1
2

E
[(
∂̃A,BR+ε(x)1H

)2] 1
2

dx = 0.

This shows that the σ-algebras σ(A|S) and σ(A|T ) are independent.
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Step 4. Proof of (iv).
Let the field A satisfy (∂̃-WCI) with weight π. For all x ∈ Rd and all ε > 0, the covariance
inequality applied to the σ(A)-measurable random variables

ffl
Bε(x)

A and
ffl
Bε
A yields∣∣∣∣ 

Bε(x)

 
Bε

C(y − z)dydz
∣∣∣∣ =

∣∣∣∣Cov

[ 
Bε(x)

A;

 
Bε

A

] ∣∣∣∣
≤

ˆ ∞
0

ˆ
Rd

E

[(
∂̃A,B`+1(y)

 
Bε(x)

A
)2] 1

2

E
[(
∂̃A,B`+1(y)

 
Bε

A
)2] 1

2

dy (`+ 1)−dπ(`)d`

≤
ˆ ∞
0

ˆ
Rd
ε−d|Bε(x) ∩B`+1(y)|ε−d|Bε ∩B`+1(y)|dy (`+ 1)−dπ(`)d`.

Letting ε ↓ 0 and using the continuity of the function C (as a consequence of the stochastic
continuity of the field A, which follows from its joint measurability), we deduce the claim:
for all x ∈ Rd,

|C(x)| ≤ C
ˆ ∞
0
|B`+1(x) ∩B`+1| (`+ 1)−dπ(`)d` ≤ C

ˆ ∞
1
2
(|x|−2)∨0

π(`)d`. �

As the above proposition shows, if the weight π satisfies
´∞
0 (` + 1)dπ(`)d` < ∞, both

(∂̃-SG) and (∂̃-WSG) with weight π imply that C is integrable. The following proposition
establishes that (∂fct-SG) and (∂fct-WSG) are actually equivalent for such weights π. This
result does not hold if ∂fct is replaced by another derivative or if SG is replaced by CI.

Proposition 2.4. Let A satisfy (∂fct-WSG) (resp. (∂fct-WLSI)) with some weight π.
If

´∞
0 (` + 1)dπ(`)d` < ∞, then A satisfies (∂fct-SG) (resp. (∂fct-LSI)) with any radius

R > 0. �

Proof. Let ε ∈ (0, 1) be fixed. Let X(A) be some σ(A)-measurable random variable.
Cover the cube Q`(x) with the cubes Qε(z

x,`
i ), i = 1, . . . , dr/εed, where zx,`i ∈ εZd is an

enumeration of Qεd`/εe(x) ∩ εZd. We then estimate(ˆ
Q`(x)

∣∣∣∂X(A)

∂A

∣∣∣)2

≤
( d`/εed∑

i=1

ˆ
Qε(z

x,`
i )

∣∣∣∂X(A)

∂A

∣∣∣)2

≤ (1 + `/ε)d
d`/εed∑
i=1

(ˆ
Qε(z

x,`
i )

∣∣∣∂X(A)

∂A

∣∣∣)2

.

For all ` > 0, and y ∈ εZd, there are at most d`ed possible values of x ∈ Zd such that
y ∈ {zx,`i : i = 1, . . . , `d}, so that we obtain

∑
x∈Zd

( ˆ
Q`(x)

∣∣∣∂X(A)

∂A

∣∣∣)2

≤ ε−d(`+ 1)d
∑
x∈Zd

d`/εed∑
i=1

( ˆ
Qε(z

x,`
i )

∣∣∣∂X(A)

∂A

∣∣∣)2

≤ ε−d(`+ 1)2d
∑
y∈εZd

( ˆ
Qε(y)

∣∣∣∂X(A)

∂A

∣∣∣)2

,
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which directly yields, bounding integrals on cubes by integral on balls, and sums by inte-
grals, ˆ

Rd

( 
B`+1(x)

∣∣∣∂X(A)

∂A

∣∣∣)2

dx ≤ (`+ 1)−2d
∑
x∈Zd

(ˆ
Q1+

√
d+`(x)

∣∣∣∂X(A)

∂A

∣∣∣)2

. ε−d
∑

y∈εZd/
√
d

(ˆ
Qε/
√
d(y)

∣∣∣∂X(A)

∂A

∣∣∣)2

.
ˆ
Rd

(  
Bε(y)

∣∣∣∂X(A)

∂A

∣∣∣)2

dy. (2.7)

If A satisfies (∂fct-WSG) with weight π, we deduce from the above inequality that for all
ε ∈ (0, 1),

Var [X(A)] ≤
ˆ ∞
0

ˆ
Rd

E

[(ˆ
B`+1(x)

∣∣∣∂X(A)

∂A

∣∣∣)2
]
dx (`+ 1)−dπ(`)d`

. ε−2d
(ˆ ∞

0
(`+ 1)dπ(`)d`

) ˆ
Rd

E

(ˆ
Bε(x)

∣∣∣∣∂X(A)

∂A

∣∣∣∣
)2

dx,

which shows that the field A also satisfies (∂fct-SG) if
´∞
0 (`+ 1)dπ(`)d` <∞. �

2.3. Ergodicity and mixing. In the previous subsection we established the link between
weighted functional inequality and the decay of the covariance function. We now turn to
ergodicity properties, and further investigate the relation between weighted spectral gaps
and standard mixing conditions.

Let us first recall some terminology. The random field A is said to be strongly mixing if
for all σ(A)-measurable random variable X(A) and all Borel subsets E,E′ ⊂ R we have

P
[
X(A) ∈ E, X(A(·+ x)) ∈ E′

] |x|→∞−→ P [X(A) ∈ E] P
[
X(A) ∈ E′

]
.

This qualitative property can be quantified into strong mixing conditions. A classical
way to measure the dependence between two sub-σ-algebras G1,G2 ⊂ A is the following
α-mixing coefficient, first introduced by Rosenblatt [23],

α(G1,G2) := sup
{
|P[G1 ∩G2]− P[G1]P[G2]| : G1 ∈ G1, G2 ∈ G2

}
.

Applied to the random field A, this leads to the following measure of mixing: For all
diameters D ∈ (0,∞] and distances R > 0, we set

α̃(R,D;A) := sup
{
α(σ(A|S1), σ(A|S2)) : S1, S2 ∈ B(Rd), d(S1, S2) ≥ R,

diam(S1), diam(S2) ≤ D
}
. (2.8)

We say that the field A is α-mixing if for all diameterD ∈ (0,∞) we have α̃(R,D;A)
R↑∞−→ 0.

Note that α-mixing is the weakest of the usual strong mixing conditions (see e.g. [8]),
although it is in general strictly stronger than qualitative strong mixing.

The following result makes explicit the connection between weighted spectral gaps and
α-mixing properties. Note that this result is essentially sharp: on the one hand, in the
Gaussian case, as shown in the companion article [9, Corollary 3.1], each of the necessary
conditions in (i), (ii), and (iv) below is (essentially) sufficient, and on the other hand
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the R-scaling in the estimate in (iii) can be checked to be sharp at least in some specific
examples.

Proposition 2.5. Let A be a jointly measurable stationary random field on Rd.
(i) If A satisfies (∂̃-WSG) with integrable weight π, then A is ergodic.
(ii) If A satisfies (∂̃-WCI) with integrable weight π, then A is strongly mixing.
(iii) If A satisfies (∂̃-WCI) with weight π and with derivative ∂̃ = ∂G or ∂osc, then A is

α-mixing with coefficient α̃(R,D;A) . (1 + D
R )d

´∞
R−1 π(`)d`.

