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DISTANCE TRANSFORMATION FOR NETWORK DESIGN
PROBLEMS

A. RIDHA MAHJOUB ∗, MICHAEL POSS † , LUIDI SIMONETTI ‡ , AND EDUARDO

UCHOA §

Abstract. We propose a new generic way to construct extended formulations for a large class
of network design problems with given connectivity requirements. The approach is based on a graph
transformation that maps any graph into a layered graph according to a given distance function. The
original connectivity requirements are in turn transformed into equivalent connectivity requirements
in the layered graph. The mapping is extended to the graphs induced by fractional vectors through
an extended linear integer programming formulation. While graphs induced by binary vectors are
mapped to isomorphic layered graphs, those induced by fractional vectors are mapped to a set of
graphs having worse connectivity properties. Hence, the connectivity requirements in the layered
graph may cut off fractional vectors that were feasible for the problem formulated in the original
graph. Experiments over instances of the Steiner Forest and Hop-constrained Survivable Network
Design problems show that significant gap reductions over the state-of-the art formulations can be
obtained.

Key words. Extended Formulations, Network Design, Benders decomposition.

AMS subject classifications.

1. Introduction. Let G = (V,E) be an undirected graph with n vertices and m
edges with positive costs ce, e ∈ E. Let D ⊆ V ×V be a set of demands, each demand
(u, v) ∈ D has its connectivity requirements: the existence of a certain number of
(u, v)-paths, possibly those paths may need to satisfy some side constraints. The
class of Network Design Problems (NDPs) considered in this paper consists in finding
a subgraph of G with minimum cost satisfying the connectivity requirements of all
demands. For examples:

• Steiner Tree Problem (STP): the input gives a set T ⊆ V of terminals. D
can be defined as {(u, v) : u, v ∈ T, u 6= v}. The connectivity requirement of
a demand (u, v) ∈ D is the existence of a path joining u and v.

• Steiner Forest Problem (SFP): An arbitrary set D is given as input. The
connectivity requirement is the existence of a path joining the vertices in
each demand.

• Hop-constrained Steiner Tree Problem (HSTP): the input gives a set T ⊆ V
of terminals, a root vertex r ∈ T and an integer H. The demand-set D is
defined as {(r, v) : v ∈ T \{r}}. The connectivity requirement is the existence
of a path with at most H edges (hops) joining the vertices in each demand.

• Hop-constrained Survivable Network Design Problem (HSNDP): the set D
and integers H and K are given as input. The connectivity requirement of a
demand (u, v) ∈ D is the existence of K edge-disjoint (u, v)-paths, each path
having at most H edges.

Several other NDPs found in the literature also belong to this class, the connectivity
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requirement may ask for a number of node-disjoint paths, side constraints may include
maximum delay, etc.

On all those cases, the natural formulations over the design variables xe, e ∈ E,
take the following format:

Min
∑
e∈E

cexe(1a)

S.t. x ∈ P (u, v)∀(u, v) ∈ D(1b)

xe binary ∀e ∈ E,(1c)

where the binary points in polyhedra P (u, v) correspond to all subgraphs satisfying
the connectivity requirements of demand (u, v). Even on cases when each polyhedron
P (u, v) is integral, i.e., when the formulation already contains the best possible in-
equalities that are valid for each individual demand, the overall formulation is often
still weak.

For example, consider the classic STP, where the natural Formulation (1) cor-
responds to the one proposed by Aneja [1]. In that case, constraints (1b) are given
by the so called undirected cut constraints: for each cut separating two terminals
u and v, there must be at least an edge in the solution. The linear relaxation of
Aneja’s formulation does not provide very good bounds. Even when the formula-
tion is reinforced with sophisticated cuts discovered after polyhedral investigation
[4, 5], the duality gaps may be still significant. Fortunately, Wong [23] proposed
a much better STP formulation. The main observation is that the set of demands
D = {(u, v) : u, v ∈ T, u 6= v} can be replaced by D′ = {(r, v) : v ∈ T \ {r}}, where
r ∈ T is an arbitrarily chosen terminal, without changing the optimal solution. Then,
G can be replaced by a bidirected graph G′ = (V,A) where A has two opposite arcs
(i, j) and (j, i) for each edge e = {i, j} in E, with c((i, j)) = c((j, i)) = c(e). The
problem now consists in looking for a minimum cost subgraph of G′ having a directed
path from r to every other terminal. The proposed formulation uses directed cut
constraints: for each directed cut separating r from a terminal, there must be at least
an arc in the solution. Wong’s formulation is remarkably strong. Its duality gaps are
less than 0.1% on almost all SteinLIB instances [14], except on the artificial instances
created with the intent of being hard. In fact, some of the most effective STP codes
of today, which are capable of solving non-artificial instances (like those from VLSI
design) with tenths of thousands of vertices, usually do not bother to separate cuts
other than the simple directed cut constraints. Instead, their algorithmic effort is
focused on devising graph reductions and dual ascent procedures in order to speedup
the solution of that linear relaxation [19, 20].

Of course, one would like to have similar reformulation schemes able to produce
strong bounds for other NDPs. An advance in that direction was the work by Gouveia
et al. [11] on hop/diameter constrained spanning/Steiner Tree Problems. On all those
cases it was possible to show that the problem could be transformed into a STP over
a directed graph composed of up to H layers, each layer consisting of copies of the
original graph. Additional arcs joining the layers and a few extra vertices/arcs are
required. By applying Wong’s directed cut formulation over the transformed graphs,
very small gaps are obtained. Even though the layered graph approach multiplies the
size of the graph, it still allowed the solution of instances with hundreds of vertices.
Recently, the layered graph approach was successfully applied on a number of other
NDPs [21, 16, 9, 10], effective techniques were introduced the cope with the large
transformed graphs and to handle other kinds of constraints.
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Fig. 1. Optimal solution of a HSNDP instance with K = 3 and H = 3; n = 21, D = {(0, v) :
v = 1, . . . , 20}, complete graph, Euclidean costs.