(iv) If A satisfies (∂̃-CI) with radius R + ε > 0 for all ε > 0, then α̃(r,∞;A) = 0 for all
r > 2R. �

Remark 2.6. Item (iii) is expected to fail in general for the derivative ∂̃ = ∂fct. Indeed,
as shown in the companion paper [9, Corollary 3.1], if A is a stationary Gaussian random
field with covariance function C satisfying |C(x)| ' (1 + |x|)−α for all x, for some α > 0,
then the field A satisfies (∂fct-WCI) with weight π(r) ' (1+r)−α−1. Therefore, if item (iii)
above was true with ∂̃ = ∂fct, we would deduce in this Gaussian example α̃(R,D;A) .
(1 + (D/R)d)R−α, which is however expected to fail (the correct scaling is rather expected
to be Rd−α for α > d, cf. [8, Corollary 2 of Section 2.1.1] or [19, Corollary p.195]). �

Proof of Proposition 2.5. Item (iv) follows from Proposition 2.3. We split the rest of the
proof into three steps.

Step 1. Proof of (i).
Let the field A satisfy (∂̃-WSG) with weight π. To prove ergodicity, it suffices to show
that for all integrable σ(A)-measurable random variables X(A) we have

lim
L↑∞

E
[∣∣∣ 

BL

X(A(x+ ·))dx− E [X(A)]
∣∣∣] = 0.

By an approximation argument in L2(Ω), we may assume that X(A) is bounded and is
σ(A|BR)-measurable for some R > 0. The spectral gap (∂̃-WSG) applied to the σ(A)-
measurable random variable

ffl
BL

X(A(·+ x))dx yields

SL := E
[∣∣∣  

BL

X(A(x+ ·))dx− E [X(A)]
∣∣∣]2 ≤ Var

[ 
BL

X(A(x+ ·))dx
]

≤ E
[ˆ ∞

0

ˆ
Rd

(  
BL

∂̃A,B`+1(y)X(A(x+ ·))dx
)2
dy (`+ 1)−dπ(`)d`

]
,

and therefore

SL ≤ E
[ˆ ∞

0

ˆ
Rd

 
BL

 
BL

∂̃A,B`+1(y)X(A(x+ ·)) ∂̃A,B`+1(y)X(A(x′ + ·))dxdx′dy

× (`+ 1)−dπ(`)d`

]
.

By assumption, ∂̃A,B`+1(y)X(A(x + ·)) = 0 whenever BR(x) ∩ B`+1(y) = ∅, i.e. whenever
|x− y| > R+ `+ 1. For the choices ∂̃ = ∂osc and ∂G, we also have ∂̃A,B`+1(y)X(A(x+ ·)) ≤
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2‖X‖L∞ , so that the above yields

SL ≤ 4‖X‖2L∞
ˆ ∞
0

ˆ
Rd

 
BL

 
BL

1|x−y|≤R+`+11|x′−y|≤R+`+1dxdx
′dy (`+ 1)−dπ(`)d`

= 4‖X‖2L∞L−2d
ˆ ∞
0

(ˆ
BL

ˆ
BR+`+1(x)

|BL ∩BR+`+1(y)|dydx
)

(`+ 1)−dπ(`)d`

≤ 4‖X‖2L∞
ˆ ∞
0

(R+ `+ 1)d
(R+ `

L
∧ 1
)d

(`+ 1)−dπ(`)d`,

where the RHS obviously goes to 0 as L ↑ ∞ whenever
´∞
0 π(`)d` < ∞. This proves

ergodicity for the choices ∂̃ = ∂osc and ∂G.

It remains to treat the case ∂̃ = ∂fct. An additional approximation argument is then needed
in order to restrict attention to those random variables X(A) such that the derivative
∂̃A,B`+1(x)X(A) is pointwise bounded. The stochastic continuity of the field A (which
follows from its joint measurability) ensures that the σ(A|BR)-measurable random variable
X(A) is actually σ(A|Qd∩BR)-measurable. A standard approximation argument then allows
to construct a sequence (xn)n ⊂ BR and a sequence (Xn(A))n of random variables such
that Xn(A) is σ((A(xk))

n
k=1)-measurable and converges to X(A) in L2(Ω). By definition,

we may write Xn(A) = fn(A(x1), . . . , A(xn)) for some Borel function fn : (Rk)n → R.
Another standard approximation argument now allows to replace the Borel maps fn’s by
smooth functions. We end up with a sequence that approximates X(A) in L2(Ω), and
such that the elements have pointwise bounded ∂̃-derivative. For these approximations,
the conclusion follows as before.

Step 2. Proof of (ii).
Let the field A satisfy (∂̃-WCI) with weight π. To prove strong mixing, it suffices to
show that for all bounded σ(A)-measurable random variables X(A) and Y (A) we have
Cov [X(A);Y (A(x+ ·))] → 0 as |x| → ∞ (since the desired property then follows by
choosing the random variables X(A), Y (A) to be any pair of indicator functions). Again,
a standard approximation argument allows one to consider bounded σ(A|BR)-measurable
random variables X(A), Y (A) for some R > 0. Given x ∈ Rd, apply the covariance
inequality (∂̃-WCI) to X(A) and Y (A(·+ x)) to obtain∣∣Cov [X(A);Y (A(x+ ·))]

∣∣
≤
ˆ ∞
0

ˆ
Rd

E
[(
∂̃A,B`+1(y)X(A)

)2] 1
2

E
[(
∂̃A,B`+1(y)Y (A(x+ ·))

)2] 1
2

dy (`+ 1)−dπ(`)d`.

By assumption, ∂̃A,B`+1(y)X(A) = 0 whenever BR ∩ B`+1(y) = ∅, i.e. whenever |y| >
R+`+1. For the choices ∂̃ = ∂osc and ∂G, we have in addition ∂̃A,B`+1(y)X(A) ≤ 2‖X‖L∞ ,
so that the above directly yields∣∣Cov [X(A);Y (A(x+ ·))]

∣∣
≤ 4‖X‖L∞‖Y ‖L∞

ˆ ∞
0

ˆ
Rd
1|y|≤R+`+11|x−y|≤R+`+1 dy (`+ 1)−dπ(`)d`

. ‖X‖L∞‖Y ‖L∞
ˆ ∞
0

(R+ `+ 1)d(`+ 1)−dπ(`)d`
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where the RHS goes to 0 as |x| → ∞ whenever
´∞
0 π(`)d` < ∞. This proves strong

mixing for the choices ∂̃ = ∂osc and ∂G. In the case ∂̃ = ∂fct, an additional approximation
argument is needed as in Step 1 in order to restrict to random variables X(A) such that
∂̃A,B`+1(y)X(A) is pointwise bounded.

Step 3. Proof of (iii).
Let the field A satisfy (∂̃-WCI) with weight π, and with derivative ∂̃ = ∂osc or ∂G. Given
Borel subsets S, T ⊂ Rd with diameter ≤ D and with d(S, T ) ≥ 2R, the covariance
inequality (∂̃-WCI) for this choice of derivatives yields for all bounded random variables
X(A) and Y (A), respectively σ(A|S)-measurable and σ(A|T )-measurable,∣∣Cov [X(A);Y (A)]

∣∣
≤

ˆ ∞
0

ˆ
Rd

E
[(
∂̃A,B`+1(x)X(A)

)2] 1
2

E
[(
∂̃A,B`+1(x)Y (A)

)2] 1
2

dx (`+ 1)−dπ(`)d`

≤ 4‖X(A)‖L∞‖Y (A)‖L∞
ˆ ∞
0

∣∣(S +B`+1) ∩ (T +B`+1)
∣∣ (`+ 1)−dπ(`)d`

. ‖X(A)‖L∞‖Y (A)‖L∞
ˆ ∞
R−1

(`+D + 1)d(`+ 1)−dπ(`)d`

≤ ‖X(A)‖L∞‖Y (A)‖L∞
(

1 +
D

R

)d ˆ ∞
R−1

π(`)d`,

from which the claim follows by choosing for X(A), Y (A) any pair of indicator functions.
�

3. Moment bounds and concentration properties

In this section, we investigate the concentration properties that are implied by weighted
spectral gaps, according to both the choice of the derivative and the decay of the weight.
Although the results are new, the proofs rely mainly on standard Herbst-type arguments.

3.1. Control of higher moments. As for standard functional inequalities, weighted
functional inequalities allow one to control higher moments of random variables. Note
that these properties depend crucially on the choice of the derivative.

Proposition 3.1. Assume that the random field A satisfies (∂̃-WSG) with integrable weight
π : R+ → R+. Then there exists C < ∞ (depending only on π and d) such that for all
1 ≤ p <∞ and all σ(A)-measurable random variables X(A) we have

(i) if ∂̃ = ∂G or ∂fct,

E
[(
X(A)− E [X(A)]

)2p]
≤ (Cp2)p E

[(ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`)d`

)p]
,

where the multiplicative factor (Cp2)p can be upgraded to (Cp)p if the field A further
satisfies (∂̃-WLSI);
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(ii) if ∂̃ = ∂osc,

E
[(
X(A)− E [X(A)]

)2p]
≤ (Cp2)p E

[ˆ ∞
0

(ˆ
Rd

(
∂̃A,B2(`+1)(x)X(A)

)2
dx

)p
(`+ 1)−dpπ(`)d`

]
. �

Proof. Let X(A) be σ(A)-measurable. We may assume without loss of generality that
E [X(A)] = 0. We split the proof into two steps.

Step 1. Proof of (i) and (ii) for (∂̃-WSG).
Applying the spectral gap (∂̃-WSG) to the σ(A)-measurable random variable |X(A)|p
yields

E
[
X(A)2p

]
≤ E [|X(A)|p]2

+ E
[ˆ ∞

0

ˆ
Rd

(
∂̃A,B`+1(x)

(
|X(A)|p

))2
dx (`+ 1)−dπ(`)d`

]
. (3.1)

For p > 2, Hölder’s and Young’s inequalities with exponents (2(p−1)p−2 , 2(p−1)p ) and (p−1p−2 , p−1),
respectively, imply for all δ > 0,

E [|X(A)|p]2 = E
[
|X(A)|p

p−2
p−1 |X(A)|

p
p−1

]2
≤ E

[
X(A)2p

] p−2
p−1 E

[
X(A)2

] p
p−1

≤ p− 2

p− 1
δ E
[
X(A)2p

]
+

1

p− 1
δ2−p E

[
X(A)2

]p
.

while for p ≤ 2 Jensen’s inequality simply yields E [|X(A)|p]2 ≤ E
[
X(A)2

]p. Injecting
these estimates into (3.1) for some δ & 1 small enough, we conclude for all 1 ≤ p <∞,

E
[
X(A)2p

]
≤ p−1Cp E

[
X(A)2

]p
+ C E

[ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)

(
|X(A)|p

))2
dx (`+ 1)−dπ(`)d`

]
.

Since E
[
X(A)2

]
= Var [X(A)] follows from the centering assumption, the first RHS term

is estimated by the spectral gap (∂̃-WSG). Further using Jensen’s inequality, this leads to

E
[
X(A)2p

]
≤ p−1Cp E

[(ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`)d`

)p]
+ C E

[ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)

(
|X(A)|p

))2
dx (`+ 1)−dπ(`)d`

]
. (3.2)

We split the rest of this step into three further substeps, and treat separately ∂fct, ∂G,
and ∂osc.
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Substep 1.1. Proof of (i) for ∂̃ = ∂fct.
By the Leibniz rule, ∂fctA,S(|X(A)|p) = p|X(A)|p−1∂fctA,SX(A), so that Hölder’s inequality
with exponents ( p

p−1 , p) yields

E
[ˆ ∞

0

ˆ
Rd

(
∂fctA,B`+1(x)

(
|X(A)|p

))2
dx (`+ 1)−dπ(`)d`

]
≤ p2 E

[
X(A)2(p−1)

ˆ ∞
0

ˆ
Rd

(
∂fctA,B`+1(x)

X(A)
)2
dx (`+ 1)−dπ(`)d`

]
≤ p2 E

[
X(A)2p

]1− 1
p E
[(ˆ ∞

0

ˆ
Rd

(
∂fctA,B`+1(x)

X(A)
)2
dx (`+ 1)−dπ(`)d`

)p] 1
p

. (3.3)

Combined with (3.2) and Young’s inequality with exponents ( p
p−1 , p) to absorb the factor

E
[
X(A)2p

]
into the LHS, the conclusion of item (i) follows with the prefactor (Cp2)p.

Substep 1.2. Proof of (i) for ∂̃ = ∂G.
The inequality ||a|p − |b|p| ≤ p|a − b|(|a|p−1 + |b|p−1) for all a, b ∈ R easily implies, by
definition of the Glauber derivative (2.4),

E
[(
∂GA,S

(
|X(A)|p

))2]
= E

[
E′
[(
|X(A′)|p − |X(A)|p

)2 ∥∥A′|Rd\S = A|Rd\S
]]

≤ 2p2E
[
E′
[(
X(A)2(p−1) +X(A′)2(p−1)

)(
X(A′)−X(A)

)2 ∥∥A′|Rd\S = A|Rd\S
]]

= 4p2E
[
X(A)2(p−1)

(
∂GA,SX(A)

)2]
,

and we are now back to the situation of Substep 1.1.

Substep 1.3. Proof of (ii).
Again, the inequality ||a|p − |b|p| ≤ p|a− b|(|a|p−1 + |b|p−1) for all a, b ∈ R implies

∂oscA,S |X(A)|p ≤ 2p
(

sup
A,S
|X(A)|p−1

)
∂oscA,S X(A)

≤ 2p

(
|X(A)|+ ∂oscA,S X(A)

)p−1
∂oscA,S X(A). (3.4)

We then make use of the following inequality that holds for some constant C ' 1 large
enough (independent of p): for all a, b ≥ 0, (a + b)p−1 ≤ 2ap−1 + (Cp)pbp−1. This allows
one to rewrite (3.4) in the form

∂oscA,S |X(A)|p ≤ 4p|X(A)|p−1 ∂oscA,S X(A) + (Cp)p(∂oscA,S X(A))p. (3.5)

Arguing as in Substep 1.1, we obtain by Hölder’s inequality,

E
[ˆ ∞

0

ˆ
Rd

(
∂oscA,B`+1(x)

|X(A)|p
)2
dx (`+ 1)−dπ(`)d`

]
≤ Cp2 E

[
X(A)2p

]1− 1
p E
[(ˆ ∞

0

ˆ
Rd

(
∂oscA,B`+1(x)

X(A)
)2
dx (`+ 1)−dπ(`)d`

)p] 1
p

+ (Cp2)p E
[ˆ ∞

0

ˆ
Rd

(
∂oscA,B`+1(x)

X(A)
)2p

dx (`+ 1)−dπ(`)d`

]
.
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Combined with (3.2) and Young’s inequality to absorb the factor E[X(A)2p] into the LHS,
this yields

E
[
X(A)2p

]
≤ (Cp2)p E

[(ˆ ∞
0

ˆ
Rd

(
∂oscA,B`+1(x)

X(A)
)2
dx (`+ 1)−dπ(`)d`

)p]
+ (Cp2)p E

[ˆ ∞
0

ˆ
Rd

(
∂oscA,B`+1(x)

X(A)
)2p

dx (`+ 1)−dπ(`)d`

]
.