Nevertheless, we should remark that all those strong reformulation schemes are
restricted to relatively simple NDPs. As the reformulations depend on transforming
the problem into a directed STP, they are restricted to problems where the optimal
solution topology should be a single tree. NDPs with more complex topologies do not
seem to admit directed formulations.

• Sometimes this is related to the fact that both orientations of an edge can be
used in the paths connecting different demands. Figure 1 shows the optimal
solution of a HSNDP instance with demand-set D = {(0, v) : v = 1, . . . , 20},
K = 3 and H = 3. Even tough all demands include vertex 0, which makes this
vertex a natural root for the problem, it can be seen that the same edge can
be used in different directions by different demands. For example, demand
(0, 7) is connected by paths 0 − 5 − 7, 0 − 8 − 9 − 7, and 0 − 12 − 8 − 7;
demand (0, 5) is connected by paths 0− 5, 0− 10− 6− 5 and 0− 8− 7− 5.
Suppose that G is transformed into a bidirected graph. The corresponding
directed solution would need to pay for both arcs (5, 7) and (7, 5), which is
not correct.

• Even the seemingly simple SFP, where the solution may be formed by a
set of disconnected subtrees, does not seem to admit a strong reformulation
by turning it into a directed problem over a transformed graph. Here, the
difficulty lies in the fact that it is not possible to know beforehand which
demands will be connected by the same subtree. In fact, the strongest known
reformulation for the SPF, proposed in [15], is only slightly better than the
natural Formulation (1).

The Distance Transformation (DT) is an original reformulation technique pro-
posed to obtain stronger formulations for general NDPs, including those where the
currently know reformulation techniques do not seem to work. Starting from Formu-
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lation (1), the resulting reformulation will have the following format:

Min
∑
e∈E

cexe(2a)

S.t. Ax+Bw + Cy ≥ b(2b)

(w, y) ∈ P ′(u, v) ∀(u, v) ∈ D(2c)

xe binary ∀e ∈ E,(2d)

where A, B, C and b are matrices of appropriated dimensions. Constraints (2b) are
problem-independent. They are devised to transform a solution over the variables
x into a distance expanded solution over the new variables w and y. The original
connectivity constraints in each P (u, v), over the x variables, are transformed into
new connectivity constraints P ′(u, v), over the (w, y) variables.

The purpose of DT can be informally described as follows. Let x be a binary
vector in {0, 1}m and G(x) = (V,E(x)) be the subgraph induced by x. The distance
transformation maps G(x) into a subgraph of the layered graph that consists of n+ 1
copies of G plus edges between adjacent layers. The mapping considers a chosen
source subset S ⊆ V and sends each vertex i ∈ V to a vertex in layer l, 0 ≤ l ≤ n,
according to its distance from set S. Each edge {i, j} ∈ G(x) is sent to an edge in the
layered graph according to the layers of i and j. The transformed graph is represented
by variables w and y, the mapping is encoded in Constraints (2b). The interest of the
transformation is the following. If x is integral, the transformed graph is isomorphic
to G(x). However, its extension to graphs G(x) induced by fractional vectors leads
to transformed graphs that are less connected than G(x). Hence, the corresponding
(w, y) fractional solution is much more likely to be cut by inequalities (2c).

At first glance, this concept may seem similar to the layered formulations used
in [11, 21, 16, 9, 10]. They are, however, completely different. In those previous
works, the role of the layered graphs was to model connectivity requirements with
hop/distance/delay constraints. In contrast, the DT is not linked to any particular
kind of connectivity requirements. In fact, those techniques are orthogonal: it is
possible to combine DT and layered formulations.

1.1. Contributions and structure of the paper. The idea behind DT has its
origin in an extended formulation (denoted as DT-HOP MCF) introduced in Mahjoub
et al. [18] for the HSNDP. The numerical results obtained were very positive, signifi-
cant gap reductions with respect to previous known formulations led to the solution
of several open instances from the literature. There was however no theoretical justifi-
cation for the gap reductions obtained by what seemed to be an ad-hoc reformulation
for that specific network design problem.

The purpose of this paper is to introduce the Distance Transformation, a generic
graph transformation that works for the aforementioned class of network design prob-
lems. We show in Section 2.1 how the distance transformation is naturally defined as
a graph transformation. The transformation is extended to graphs defined by frac-
tional vectors by using convexity arguments. We explain then in Section 2.2 how this
ideal distance transformation reduces the connectivity of fractional vectors by splitting
nodes. Section 3 studies linear programming formulations for the distance transforma-
tion. A natural formulation is presented in Section 3.1. Section 3.2 studies relaxations
of the formulation to make it more effective computationally. Section 4 shows how
basic connectivity requirements can be incorporated into the linear programming for-
mulations through inequalities or flow formulations. The resulting formulations are
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Fig. 2. Original graph G and DTS(G) with S = {1, 2}.

illustrated numerically in Section 5 on two network design problems: the Steiner For-
est Problem and the Hop-constrained Survivable Network Design Problem. The paper
is finally concluded in Section 6.

1.2. Notations. Let F (0, 1) = [0, 1]m \ {0, 1}m be the set of vectors in the unit
hypercube having at least one fractional component. Undirected edges are denoted
by {i, j}, and directed edges are denoted by (i, j). In addition, we use the following
conventions in all figures in the paper. The set of source nodes S contains the vertices
filled in black. Plain edges and nodes have weights equal to 1, while dotted edges and
nodes with dotted circle have weights equal to 0.5. The set of extreme points of a
polytope P is denoted as ext(P ).

2. The unitary distance transformation. We introduce formally the distance
transformation in Subsection 2.1 and study in Subsection 2.2 the connectivity of the
layered graphs obtained for fractional vectors x. Linear programming formulations
for DT shall be discussed in the next section.