It remains to reformulate the second RHS term. By the discrete `1− `p inequality, we haveˆ
Rd

(
∂oscA,B`+1(x)

X(A)
)2p

dx ≤
∑

z∈ `+1√
d
Zd

ˆ
z+ `+1√

d
Q

(
∂oscA,B`+1(x)

X(A)
)2p

dx

≤
(`+ 1√

d

)d ∑
z∈ `+1√

d
Zd

(
∂oscA,B 3

2 (`+1)
(z) X(A)

)2p

≤
(`+ 1√

d

)d( ∑
z∈ `+1√

d
Zd

(
∂oscA,B 3

2 (`+1)
(z) X(A)

)2)p

≤
(`+ 1√

d

)d( ∑
z∈ `+1√

d
Zd

 
z+ `+1√

d
Q

(
∂oscA,B2(`+1)(x)

X(A)
)2
dx

)p

≤
( √d
`+ 1

)d(p−1)( ˆ
Rd

(
∂oscA,B2(`+1)(x)

X(A)
)2
dx

)p
. (3.6)

Combined with the above, this yields

E
[
X(A)2p

]
≤ (Cp2)p E

[(ˆ ∞
0

ˆ
Rd

(
∂oscA,B`+1(x)

X(A)
)2
dx (`+ 1)−dπ(`)d`

)p]
+ (Cp2)p E

[ˆ ∞
0

( ˆ
Rd

(
∂oscA,B2(`+1)(x)

X(A)
)2
dx

)p
(`+ 1)−dpπ(`)d`

]
.

Since
´∞
0 π(`)d` < ∞, the first RHS term can be absorbed into the second RHS term.

Indeed, the triangle inequality and the Hölder inequality with exponents (p, p
p−1) combine

to

E
[(ˆ ∞

0

ˆ
Rd

(
∂oscA,B`+1(x)

X(A)
)2
dx (`+ 1)−dπ(`)d`

)p]
≤

( ˆ ∞
0

E
[(ˆ

Rd

(
∂oscA,B`+1(x)

X(A)
)2
dx

)p] 1
p

(`+ 1)−dπ(`)d`

)p
=

( ˆ ∞
0

E
[(ˆ

Rd

(
∂oscA,B`+1(x)

X(A)
)2
dx

)p
(`+ 1)−dpπ(`)

] 1
p

π(`)
1− 1

pd`

)p
≤

( ˆ ∞
0

π(`)d`

)p−1
E
[ˆ ∞

0

( ˆ
Rd

(
∂oscA,B`+1(x)

X(A)
)2
dx

)p
(`+ 1)−dpπ(`)d`

]
,

and the conclusion of item (ii) follows.
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Step 2. Improvement of (i) for (∂̃-WLSI).
In this step, we argue that the prefactor (Cp2)p in item (i) can be upgraded to (Cp)p if
the field A satisfies the corresponding logarithmic Sobolev inequality (∂̃-WLSI). Starting
point is the following observation (see [1, Theorem 3.4] and [4, Proposition 5.4.2]): if the
random variable X(A) satisfies Ent

[
X(A)2p

]
<∞, then we have

E
[
X(A)2p

] 1
p − E

[
X(A)2

]
=

ˆ p

1

1

q2
E
[
X(A)2q

] 1
q
−1

Ent
[
X(A)2q

]
dq. (3.7)

It remains to estimate the entropy Ent[X(A)2q] for all 1 ≤ q ≤ p. Applied to the σ(A)-
measurable random variable |X(A)|q, (∂̃-WLSI) yields

Ent
[
X(A)2q

]
≤ E

[ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)|X(A)|q

)2
dx (`+ 1)−dπ(`)d`

]
.

For the choice ∂̃ = ∂G or ∂fct, the argument of Substeps 1.1–1.2, cf. (3.3), applied to the
above RHS yields

Ent
[
X(A)2q

]
≤ Cq2 E

[
X(A)2q

]1− 1
q E
[(ˆ ∞

0

ˆ
Rd

(
∂̃A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`)d`

)q] 1
q

.

Inserting this into (3.7), we obtain

E
[
X(A)2p

] 1
p ≤ E

[
X(A)2

]
+ C

ˆ p

1
E
[(ˆ ∞

0

ˆ
Rd

(
∂̃A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`)d`

)q] 1
q

dq.

We then appeal to the spectral gap (∂̃-WSG) (which follows from (∂̃-WLSI)) to estimate
the first RHS term, and use Jensen’s inequality on the second RHS to obtain

E
[
X(A)2p

] 1
p ≤ CpE

[(ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`)d`

)p] 1
p

.

This upgrades the prefactor in item (i) to (Cp)p, as claimed. �

3.2. Concentration properties. The following results establish concentration proper-
ties implied by weighted functional inequalities, and extend the known results for standard
functional inequalities. Again, these properties depend crucially on the choice of the de-
rivative. On the one hand, spectral gaps for the Glauber and functional derivatives imply
exponential tail concentration, and the corresponding logarithmic Sobolev inequalities im-
ply stronger Gaussian tail concentration. On the other hand, for other choices of the
derivative, the failure of the Leibniz rule in general only yields weaker results (except when
the weight has compact support or when additional properties are assumed on the ran-
dom variable, cf. Propositions 3.3(i) and 4.3(iii) below). Most of the following results are
direct consequences of the p-versions of Proposition 3.1. We start with the concentration
properties for the functional and Glauber derivatives.
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Proposition 3.2. Assume that the random field A satisfies (∂̃-WSG) with integrable weight
π : R+ → R+ and derivative ∂̃ = ∂G or ∂fct. We define the Lipschitz norm of a σ(A)-
measurable random variable X(A) with respect to the derivative ∂̃ and the weight π as

|||X |||∂̃,π := sup ess
A

( ˆ ∞
0

ˆ
Rd

(
∂̃A,B`+1(x)X(A)

)2
dx (`+ 1)−dπ(`)d`

) 1
2

.

Then there exists a constant C > 0 depending only on d and π such for all σ(A)-measurable
random variables X(A) with |||X |||∂̃,π ≤ 1 we have exponential tail concentration in the form

E
[
exp

( 1

C
|X(A)− E [X(A)] |

)]
≤ 2,

P [X(A)− E [X(A)] ≥ r] ≤ e−
r
C , for all r ≥ 0.

If in addition A satisfies (∂̃-WLSI) with weight π, then for all σ(A)-measurable random
variables X(A) with |||X |||∂̃,π ≤ 1 we have Gaussian tail concentration in the form

E
[
exp

( 1

C

(
X(A)− E [X(A)]

)2)] ≤ 2,

P [X(A)− E [X(A)] ≥ r] ≤ e−
r2∨r
C , for all r ≥ 0. �

We now turn to the case of the oscillation, which yields in general weaker concentration
results due to the failure of the Leibniz rule.

Proposition 3.3.

(i) Assume that the random field A satisfies (∂osc-SG) with radius R > 0. Then for all
σ(A)-measurable random variables X(A) that satisfy

|||X |||∂osc,R := sup ess
A

ˆ
Rd

(
∂oscA,BR(x)

X(A)
)2
dx ≤ 1,

we have exponential tail concentration in the form

E
[
exp

( 1

C
|X(A)− E [X(A)] |

)]
≤ 2,

P [X(A)− E [X(A)] ≥ r] ≤ e−
r
C , for all r ≥ 0.

If in addition A satisfies (∂osc-LSI) with radius R > 0 and if the random variable
X(A) further satisfies

L := sup
x

sup ess
A

∂oscA,BR(x)
X(A) <∞,

we have Poisson tail concentration in the form

E
[
exp

( 1

C
ψL
(
|X(A)− E [X(A)] |

))]
≤ 2, ψL(u) :=

u

L
log
(

1 +
Lu

C

)
,

P [X(A)− E [X(A)] ≥ r] ≤ e−
1
C
ψL(r), for all r ≥ 0.



18 M. DUERINCKX AND A. GLORIA

(ii) Assume that the random field A satisfies (∂osc-WSG) with integrable weight π : R+ →
R+. Let X(A) be a σ(A)-measurable random variable, and assume that, for some
κ > 0, p0, α ≥ 0, we have for all p ≥ p0,

E
[ˆ ∞

0

(ˆ
Rd

(
∂oscA,B`+1(x)

X(A)
)2
dx

)p
(`+ 1)−dpπ(`)d`

]
≤ pαpκ. (3.8)

Then there exists a constant C > 0 depending only on d, π, p0, and α (but not on κ)
such that we have concentration in the form

E
[
ψp0,α

( 1

C
|X(A)− E [X(A)] |

)]
≤ Cκ, ψp0,α(u) := (1 ∧ r2p0) exp(r

2
2+α ),

P [ |X(A)− E [X(A)] | ≥ r] ≤ Cκ
(
ψp0,α

(
r
C

))−1
, for all r ≥ 0. �

Remark 3.4. Comments are in order.
• For spatial averages of (possibly nonlinear approximately local transformations of)
the random field A, one can prove much stronger concentration results using the
specific structure of averages, cf. Proposition 4.3(iii) below.
• Proposition 3.3(ii) above is used in two contexts. When the weight π is algebraic,
the decay in (3.8) is typically independent of p (that is, α = 0, and κ is not to the
power p so that it cannot be absorbed by rescaling of X), in which case κ is the
driving quantity (see e.g. the application in Proposition 4.3(ii)). When the weight
is super-algebraic, there can be an interplay between the decay of the weight and
the power p, and an optimization may allow to put part of the decay to the power
p at the price of losing some power of p itself — which leads to (3.8) for some α > 0
(after rescaling of X). �

We start with the proof of Proposition 3.2.

Proof of Proposition 3.2. IfA satisfies (∂̃-WSG) for ∂̃ = ∂G or ∂fct, the assumption |||X |||∂̃,π ≤
1 allows to apply Proposition 3.1(i) in the form

E
[(
X(A)− E [X(A)]

)2p] ≤ (Cp2)p, (3.9)

for all p ≥ 1. Summing this estimate over p, and recalling that nn ≤ enn!, the exponential
concentration result (i) follows in the form

E
[
exp

( 1

C
|X(A)− E [X(A)] |

)]
≤ 2,

and hence by Markov’s inequality, for all r ≥ 0,

P
[∣∣X(A)− E [X(A)]

∣∣ ≥ r] ≤ 2e−
r
C .

The stronger unilateral estimate without the factor 2 is obtained by a standard application
of Herbst-type techniques as in [7, Section 4] (see also [20, Section 2.5]).
If A further satisfies (∂̃-WLSI) for ∂̃ = ∂G or ∂fct, Proposition 3.1(i) asserts that the RHS
in (3.9) is replaced by (Cp)p, which yields after summation the corresponding Gaussian
concentration result (ii) in the form

E
[
exp

( 1

C

(
X(A)− E [X(A)]

)2)] ≤ 2,
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and hence by Markov’s inequality, for all r ≥ 0,

P
[∣∣X(A)− E [X(A)]

∣∣ ≥ r] ≤ 2e−
r2

C .

The stronger unilateral estimate without the factor 2 is obtained by a standard application
of Herbst’s argument as e.g. in [21, Section 5.1]. �

We now turn to the proof of Proposition 3.3.

Proof of Proposition 3.3. We split the proof into two steps, and prove (i) and (ii) separately.

Step 1. Proof of (i).
The exponential concentration result in (i) follows from Proposition 3.1(ii) (with compactly
supported weight π) as in the proof of Proposition 3.2 above. Let us now turn to the Poisson
concentration result; although it could similarly be proven by first deriving suitable moment
bounds, the proof is more transparent using a variation of Herbst’s argument. Let A satisfy
(∂osc-LSI) and let X(A) satisfy L := supx sup essA ∂

osc
A,BR(x)

X(A) <∞ and |||X |||∂osc,R ≤ 1.
For all t ∈ R, we apply (∂osc-LSI) to the σ(A)-measurable random variable etX(A)/2,

Ent[etX(A)] ≤ C E
[ˆ

Rd

(
∂oscA,BR(x)

etX(A)/2
)2
dx

]
. (3.10)

By the inequality |ea − eb| ≤ (ea + eb)|a− b| for all a, b ∈ R, the integrand turns into(
∂oscA,S e

tX(A)/2
)2
≤ 2t2 sup

A,S
etX(A)

(
∂oscA,S X(A)

)2
≤ 2t2etX(A) exp

(
t ∂oscA,S X(A)

)(
∂oscA,S X(A)

)2
. (3.11)

Inserting this inequality into (3.10) and using the assumptions on X(A), we obtain

Ent[etX(A)] ≤ Ct2etLE[etX(A)].

Compared to the standard Herbst argument, we have to deal here with the additional
exponential factor etL. We may then appeal to [20, Corollary 2.12] which indeed yields the
desired Poisson concentration. We include a proof for the reader’s convenience. In terms
of the Laplace transform H(t) = E[etX(A)], the above takes the form

tH ′(t)−H(t) logH(t) ≤ Ct2etLH(t),

or equivalently,
d

dt

(1

t
logH(t)

)
≤ CetL,

and hence by integration

H(t) ≤ exp
(Ct
L

(etL − 1) + t
H ′(0)

H(0)

)
= e

Ct
L

(etL−1)+tE[X(A)].

The Markov inequality then implies for all r, t ≥ 0,

P [X(A) ≥ E [X(A)] + r] = P
[
etX(A) ≥ etE[X(A)]+tr

]
≤ e−tE[X(A)]−trE[etX(A)]

≤ e
Ct
L

(etL−1)−tr. (3.12)
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Let r ≥ 0 be momentarily fixed, and denote by t∗ ≥ 0 the value of t ≥ 0 that minimizes
fr(t) := Ct

L (etL − 1)− tr, that is the (unique) solution t∗ ≥ 0 of the equation

Cet∗L = (Lr + C)/(1 + t∗L) (3.13)

(note that fr is strictly convex, fr(0) = 0, and f ′r(0) ≤ 0). We now give two estimates on
fr(t∗) depending on the value of r. Assume first that r ≥ 2eC

L . We may then compute

fr(t∗) :=
Ct∗
L

(et∗L − 1)− t∗r
(3.13)

= − t
2
∗(Lr + C)

1 + t∗L
.

Using the bound 2t∗L ≥ t∗L + log(1 + t∗L)
(3.13)

= log(1 + Lr/C), and the fact that t 7→
− t2(Lr+C)

1+tL is decreasing on R+, we obtain

fr(t∗) ≤ −
Lr + C

2L2

log(1 + Lr/C)2

2 + log(1 + Lr/C)
.

Hence, for r ≥ 2eC
L , we obtain using in addition log(1 + Lr/C) ≥ log(1 + 2e) > 9/5,

fr(t∗) ≤ −
r

5L
log
(

1 +
Lr

C

)
. (3.14)

We now turn to the case 0 ≤ r ≤ 2eC
L . Comparing the minimal value fr(t∗) to the choice

t = r
2eC , and using the bound ea − 1 ≤ ea for a ∈ [0, 1], we obtain for all r ≤ 2eC

L ,

fr(t∗) ≤ fr
( r

2eC

)
=

r

2eL

(
e
rL
2eC − 1

)
− r2

2eC
≤ − r2

4eC
,

which yields, using that log(1 + a) ≤ a for all a ≥ 0,

fr(t∗) ≤ −
r

4eL
log
(

1 +
Lr

C

)
≤ − r

11L
log
(

1 +
Lr

C

)
.

Combining this with (3.12) and (3.14), we conclude

P [X(A) ≥ E [X(A)] + r] ≤ e−
r

11L
log(1+Lr

C
),

and the corresponding integrability result follows by integration.

Step 2. Proof of (ii).
Let A satisfy (∂osc-WSG) with weight π, and let the random variable X(A) satisfy (3.8)
for some κ > 0, p0, α ≥ 0. Proposition 3.1(ii) then yields for all p ≥ p0,

E
[(
X(A)− E [X(A)]

)2p] ≤ Cpp(2+α)pκ,
or alternatively, for all p ≥ (2 + α)p0,

E
[(∣∣X(A)− E [X(A)]

∣∣ 2
2+α

)p]
≤ Cpp!κ.