2.1. Definition. The distance transformation considers an arbitrary subset of
root nodes S ⊂ V and maps any subgraph G′ = (V,E′) of G = (V,E) to a layered
graph. The mapping is based on the distance in G′ between any node i ∈ V and S.
Define the layered and undirected graph G = (V,E), where V = V 0 ∪ . . .∪ V n, with
V l = {il : i ∈ V } for each l = 0, . . . , n and il be the copy of vertex i in the l-th level
of graph G. Then, the edge set is defined by E = {{il1 , jl2} | {i, j} ∈ E, 0 ≤ l1 ≤
n−2, l1−1 ≤ l2 ≤ l1+1}∪{{in, jn} | {i, j} ∈ E}. Let P(G) be the set of all subgraphs
of G that contain all nodes of V and P(G) be the set of all subgraphs of G that contain
exactly one copy of each node of V , formally: P(G) = {G′ = (V,E′) | E′ ⊆ E} and
P(G) = {G′ = (V′,E′) | V′ ⊆ V and |V ∩ {il : 0 ≤ l ≤ n}| = 1,∀i ∈ V,E′ ⊆ E}.

The distance transformation is a function DTS : P(G) → P(G) that maps any
subgraph G′ ∈ P(G) to layered graph DTS(G′) ∈ P(G) defined as follows. Let
distG′(i, S) be the length of the shortest path in G′ connecting i to a node in S or ∞
if no such path exists. For each i ∈ V such that distG′(i, S) < ∞, vertex idistG′ (i,S)

belongs to DTS(G′). Otherwise, in ∈ DTS(G′). For any {i, j} ∈ G′, {il1 , il2} belongs
to DTS(G′) if and only if l1 = distG′(i, S) and l2 = distG′(j, S). Remark that for any
{i, j} ∈ G′, |distG′(i, S) − distG′(j, S)| ≤ 1. In other words, the images of adjacent
vertices in G′ lie in adjacent levels in DTS(G′). Figure 2 shows an example of distance
transformation. A crucial property of the distance transformation is that G′ and
DTS(G′) are isomorphic.



6

Any graph in P(G) can be characterized as G(x) = (V,E(x)) where x ∈ {0, 1}m
is a binary vector whose component {i, j} is equal to 1 if and only if {i, j} ∈ E(x); we
say that G(x) is induced by x. We can also describe a graph G′ = (V′,E′) in P(G)
using vectors w ∈ {0, 1}n(n+1) and y ∈ {0, 1}(3n−1)m, defined as follows:

• wli = 1 iff il ∈ V′;
• yl1l2ij = 1 iff {il1 , jl2} ∈ E′.

Conversely, given binary vectors w and y, G(w, y) denotes the subgraph of G that
contains the vertices (resp. edges) associated to the components of w (resp. y) equal
to 1. Hence, we also define the function DTS : {0, 1}m → {0, 1}n(n+1)+(3n−1)m as
DTS(x) = (w, y) where (w, y) characterizes the graph DTS(G(x)).

In this paper, we address network design problems formulated as linear programs
with binary variables. In this context, x is a vector of optimization variables comprised
between 0 and 1. To use the distance transformation, we must describe DTS through
a system of linear constraints such that for each x ∈ {0, 1}m, (x,w, y) is feasible if and
only if (w, y) = DTS(x). Certainly, the smallest polytope defined by such constraints
is

(3) PS = conv{(x,DTS(x)), x ∈ {0, 1}m}.

Using PS , we are able to define DTS that is defined for any vector in x ∈ [0, 1]m,
fractional or not, as the following projection:

(4) DTS(x) = {(w, y) | (x,w, y) ∈ PS}.

The more general definition (4) is compatible with the previous definition for integral
vectors because whenever x is integral DTS(x) reduces to the singleton {DTS(x)}.
Otherwise, set DTS(x) is a polytope with non-zero dimension. Therefore, DTS :
[0, 1]m ⇒ [0, 1]n(n+1)+(3n−1)m is a point-to-set mapping. We introduce next a straight-
forward characterization of DTS(x).

Theorem 1. Let xq, q = 1, . . . , 2m, be the enumerated set of all vectors in
{0, 1}m. A vector (w, y) belongs to DTS(x) if and only if there exists a vector of

convex multipliers λ such that x =
∑2m

q=1 λ
qxq and (w, y) =

∑2m

q=1 λ
qDTS(xq).

Proof. Direct from (3) and (4).

Extending the previous definitions to fractional vectors, we can define G(x) and
G(w, y) as the graphs induced by the positive components of x and (w, y), respectively.
We provide next an example of DTS(x′) for the fractional vector x′ = (0.5, 0.5, 0.5) as-
sociated to the graphG′ = (V ′, E′) with V ′ = {1, 2, 3} and E′ = {{1, 2}, {1, 3}, {2, 3}},
and S = {1}. Figures 3(a)–3(h) represent the graphs induced by the vectors of DTS(x)
for each x ∈ {0, 1}3. In view of Theorem 1, any element in DTS(x′) is obtained from
expressing x′ as a specific convex combination of the vectors in {0, 1}3. Hence, one
readily verifies by examination that ext(DTS(x′)) contains the vectors that induce the
four graphs from Figure 4, which correspond to four different convex combinations
describing x′. One can see the splitting of nodes occurring in the graphs induced by
all vectors of ext(DTS(x′)). The splitting of nodes corresponds to fractional values
of w. As will be seen in the next section, the splitting of nodes for all vectors of
ext(DTS(x′)) is a necessary condition for DT to be useful.

This does not always happens. Consider a similar example, except that S = {1, 2}.
The graphs for vectors in ext(DTS(x′)) are shown in Figure 5. We see that the left
graph does not contain split nodes. Hence, that choice of S would not give a useful
transformation.
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Fig. 3. DTS(x) for each x ∈ {0, 1}3.