Summing this estimate over p, we obtain

E
[
ψ̃p0,α

( 1

C
|X(A)− E [X(A)] |

2
2+α

)]
≤ κ,

where we have set ψ̃p0,α(u) :=
∑∞

n=0
un+(2+α)p0

(n+(2+α)p0)!
. Noting that ψ̃p0,α(u) 'p0,α (1∧u)(2+α)p0eu

holds for all u ≥ 0, the conclusion follows. �
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4. Application to spatial averages of the random field

Although the primary aim of this contribution is to address concentration properties for
general nonlinear functions of correlated random fields, we illustrate the use of weighted
functional inequalities on the simplest functions possible, that is, (linear) spatial averages
of (a possibly nonlinear yet approximately local transformation of) the random field itself.

Given a jointly measurable stationary random field A, we typically consider a σ(A)-
measurable random variable f(A) that is approximately 1-local with respect to the field
A, in the following sense: for all r > 0 we assume

sup ess
A

∣∣f(A)− E [f(A) ‖ A|Br ]
∣∣ ≤ Ce− r

C . (4.1)

More precisely, given ∂̃ = ∂G, ∂fct, or ∂osc, we will use the following finer notion of
approximate 1-locality: for all x ∈ Rd and ` ≥ 0,

sup ess
A

∂̃A,B`+1(x)f(A) ≤ Ce−
1
C
(|x|−`)+ . (4.2)

(An important particular case is when the random variable f(A) is exactly 1-local, that is,
when f(A) is σ(A|B1)-measurable.) We then set F (x) := f(A(· + x)) for all x ∈ Rd, and
for all L ≥ 0 we consider the random variable

XL := XL(A) := L−d
ˆ
Rd
e−

1
L
|y|(F (y)− E [F ]) dy,

that is, the spatial average of (the nonlinear approximately local transformation F of) the
random field A at the scale L. Note that the results below hold in the same form if XL is
replaced by

ffl
QL

(F − E [F ]).

As emphasized in the introduction, this example turns out to be relevant for quantitative
stochastic homogenization, and more precisely to quantify the quenched large-scale regu-
larity theory for random elliptic systems in divergence form (that is, operators of the form
−∇ · A∇ with A a matrix-valued random coefficient field as considered throughout this
article). In [14] the second author, Neukamm, and Otto indeed reduce the validity of this
large-scale regularity to concentration properties of spatial averages XL of the square of an
approximately local version of the modified extended corrector (cf. [14, Proposition 3]), and
then make direct use of weighted functional inequalities in the form of Proposition 4.3 be-
low. More precisely, large-scale regularity is characterized in [14] by the so-called minimal
radius r∗, an almost surely finite stationary random field whose stochastic integrability
essentially coincides with the scaling in L of the probability P [XL ≥ δ] for some fixed
(small) δ > 0, in the sense that a property of the form P [XL ≥ δ] ≤ gδ(L)−1 for all L ≥ 1
essentially implies E[gδ(

1
Cδ
r∗)] <∞.

We believe that these concentration results can also be used in the approach to large-scale
regularity by Armstrong & Smart [3] and Armstrong & Mourrat [2] (which are rather
formulated in terms of α-mixing assumptions). As shown below, concentration properties
implied by weighted functional inequalities are in general stronger than those implied by
the corresponding α-mixing.

4.1. Scaling of spatial averages. We start with the scaling of the variance of the spatial
average XL. A similar result holds in stochastic homogenization, where XL is replaced by
the spatial average of the gradient of the extended corrector (cf. [13]).
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Proposition 4.1. If A satisfies (∂̃-WSG) with integrable weight π and derivative ∂̃ = ∂G,
∂fct, or ∂osc, and if the random variable f(A) satisfies (4.2), then we have for all L > 0,

Var [XL] . π∗(L)−1,

where we define

π∗(`) :=
(  

B`

ˆ ∞
|x|

π(s)dsdx
)−1

. �

Remark 4.2. If π(`) ' (`+ 1)−1−β for some β > 0, then

π∗(`) '


(`+ 1)β, if β < d;

(`+ 1)d log−1(2 + `), if β = d;

(`+ 1)d, it β > d.

In particular if correlations are integrable (corresponding to the case β > d), we recover
the central limit theorem scaling: Var [XL] . π∗(L)−1 ' L−d for all L ≥ 1. �

Proof of Proposition 4.1. Let L > 0. Given ∂̃ = ∂G, ∂fct, and ∂osc, assumption (4.2) yields

|∂̃A,B`+1(x)XL| . L−d
ˆ
Rd
e−

1
L
|y|e−

1
C
(|x−y|−`)+dy . L−d

ˆ
Rd
e−

1
L
|y|e
− 1
C(`+1)

|x−y|
dy

. L−d(L ∧ (`+ 1))de
− 1
C(L+`+1)

|x|
,

so that the weighted spectral gap yields

Var [XL] .
ˆ ∞
0

ˆ
Rd
L−2d(L ∧ (`+ 1))2de

− 1
C(L+`+1)

|x|
dx (`+ 1)−dπ(`)d`

.
ˆ ∞
0

L−2d(L ∧ (`+ 1))2d(L+ `)d(`+ 1)−dπ(`)d`

. L−d
ˆ L

0
(`+ 1)dπ(`)d`+

ˆ ∞
L

π(`)d`.

An integration by parts yields π∗(L)−1 ' L−d
´ L
0 π(`)`dd`+

´∞
L π(`)d`, and the conclusion

follows. �

4.2. Concentration properties. In view of their applications to large-scale regularity of
random elliptic systems in [14], we study the concentration properties of the spatial average
XL. The following result shows that the scaling crucially depends on three properties: the
type of weighted functional inequality, the type of derivative, and the decay of the weight.

Proposition 4.3. Assume that the random variable f(A) satisfies (4.2).
(i) Let A satisfy (∂̃-WSG) with integrable weight π and derivative ∂̃ = ∂G or ∂fct, and

let π∗ be defined as in Proposition 4.1. Then for all δ, L > 0 we have

P [XL ≥ δ] ≤ exp
(
− δ

C
π∗(L)

1
2

)
. (4.3)

If in addition A satisfies (∂̃-WLSI) with weight π, then for all δ, L > 0 we have

P [XL ≥ δ] ≤ exp
(
− δ2

C
π∗(L)

)
. (4.4)
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(ii) Let A satisfy (∂osc-WSG) with weight π(`) . (` + 1)−β−1 for some β > 0. Then for
all δ, L > 0 we have

P [XL ≥ δ] ≤ Ce−
1
C
δ
(
1 + δ−

2β
d | log δ|

)
L−β. (4.5)

(iii) Let A satisfy (∂osc-WSG) with weight π(`) . exp(− 1
C `

β) for some β > 0. Then for
all δ > 0 and all L ≥ 1 we have

P [XL ≥ δ] ≤ exp
(
− δ ∧ δ2

C
Lβ∧

d
2

)
. (4.6)

If in addition A satisfies (∂osc-WLSI) with weight π(`) . exp(− 1
C `

β) for some β > 0,
then for all δ > 0 and all L ≥ 1 we have

P [XL ≥ δ] ≤ exp
(
− δ ∧ δ2

C
Lβ∧d

)
. (4.7)

�

Remark 4.4. If we further assume that the random variable f(A) is a.s. bounded by a
deterministic constant C0 ≥ 1, then there holds P [|XL| > C0] = 0, and hence in (4.6)
and (4.7) we may replace δ ∧ δ2 by 1

C0
δ2. �

In the case of a super-algebraic weight, it is instructive to compare these (nonlinear)
concentration results to the corresponding (linear) concentration result implied by the α-
mixing properties of the field A (see also [2, Appendix A]). Note that the same result
holds under the corresponding weighted covariance inequality (which is natural in view of
Proposition 2.5(iii)). (As we are basically interested in the scaling in L, we do not try to
optimize the log δ-dependence below.)

Proposition 4.5. Given β > 0, assume that the random field A either is α-mixing with
α̃(`,D;A) . (1 +D)C exp(− 1

C `
β) for all D, ` ≥ 0, or satisfies (∂̃-WCI) with weight π(`) .

exp(− 1
C `

β) and derivative ∂̃ = ∂G or ∂osc. Further assume that the random variable
f(A) is a.s. bounded by a deterministic constant, that is, sup essA |f(A)| . 1, and that it
satisfies (4.1). Then for all δ > 0 and all L ≥ 1 we have

P [XL > δ] ≤ C exp

(
− δ2(| log δ|+ 1)

− dβ
d+β

C
L

dβ
d+β

)
. �

Remark 4.6. Let us briefly compare the concentration results of Propositions 4.3(iii)
and 4.5. Assume that the random field A satisfies a weighted functional inequality with
super-algebraic weight π(`) . exp(− 1

C `
β) and derivative ∂osc, and that A is α-mixing with

α̃(`,D;A) . (1 + D)d exp(− 1
C `

β) (these assumptions are indeed compatible in view of
Proposition 2.5(iii)). Then the decay in L of the probability P [XL ≥ δ] obtained from the
α-mixing is better than the one obtained from (∂osc-WSG) only for β > d, and is always
worse than the one obtained from (∂osc-WLSI). Similarly, in the case of an algebraic weight
π(`) . (` + 1)−β−1, the functional inequality (∂osc-WSG) yields the optimal decay L−β
(cf. Proposition 4.3(ii)), while one can check that the corresponding α-mixing only leads
to this decay up to a small (sub-algebraic) loss. �

We start with the proof of Proposition 4.3.
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Proof of Proposition 4.3. We split the proof into three steps. We start with the proofs of
(4.3), (4.4), and (4.5), which directly follow from Propositions 3.2 and 3.3(ii). The proof of
estimates (4.6) and (4.7) is more subtle and is based on a fine tuning of Herbst’s argument
using specific features of the random variable ZL.

Step 1. Proof of (4.3), (4.4), and (4.5).
For ∂̃ = ∂G or ∂fct, let the Lipschitz norm ||| · |||∂̃,π be defined as in the statement of
Proposition 3.2. The same computation as in the proof of Proposition 4.1 ensures that the
random variable ZL := π∗(L)1/2XL = π∗(L)1/2

ffl
QL

(F − E [F ]) satisfies

|||ZL |||∂̃,π . 1.

Hence, estimates (4.3) and (4.4) follow from Proposition 3.2. We now turn to the proof
of (4.5). If A satisfies (∂osc-WSG) with weight π(`) . (`+ 1)−β−1, β > 0, we compute for
all p ≥ p0 > β

d , using assumption (4.2),

E
[ˆ ∞

0

( ˆ
Rd

(
∂oscA,B`(x)

XL

)2
dx

)p
(`+ 1)−dp−β−1d`

]
. L−2dp

ˆ ∞
1

(L+ `)dp(L ∧ `)2dp`−dp−β−1d` .
(
1 + (dp0 − β)−1

)
L−β.

Then applying Proposition 3.3(ii) and optimizing the choice of p0 > β
d , the result (4.5)

follows.

Step 2. Proof of (4.6).
Let L ≥ 1, and define ZL := Ld/2XL. As in the proof of Proposition 4.1, assumption (4.2)
yields

∂oscA,B`(x)
ZL . L−

d
2 (L ∧ (`+ 1))de

− 1
C(L+`+1)

|x|
. (4.8)

We make use of a variant of Herbst’s argument as in [7, Section 4] (see also [20, Section 2.5]).
For all t ≥ 0 we apply (∂osc-WSG) to the random variable exp(12 tZL): using the inequality
|ea − eb| ≤ (ea + eb)|a− b| for all a, b ∈ R, we obtain

Var[e
1
2
tZL ] ≤

ˆ ∞
0

ˆ
Rd

E
[(

∂oscA,B`(x)
e

1
2
tZL
)2]

dx (`+ 1)−dπ(`)d`

. t2 E
[
etZL

]
sup ess

A

ˆ ∞
0

ˆ
Rd
e
t∂osc
A,B`(x)

ZL
(
∂oscA,B`(x)

ZL

)2
dx e−

1
C
`βd`,

and hence, in terms of the Laplace transform HL(t) := E
[
etZL

]
,

HL(t)−HL(t/2)2 ≤ t2HL(t) sup ess
A

ˆ ∞
0

ˆ
Rd
e
t∂osc
A,B`(x)

ZL
(
∂oscA,B`(x)

ZL

)2
dx e−

1
C
`βd`.
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Using the property (4.8) of the random variable ZL, we find

HL(t)−HL(t/2)2

. t2HL(t)

ˆ ∞
1

(L ∧ `√
L

)2d
exp

(
Ct
(L ∧ `√

L

)d
− `β

C

) ˆ
Rd
e
− 1
C(L+`+1)

|x|
dx d`

. t2HL(t)

ˆ ∞
1

(L+ `)d
(L ∧ `√

L

)2d
exp

(
Ct
(L ∧ `√

L

)d
− `β

C

)
d`

. t2HL(t)

(ˆ L

0
exp

(
Ct
( `√

L

)d
− `β

C

)
d`+ LdeCtL

d
2

ˆ ∞
L

e−
1
C
`βd`

)
. (4.9)

Without loss of generality we may assume that β ≤ d
2 (the statement (4.6) is indeed not

improved for β > d
2). We then restrict to

0 ≤ t ≤ T :=
1

K
Lβ−

d
2 , (4.10)

for some K � 1 to be chosen later (with in particular K ≥ 2C2). As a consequence of
β ≤ d

2 , this choice yields T ≤ K−1. On the one hand, for all 0 ≤ ` ≤ L and all 0 ≤ t ≤ T ,
the choice of T with K ≥ 2C2 yields

Ct
( `√

L

)d
− `β

C
= −L

β

C

(( `
L

)β
− C2t

Lβ−
d
2

( `
L

)d)
≤ −L

β

C

(( `
L

)β
− 1

2

( `
L

)d)
≤ − `

β

2C
,

and hence ˆ L

0
exp

(
Ct
( `√

L

)d
− `β

C

)
d` .

ˆ ∞
0

e−
`β

2C d` . 1.

On the other hand, for all 0 ≤ t ≤ T , the choice of T with K ≥ 2C2 yields

LdeCtL
d
2

ˆ ∞
L

e−
1
C
`βd` . exp

(
CtL

d
2 − Lβ

2C

)
≤ exp

(CLβ
K
− Lβ

2C

)
≤ 1.

Injecting these estimates into (4.9), we obtain for all 0 ≤ t ≤ T ,

HL(t)−HL(t/2)2 ≤ Ct2HL(t),

and hence

HL(t) ≤ HL(t/2)2

1− Ct2
.

Applying the same inequality for t/2, iterating, and noting that HL(2−nt)2
n → etE[ZL] = 1

as n ↑ ∞, we obtain for all 0 ≤ t ≤ T ,

HL(t) ≤
∞∏
n=0

(
1− C(2−nt)2

)−2n
.

For K large enough such that CT 2 ≤ CK−2 ≤ 1
2 , the inequality log(1− x) ≥ −2x for all

0 ≤ x ≤ 1
2 then yields for all 0 ≤ t ≤ T ,

logHL(t) ≤ −
∞∑
n=0

2n log
(
1− C(2−nt)2

)
≤ 2Ct2

∞∑
n=0

2−n . t2,
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and thus HL(T ) ≤ eCT 2 . Using Markov’s inequality and the choice (4.10) of T , we deduce
for all r ≥ 0,

P [ZL > r] ≤ e−Tr+CT 2
= exp

(
− Lβ−

d
2 r

K
+

C

K2
L2β−d

)
.

With the choice r = δL
d
2 for δ > 0, this turns into

P [XL > δ] ≤ exp
(
− δ

K
Lβ +

C

K2
L2β−d

)
≤ exp

(
− 1

K

(
δ − C

K

)
Lβ
)
.