2.2. Connectivity of DTS. The distance transformation translates the original
network design problem defined in G into a network design problem defined in G, by
importing to G the connectivity requirements described in G. In this section, we il-
lustrate how this is done for the simpler case of demands requiring the existence of K
edge-disjoint paths between some pairs of vertices. To this end, we add up to 2|D| su-
pervertices to G and G(w, y), obtaining G = (V,E) and G(w, y) = (V(w),E(w, y)),
respectively. Namely, for each demand (u, v) ∈ D, we create two supervertices s(u)
and t(v) respectively linked to vertices ul and vl by directed edges (s(u), ul) and
(vl, t(v)) for each 0 ≤ l ≤ n. For any x ∈ {0, 1}m, the requirement of the existence
in G(x) of K edge-disjoint (u, v)-paths becomes the requirement of the existence in
G(w, y) of K edge-disjoint (s(u), t(v))-paths.

To model these connectivity requirements by linear constraints, we need to con-
sider graphs G(x) and G(w, y) as weighted graphs. The weight on any edge in G(x)
is equal to the value of the associated component of x. For G(w, y), we must dis-
tinguish between the undirected edges, and the directed ones that link G(w, y) to
the supervertices. The weight on any undirected edge is equal to the value of the
associated component of y, while the weight on any directed edge linking s(u) (resp.
t(v)) and ul (resp. vl) is equal to Kwlu (resp. Kwlv). We define next the connectivity

of weighted graph G(x) as the vector C(x) ∈ R|D|+ with Cuv(x) equal to the maxi-
mum flow between u and v in G(x). Similarly, we define the connectivity of weighted
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Fig. 5. Graphs in ext(DTS(G′(x))) when S = {1, 2}.

graph G(w, y) as the vector C(w, y) ∈ R|D|+ with Cuv(w, y) equal to the maximum

flow between the supervertices s(u) and t(v) in G(w, y). With these definitions, the
network design problem defined in G with optimization variables x and connectivity
requirements

(5) Cuv(x) ≥ K, ∀(u, v) ∈ D,

can be reformulated as a network design problem defined in G with optimization
variables x,w, and y, and containing two groups of constraints:

1. Constraints specifying that (x,w, y) ∈ PS ;
2. Connectivity requirements constraints

(6) Cuv(w, y) ≥ K, ∀(u, v) ∈ D.

In the following we denote the feasibility set of constraints (5) by

C0 = {x ∈ [0, 1]m | Cuv(x) ≥ K, ∀(u, v) ∈ D}
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and the projected feasibility set of constraints (6) by

CPS = Projx{(x, y, w) ∈ PS | Cuv(w, y) ≥ K, ∀(u, v) ∈ D},

where Projx(X ) denotes the projection of set X on variables x. We also denote
the convex hull of the feasible solutions of the network design problem defined by
connectivity requirements (5) as

Copt = conv{x ∈ {0, 1}m | Cuv(x) ≥ K, ∀(u, v) ∈ D}.

The result below shows that the approximation of Copt provided by CPS is tighter
than the one provided by C0.

Proposition 2. For any connectivity requirements constraints of the form (5)
and any S, it always holds that

(7) Copt ⊆ CPS ⊆ C0.

Proof. Let x ∈ {0, 1}m and DTS(x) = (w, y). The first inclusion follows from the
fact that G(x) and G(w, y) are isomorphic, and thus, Cuv(x) = Cuv(w, y) for each
(u, v) ∈ D. To prove the second inclusion, we first prove that

Cuv(x) ≥ Cuv(w, y), ∀(u, v) ∈ D.

Let (u, v) ∈ D and let g be any vector defining a flow from s(u) to t(v) in G(w, y).
Then, we can flatten G(w, y) to obtain a flow f from u to v. Namely, we define
the flow f on edge {i, j} ∈ G(x) as the sums of the flows described by g on all
{il1 , jl2} ∈ G(w, y). The flows on the directed edges linking the supervertices s(u)
and t(v) to G do not matter since we are only interested in a flow from u to v. It
is easy to see that the resulting flow f satisfies the capacity constraints, the balance
constraints and conveys the same amount of flow from u to v that g conveys from s(u)
to s(v). Therefore, if x ∈ CPS , then we also have that x ∈ C0, proving the inclusion.

The power of distance transformation lies in its reduction of the connectivity of
the graphs induced by (w, y) ∈ DTS(x) for fractional vectors x ∈ (0, 1)m. Even when a
fractional solution x is not cut by connectivity requirement constraints (5), meaning
that x ∈ C0, it may well happen that all (w, y) ∈ DTS(x) are cut by connectivity
requirement constraints (6), implying x /∈ CPS . The next result provides an example
of x ∈ C0 \ CPS .

Proposition 3. Consider the network design problem defined on graph G′ from
Figure 3 under the connectivity requirements C12(x) ≥ 1 and C13(x) ≥ 1. It holds
that

(8) CPS ⊂ C0.

Proof. The inclusion follows from Proposition 2. To see that the inclusion is strict,
we show that the fractional solution x defined by x12 = x23 = x13 = 0.5 belongs to
C0\CPS . Clearly, x ∈ C0 since we can use the cycle to send half a unit in each direction
for both demands in D. To see that x /∈ CPS , we must show that all (w, y) ∈ DTS(x)
violate C12(w, y) ≥ 1 or C13(w, y) ≥ 1. First, we remark that

(9)

n∑
l=0

wli = 1, ∀i ∈ V,
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because any (w, y) ∈ DTS(x) can be extended to (x,w, y) ∈ PS , which can be written
as a convex combination of binary vectors (x,w, y) satisfying equation (9). Consider
then the four extreme points of DTS(x), which are depicted in Figure 4 where all
edges have values equal to 0.5. We can see that for each of these graphs, vertex 2 or
vertex 3 (or both) belongs to the level 3, so that the corresponding value of w3

i = 0.5
for i = 2 or 3. Since level 3 is not connected to 1, 0.5 units of flow cannot reach vertex
1 and equation (9) implies that C12(w, y) ≥ 1 or C13(w, y) ≥ 1 is violated. Since any
(w, y) ∈ DTS(x) can be written as a convex combination of these graphs, there is
always a fraction of the flow that cannot reach vertex 1, proving the result.

The intuitive idea behind the distance transformation is that fractional solutions
are often mapped to layered graphs where node splitting occurs, as in Figure 4.
The node splitting then cuts some paths in the original graph which results in a
decrease of connectivity. This decrease is often enough to cut the fractional solutions.
Figure 4 shows that the node splitting breaks the cycle in all cases but the upper one.
Nevertheless, the connectivity of the upper-left graph is also reduced because of the
limited weight available on the directed edge linking the supervertices to the layered
graph. When no node-splitting occurs, as in the left graph of Figure 5, graphs G(x)
and G(w, y) are isomorphic so that they satisfy the same connectivity requirements.
It is therefore useful to be able to discover whether a given distance transformation
leads to splitting of the fractional vectors. The result below partially answers this
question by providing an approach to find out whether the graph induced by a given
fractional solution (x,w, y) ∈ PS contains split nodes.

Proposition 4. Let x ∈ F (0, 1) and (w, y) ∈ DTS(x). Consider a set of Q
positive convex multipliers λ such that

(10) (x,w, y) =

Q∑
q=1

λq(xq, wq, yq),

where xq ∈ {0, 1}m and (wq, yq) = DTS(xq) for each q = 1, . . . , Q. Then, any node
i ∈ V is split Q′ times in G(w, y), where Q′ ∈ {1, . . . , Q} corresponds to the number
of different values in set

(11) {distG(xq)(i, S), q = 1, . . . , Q}.

Proof. From equation (10), we have that wli =
∑Q
q=1 λ

qwqli . By definition of DTS ,

we further have that w
q distG(xq)(i,S)

i = 1 for each q ∈ {1, . . . , Q}, so that

wli =
∑

q:distG(xq)(i,S)=l

λq,

which is positive for each l ∈ {0, . . . , n} corresponding to a value in the set defined in
(11).

Proposition 4 is an important result in understanding the structure of fractional vec-
tors in PS , which is the key to efficiently apply distance transformation to network
design problems. In particular, the proposition shows that any node i ∈ V corre-
sponding to (x,w, y) defined by equation (10) is split if and only if

(12) distG(xq)(i, S) 6= distG(xq′ )(i, S),
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for some q 6= q′ in {1, . . . , Q}. The difficulty of using the node splitting to cut a
particular fractional solution x is that we must ensure that the splitting occurs for
all (w, y) ∈ DTS(x), which is a complex task in general. Nevertheless, for some very
special cases it is possible to predict that splitting always occurs, see the result below.

Proposition 5. Consider the distance transformation defined by a unique root
S = {i} for some i ∈ V , let x ∈ F (0, 1), and consider a node j ∈ V \ {i}. If
xij ∈ (0, 1), node j is split in G(w, y) for all (w, y) ∈ DTS(x).

Proof. Let

(x,w, y) =

Q∑
q=1

λq(xq, wq, yq)

be any vector in PS . Because xij ∈ (0, 1), there exists q and q′ in Q such that xqij = 1

and xq
′

ij = 0. Hence, (12) holds, yielding the result.

3. Linear programming formulations for the DT.

3.1. “Natural” formulation for PS. So far we have been using abstract dis-
tance transformations based on the ideal polytope PS . To use DT in practice, we
should have a linear formulation for PS , providing its convex hull in the ideal case.
Unfortunately, the complete description of PS is not easy to find. Below, we provide a
polynomial formulation for PS which, although not completely describing PS , leads to
very good improvements in the linear programming relaxation of some network design
problems with connectivity requirements. Let δE(S) = {{i, j} ∈ E, |{i, j} ∩ S| = 1}
and E′ = E \ δE(S). The formulation below links the three groups of variables x,w,
and y using the following constraints:

w0
i = 1,∀i ∈ S(13a)

n∑
l=1

wli = 1,∀i ∈ V \S(13b)

y01ij = xij ,∀{i, j} ∈ δE(S), i ∈ S(13c)

n∑
l=1

yllij +

n−2∑
l=1

(y
l(l+1)
ij + y

l(l+1)
ji ) = xij ,∀{i, j} ∈ E′(13d)

y01ij ≤ w1
j ,∀{i, j} ∈ δE(S), i ∈ S(13e)

y11ij + y12ij ≤ w1
i ,

y11ij + y12ji ≤ w1
j ,
∀{i, j} ∈ E′(13f)

yllij + y
l(l+1)
ij + y

(l−1)l
ji ≤ wli,

yllij + y
l(l+1)
ji + y

(l−1)l
ij ≤ wlj ,

∀{i, j} ∈ E′; l = 2, . . . , n− 2(13g)

y
(n−2)(n−1)
ji + y

(n−1)(n−1)
ji ≤ wn−1i ,

y
(n−2)(n−1)
ij + y

(n−1)(n−1)
ij ≤ wn−1j ,

∀{i, j} ∈ E′(13h)

wli ≤
∑
{j,i}∈E

y
(l−1)l
ji ,∀i ∈ V \S; l = 2, . . . , n− 1(13i)

0 ≤ x,w, y ≤ 1.(13j)

Constraints (13a–13b) state that each vertex should be in one of its possible levels.
Constraints (13c–13h) state that each original edge variable xij should be translated
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Fig. 6. Example of fractional x, the single point in DTS(x), and a point in ext(DTF
S (x))

(S = {1}).

into a variable yl1l2ij such that both wl1i and wl2j have value one. Constraints (13i)
state that a vertex i can only be in level l < n if it is reached by at least one edge
{j, i} from level (l−1). Let PFS be the polytope defined by constraints (13). We prove
below that the above constraints yield a valid formulation for polytope PS defined in
(3).

Proposition 6. Linear constraints (13) yields a valid formulation for polytope
PS. Hence, given x ∈ {0, 1}m, (x,w, y) ∈ PFS if and only if (w, y) = DTS(x).