Choosing K ' 1 ∨ δ−1 large enough, the desired estimate (4.6) follows.

Step 2. Proof of (4.7).
Let L ≥ 1, and define ZL := Ld/2XL. We make use of Herbst’s classical argument as
presented e.g. in [21, Section 5.1]. For all t ≥ 0 we apply (∂osc-WLSI) to the random
variable exp(12 tZL),

Ent
[
etZL

]
≤

ˆ ∞
0

ˆ
E
[(
∂oscA,B`(x)

e
1
2
tZL
)2]

dx (`+ 1)−dπ(`)d`.

Estimating the RHS as in (4.9), we obtain in terms of HL(t) := E[etZL ],

d

dt

(1

t
logHL(t)

)
.

ˆ L

0
exp

(
Ct
( `√

L

)d
− `β

C

)
d`+ LdeCtL

d
2

ˆ ∞
L

e−
1
C
`βd`.

Without loss of generality we may assume that β ≤ d (the statement (4.7) is indeed not
improved for β > d). We then restrict to

0 ≤ t ≤ T :=
1

K
Lβ−

d
2 , (4.11)

for some K � 1 to be chosen later (with in particular K ≥ 2C). Arguing as in Step 1, we
obtain for all 0 ≤ t ≤ T ,

d

dt

(1

t
logHL(t)

)
. 1,

which yields by integration with respect to t on [0, T ],

1

T
logHL(T ) =

1

T
logHL(T )− E [ZL] . T,

that is, HL(T ) ≤ eCT
2 . The desired estimate (4.7) then follows as in Step 1, using

Markov’s inequality and choosing K large enough. �

We now turn to the proof of Proposition 4.5.

Proof of Proposition 4.5. Without loss of generality we assume that sup essA |f(A)| ≤ 1,
which implies P [|XL| > 1] = 0. It is then sufficient to establish the result for 0 < δ ≤ 1.
We split the proof into two steps. In the first step we prove the result in the case when
the random variable f(A) is exactly 1-local. We then extend the result in Step 2 when
f(A) is only approximately local in the sense (4.1). Since (WCI) implies α-mixing by
Proposition 2.5(iii), it is enough to prove the result under the sole assumption of α-mixing.
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Step 1. Exactly 1-local random variable f(A).
In this step we assume in addition that f(A) is σ(A|B1)-measurable, and we prove that for
all δ, L > 0,

P [XL > δ] ≤ C exp
(
− δ2

C
L

dβ
d+β

)
. (4.12)

Let p ≥ 1 be an integer and let R > 0. Setting

ER,p := {(x1, . . . , x2p) ∈ (Rd)2p : |x1 − xj | > R, ∀j 6= 1},
and noting that for all x the random variable F (x) is σ(A|B(x))-measurable, α-mixing leads
to

L−2dp
∣∣∣∣ ˆ . . .ˆ

ER,p

e−
1
L

∑2p
i=1 |xi| E [(F (x1)− E [F ]) . . . (F (x2p)− E [F ])] dx1 . . . dx2p

∣∣∣∣
≤ CpL−2dp

ˆ
. . .

ˆ
ER,p

e−
1
L

∑2p
i=1 |xi| α̃

(
R− 2, 2 + 2

2p∑
i=1

|xi|;A
)
dx1 . . . dx2p

≤ CpL−2dpe−
1
C
Rβ

ˆ
R2dp

e−
1
L
|x|(1 + |x|)Cdx ≤ CpLCe−

1
C
Rβ . (4.13)

Using this estimate, we compute

E[X2p
L ] = L−2dp

ˆ
Rd
. . .

ˆ
Rd
e−

1
L

∑2p
i=1 |xi| E [(F (x1)− E [F ]) . . . (F (x2p)− E [F ])] dx1 . . . dx2p

≤ CpLCe−
1
C
Rβ + CpL−2dp

ˆ
Rd
. . .

ˆ
Rd
e−

1
L

∑2p
i=1 |xi| 1∀i, ∃j 6=i: |xi−xj |≤R dx1 . . . dx2p.

We consider the partitions P := {P1, . . . , PNP } of the index set [2p] := {1, . . . , 2p} into
nonempty subsets of cardinality ≥ 2 (that is, ∪jPj = [2p], ]Pj ≥ 2 for all j, and Pj∩Pl = ∅
for all j 6= l), and we use the notation P `2 [2p] for such partitions. The above then takes
the form

E[X2p
L ] ≤ CpLCe−

1
C
Rβ + CpL−2dp

∑
P`2[2p]

LdNPRd(2p−NP ).

Since for all 1 ≤ k ≤ p the number of partitions P `2 [2p] with NP = k is bounded by the
Stirling number of the second kind {2pk } ≤

1
2

(
2p
k

)
k2p−k ≤ Cpp2pk2(p−k)(2p− k)−(2p−k), we

deduce

E[X2p
L ] ≤ CpLCe−

1
C
Rβ + Cp

(R
L

)dp p∑
k=1

p2pk2(p−k)

(2p− k)2p−k

(R
L

)d(p−k)
,

and hence by Markov’s inequality, for all δ > 0,

P [XL > δ] ≤ δ−2pCpLCe−
1
C
Rβ + δ−2pCp

(R
L

)dp p∑
k=1

p2pk2(p−k)

(2p− k)2p−k

(R
L

)d(p−k)
. (4.14)

Recall that we may restrict to 0 < δ ≤ 1. Choosing R = Lα, p = δ2C−10 Lαβ , and α = d
d+β ,

for some C0 ' 1 large enough, the estimate (4.14) above leads to

P [XL > δ] ≤ Ce−
1
C
Lαβ + δ−2pCpL−αβp

p∑
k=1

pp+kk2(p−k)

(2p− k)2p−k
.
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Noting that the summand is increasing in k, and using the choice of p with C0 large enough,
we deduce

P [XL > δ] ≤ Ce−
1
C
Lαβ + δ−2pCpL−αβppp ≤ Ce−

1
C
δ2Lαβ , (4.15)

from which the desired result (4.12) follows.

Step 2. Approximately 1-local random variable f(A).
For all r > 1, we define the (r-local) random variable fr(A) := E [f(A) ‖ A|Br ], and we
set Fr(x) := fr(A(·+ x)) and Xr,L := L−d

´
Rd e

− 1
L
|y|(Fr(y)− E [Fr])dy. The approximate

locality assumption (4.1) implies a.s. for all r, L > 0,

|Xr,L −XL| ≤ Ce−
r
C . (4.16)

Setting F̃r(x) := F (rx) and Ar(x) := A(rx), we note that for all x ∈ Rd the random
variable F̃r(x) is σ(A|Br(rx))-measurable, that is, σ(Ar|B(x))-measurable. For all r ≥ 1,
the α-mixing assumption on A implies that the contracted random field Ar satisfies α-
mixing with coefficient

α̃r(`,D;Ar) :=
(

(1 + rD)C exp(− 1

C
(r`)β)

)
∧ 1 ≤ C(1 + rD)C exp(− 1

C
(r`)β),

so that the α-mixing coefficient for r ≥ 1 can basically be estimated by the one for r = 1.
We may therefore apply Step 1 in the following form for all δ, L > 0 and all r ≥ 1,

P [Xr,L > δ] = P

[ 
QL/r

(F̃r − E[F̃r]) > δ

]
≤ C exp

(
− δ2

C

(L
r

) dβ
d+β

)
,

where the constant C ≥ 1 is independent of r. Combining this with (4.16) and choosing
r := C| log( δ

eC )| ≥ 1, we obtain for all 0 < δ ≤ 1 and L > 0,

P [XL > δ] ≤ P
[
Xr,L > δ − Ce−

r
C

]
≤ P

[
Xr,L >

δ
2

]
≤ C exp

(
− δ2

C

( L

| log( δ
eC )|

) dβ
d+β

)
,

and the conclusion follows. �
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