Proof. The validity of (13a–13j) follows from the observation that (x,DTS(x))
satisfies the constraints for each x ∈ {0, 1}m. To see that (13a–13j) is also a formula-
tion for PS , we consider a binary vector x ∈ {0, 1}m and see by induction on l that
PFS contains a unique solution where, for each node i connected to S in G(x), wli = 1
if and only if i is at distance l from S. If i is not connected to S, the corresponding
(13b) constraint ensures that wni = 1.

The above formulation enables us to extend DTS to fractional vectors as done in
Section 2.1. The pendant of equation (4) for PFS is

(14) DTFS (x) = {(w, y) | (x,w, y) ∈ PFS },

and P ⊆ PFS implies that DTS(x) ⊆ DTFS (x) for any x ∈ [0, 1]n. When x is fractional,
the example from Figure 6 shows that the inclusion can be strict. Namely, Figure 6(c)
depicts the graph induced by a vector (w, y) ∈ DTFS (x) that does not belong to
DTS(x) because it cannot be obtained as the convex combination of binary vectors.
In fact, for that example, DTS(x) is reduced to the singleton (w, y) that induces the
graph in Figure 6(b).

For any x ∈ [0, 1]m, one can also extend the connectivity requirements to the
graphs induced by any (w, y) ∈ DTFS (x). We define

CFS = Projx{(x, y, w) ∈ PFS | CHuv(w, y) ≥ K, ∀(u, v) ∈ D},

and Proposition 2 can be completed with the following result.

Proposition 7. For any connectivity requirements constraints, it always holds
that

(15) CPS ⊆ CFS ⊆ C0.
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Fig. 7. Graph G(w, y) = (V(w),E(w, y)) associated to the second extreme point (w, y) depicted
in Figure 4 and considering demands (1, 2) and (1, 3). Thin edges (resp. nodes) correspond to the
components of y (resp. w) equal to zero and do not belong to E(w, y) (resp. V(w)).

Proof. The inclusion CPS ⊆ CFS follows from the fact that P ⊆ PFS . Then,
constraints (13d) and (13f) enable us to prove inclusion CFS ⊆ C0 by using the same
flattening argument as the one used in the proof of Proposition 2.

We study next whether inclusions in (15) can be strict. We see easily that Propo-
sition 3 extends to CFS , providing an instance for which CFS ⊂ C0. We then turn to
inclusion CPS ⊆ CFS . The example from Figure 6 does not lead to strict inclusion be-
cause the graphs of Figures 6(b) and 6(c) satisfy the same connectivity requirements,
namely C1

23(w, y) ≥ 1. However, we do have numerical evidence that the inclusion
can be indeed strict, which is left out of the manuscript to simplify our exposure.

3.2. Limiting the levels. The DT described in the previous subsections can
lead to large formulations. Due to the number of layers in graph G, formulation (13)
introduces O(nm) variables and constraints. For some NDPs, we can eliminate most
levels without affecting the transformation. For instance, if all demands in D have
a common extremity, and the connectivity requirements asks for paths bounded by
some number H, then we can restrict the number of layers to H + 1. This example
arises in the survivable network design problems studied by [18].

However, it is possible to define DTs that use only a small number of layers L,
regardless to the NDP under consideration. This decreases the size of the associated
linear programming formulations, but may also decrease the node splitting, and thus,
the gains in terms of gap reduction. In fact, there is a trade-off between the chosen
value of L and the quality of the DT. We suppose that G(x) is the graph induced
by some binary vector x and that GL is a graph that consists of L layers. The
truncated distance transformation DTLS sets the image of node i in GL to layer
min(distG(x)(i, S), L−1). This means that levels from L−1 to n−1 of the original G
are flattened into a single level L − 1 in GL; nodes not connected to S are still
mapped to layer L. Edges are mapped subsequently according to the images of
their extremities. This will not affect much the quality of the DT when few nodes i
have distG(x)(i, S) ≥ L in typical solutions x. Formulation (13) is adapted for this
modification by changing constraints (13g–13i), reducing the size of the formulation
to O(Lm) variables and constraints.

4. Formulating the connectivity requirements.
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4.1. Simple connectivity requirements. In order to provide a linear pro-
gramming formulation for an NDP, one still has to reformulate the connectivity re-
quirements constraints with linear constraints. We start our approach with the simple
constraints

(16) Cuv(w, y) ≥ K, ∀(u, v) ∈ D

considered in the previous sections. Recall that constraint (16) impose that, for each
(u, v) ∈ D, the value of the maximum flow between s(u) and t(v) in G(w, y) be not
smaller than K, see Figure 7 for an example of graph G(w, y) = (V(w),E(w, y)).
We describe next how to express the constraints for a single demand {u, v} ∈ D
using either flow variables or cutset inequalities, and disregarding the level reductions
discussed in the previous section. The flow formulation complements Formulation (13)
with two flow variables f l1l2ij and f l2l1ji for each undirected edge {il1 , jl2} in G(w, y),

and two flow variables f ls(u)u and f lvt(v) for each demand (u, v) ∈ D and l ∈ {1, . . . , n}
(notice that if u belongs to S, we only introduce flow variable f0s(u)u, see Figure 7,

and similarly if v ∈ S). Then, we impose that capacity be respected for all edges

(17)

f l1l2ij + f l2l1ji ≤ y
l1l2
ij , ∀{il1 , jl2} ∈ E

f ls(u)i ≤ Kw
l
i, ∀il ∈ V

f lit(v) ≤ Kw
l
i, ∀il ∈ V

,

flow be conserved for nodes in V

(18) f l1s(u)i − f
l1
it(v) +

∑
{il1 ,jl2}∈δE(il1 )

(
f l2l1ji − f

l1l2
ij

)
= 0, ∀il1 ∈ V,

and that the flow exiting supervertex s(u) exceeds K

(19)

f0s(u)i ≥ K, if u ∈ S,
n∑
l=1

f ls(u)i ≥ K, otherwise.

Alternatively to constraints (17–19), cutset inequalities impose that

(20)
∑

l:ul∈V\U

Kwlu +
∑
l:vl∈U

Kwlv +
∑

{il1 ,jl2}∈δE(U)

yl1l2ij ≥ K, ∀U ⊆ V.

We illustrate next cutset inequalities on an example based on the solution depicted
in Figure 7 together with connectivity requirement C12(w, y) ≥ 1. If U = {10, 21, 31},
then inequality (20) becomes

w1
2 + y1223 + y1232 ≥ 1,

which is violated by the solution depicted in Figure 7.

4.2. Hop constraints. We study next the more complex connectivity require-
ments obtained by limiting the path length (hops) used to transmit the flow by a

given integer H. Namely, we consider matrix C(x) ∈ R|D|×(n−1)+ with CHuv(x) equal
to the maximum flow between u and v in G(x) using paths with at most H hops.

Similarly, we define matrix C(w, y) ∈ R|D|×(n−1)+ with CHuv(w, y) equal to the max-

imum flow between the supervertices s(u) and t(v) in G(w, y) using paths with at
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Fig. 8. Hop-level graph.

most H + 2 hops. With these definitions, we see immediately that C(x) = Cn−1(x)
and C(w, y) = Cn−1(w, y). The counterparts of (5) and (16) for C are

(21) CHuv(x) ≥ K, ∀(u, v) ∈ D,

and

(22) CHuv(w, y) ≥ K, ∀(u, v) ∈ D.

Remind that connectivity constraints (21) can be expressed by a hop-indexed flow
formulation first introduced in [8]. The formulation has been extended to handle (22)
in [18], denoted DT-HOP indexed flow formulation therein, and we recall it below.
Given a demand (u, v) ∈ D and an integer H, the formulation considers a directed
layered graph Guv = (Vuv,Auv), where the definition of Vuv = Vuv

1 ∪ · · · ∪Vuv
H+3

depends on whether {u, v} intersects S. If {u, v} ∩ S = ∅, then Vuv
1 = {s(u)},

Vuv
2 = {ul | 1 ≤ l ≤ n}, Vuv

h = V \ {{ul, vl} | 1 ≤ l ≤ n}, h = 3, . . . ,H + 1,
Vuv
H+2 = {vl | 1 ≤ l ≤ n} and Vuv

H+3 = {t(v)}. If u ∈ S or v ∈ S, we have instead
Vuv

2 = {u0} or Vuv
H+2 = {v0}, respectively, see Figure 8 for an example where u ∈ S

and v /∈ S. Let ih be the copy of i ∈ V in the h-th layer of graph Guv, that is, i = il
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for some i ∈ V, 0 ≤ l ≤ n and ih = ilh. The arcs set is defined by (see again Figure 8)

Auv = {(s(u),u2) | u2 ∈ Vuv
2 }(23)

∪ {(u2, i3) | {u, i} ∈ E,u2 ∈ Vuv
2 , i3 ∈ Vuv

3 }(24)

∪ {(ih, jh+1) | {i, j} ∈ E, ih ∈ Vuv
h , jh+1 ∈ Vuv

h+1, 3 ≤ h ≤ H}(25)

∪ {(ih, ih+1) | 3 ≤ h ≤ H, ih ∈ Vuv
h }(26)

∪ {(iH+1,vH+2) | {v, i} ∈ E,vH+2 ∈ Vuv
H+2, iH+1 ∈ Vuv

H+1}(27)

∪ {(vH+2, t(v)) | vH+2 ∈ Vuv
H+2}(28)

∪ {(u2,vH+2) | {u,v} ∈ E,u2 ∈ Vuv
2 ,vH+2 ∈ Vuv

H+2}.(29)

Given this auxiliary graph, the DT-HOP indexed flow formulation complements
formulation (13) with a flow variable guv,hij for each arc (ih, jh+1) ∈ Auv. To simplify
notations, we omit index uv from the flow variables in what follows. Then, we impose
that capacity be respected for all edges

g1s(u)u ≤ Kwu,∀u2 ∈ Vuv
2(30)

g2ui ≤ yui,∀{u, i} ∈ E,u2 ∈ Vuv
2 , i3 ∈ Vuv

3(31)

H∑
h=3

(
ghij + ghji

)
≤ yij,∀{i, j} ∈ E, ih ∈ Vuv

h , jh+1 ∈ Vuv
h+1, 3 ≤ h ≤ H(32)

gH+1
iv ≤ yvi,∀{v, i} ∈ E,vH+2 ∈ Vuv

H+2, iH+1 ∈ Vuv
H+1(33)

gH+2
vt(v) ≤ Kwv,∀vH+2 ∈ Vuv

H+2(34)

guv ≤ yuv,∀{u,v} ∈ E,u2 ∈ Vuv
2 ,vH+2 ∈ Vuv

H+2.(35)

Arcs in (26) have an infinite capacity so that no capacity constraints are written for
these arcs. The counterpart of flow conservations constraints in graph Guv is readily
obtained from (18). Finally, we need to impose that the flow exiting supervertex
s(u) ∈ Vuv

1 exceeds K:

(36)
∑

u2∈Vuv
2

g0s(u)u2
≥ K.

Capacity constraints (32) prevent the above system to define a pure network
flow problem, having the integrality property. Hence, in general we need to impose
integrality restrictions on g. However, in the cases H = 2, 3, one can readily extend
the results from [12, 2] to show that the DT-HOP indexed formulation is indeed
integral. Actually, for those cases it is possible avoid including the DT-HOP indexed
variables and constraints in the Formulation (13) and replace them by cuts separated
by the min-cut algorithm over Guv, as shown in the following example.

Consider graph G = (V,E), defined by V = {1, 2, 3, 4, 5} and E = {{1, 2},
{1, 3}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}, let G = (V,E) be the associated layered graph
and Figure 9(a) represent a fractional solution that satisfies C3

15(x) ≥ 1. Figure 9(b)
represents the graph associated to some (w, y) ∈ DTS(x) that violates C3

15(w, y) ≥ 1.
We show next how to separate a violated cut violated by G(w, y). Without loss of
generality, we can restrict ourselves to the subsets of nodes and edges of G that be-
long to at least one graph of {G(DT (x′)) : x′ ∈ {0, 1}m}, which are represented in
Figure 9(c) and can be obtained automatically using preprocessing algorithms. The
feasibility of C3

15(w, y) ≥ 1 is tested by looking for a feasible flow of one unit between
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(d) Transformation of G(w, y) following Figure 1 from [13].
Thin nodes (resp. edges) correspond to the components of w
(resp. y) equal to zero. Nodes in level 5 are omitted because
they are not connected to 1.

Fig. 9. Separation of 3-path cut inequalities following [13].

s(1) and t(5) in the expanded graph depicted in Figure 9(d). Looking for a cut of
minimum capacity that contains s(1), we obtain either inequality

y0113 + y2335 ≥ 1,

or inequality
w2

5 + y2335 ≥ 1,

which are both violated by the solution depicted in Figure 9(b). Those inequalities
correspond to the counterparts of the 3-path-cut inequalities proposed in [12, 2].

Whenever H ≥ 4, the DT-HOP indexed flow formulation cannot be replaced
by inequalities obtained by the min-cut algorithm. However, it can be numerically
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efficient to avoid the inclusion of the formulation and replace it by Benders inequalities
for variables y and w, similarly as [3].

5. Numerical experiments for the DT.

5.1. The Steiner Forest Problem. The SFP has the following natural formu-
lation:

Min
∑
e∈E

cexe(37a)

S.t.
∑

e∈δE(S)

xe ≥ 1∀(u, v) ∈ D;∀S ⊂ V, u ∈ S, v /∈ S(37b)

xe binary ∀e ∈ E.(37c)

Constraints (37b) are known as undirected cut inequalities. This formulation is the
basis for the classical primal-dual 2-approximated algorithm for the SFP [7]. Never-
theless, (37) does not provide effective exact branch-and-cut algorithms, duality gaps
of more than 20% are typical on practical instances. For example, consider an instance
defined over a complete graph with vertices {1, 2, 3} and D = {(1, 2), (1, 3)}. The frac-
tional solution x12 = x13 = x23 = 0.5 mentioned previously satisfies all constraints
(37b).

The difficulty of devising a directed formulation for SFP lies in the fact that it is
not known beforehand which demands will belong to the same connected component
(a subtree) of an optimal solution. A strong SFP formulation was proposed by Mag-
nanti and Raghavan [17], based on the concept of consistent edge orientations across
demands. In that concept, each connected component is represented by a directed
tree rooted at the first vertex of the demand with smaller index in the component.
However, the formulation in [17] is not much practical since it contains an exponential
number of constraints and no polynomial algorithm for separating them is known. The
lifted-cut formulation proposed by Konemann et al. [15] can be stronger than (37) and
its linear relaxation can be solved in polynomial time. Recently, Schmidt et al. [22]
presented four new formulations (essentially three formulations, since two of them are
equivalent). The strongest new formulations are based on the same consistent edge
orientations across demands concept from [17], however, their linear relaxations can
be solved in polynomial time.

Figure 10 depicts a small STF instance with 8 vertices and 12 edges considered
in [22], edge costs are unitary and the 4 demands are represented by pairs of identical
symbols. The optimal solution value is 7. Table 1 presents the linear relaxation
values for each existing formulation (taken from [22]) and also for the new formulation
obtained by applying the DT to the natural formulation.

This small example illustrates the potential power of the DT on STF. In fact, it
proves that the weak natural formulation is transformed into a new formulation that
can be strictly stronger than any other known STF formulation in some instances. On
the other hand, the result obtained by setting L = 3 shows that the limitation of levels,
necessary on larger instances, may affect the linear relaxation bounds significantly.

The following experiments were performed in a single core of a machine with
processor i7 at 2.5 GHz and 16 GB of RAM. The tested formulations were implemented
over the XPRESS-Optimizer 7.3. We performed tests with 3 types of instances:

• Small STF instances (pdh, di-yuan, dfn-gwin, polska and nobel-us) available
in the SNDLib.
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Formulation Linear Relaxation

Natural (37) 4
Lifted-cut [15] 4
Full directed flow based [17] 6
Tree-based [22] 5
Extended cut-based [22] 5.14
Strengthened extended cut-based [22] 6

Distance Transformation 7
Distance Transformation L= 3 5

Table 1
Linear relaxation value for instance in Figure 10

Fig. 10. STF instance with 4 demands (pairs of identical symbols), unitary edge costs.

• Steiner instances C01 st,...,C10 st from the SteinLib. Those instances are
defined over random graphs with 500 vertices. For an instance with terminal-
set T , we defined D as {(r, v) : v ∈ T, v 6= r}, where r is the terminal with
smaller index. Those instances can be easily solved by SPG codes using a
directed formulation. Nevertheless, it is interesting to see how the DT can
improve the undirected formulation.

• SPF instances C01,...,C10 derived from the above instances as follows. The
set D is obtained by pairing consecutive terminals in T . If |T | is odd, an
extra demand from the first to the last terminal is included. To the best of
our knowledge, some of those instances can be very hard for current solution
methods.

Table 2 compares gaps (with respect to optimal or best known UBs) and times to
solve linear relaxations for: (1) natural formulation (37); (2) Lifted-cut formulation
[15]; (3) Strengthened Extended Cut-Based (SECB) [22] ; (4) DT reformulation over
the natural formulation, for L = 3, L = 4, and L = 5, using unitary distances and
with a singleton set S containing the first terminal. Some comments on those results:

• The lifted-cut formulation gaps are not much better than those from the
natural formulation.

• The SECB formulation assumes that demands with a common vertex will be
merged into demands containing more than two vertices. The connectivity
requirement of those demands is the existence of paths joining all its vertices.
In all SNDLib and C st instances this preprocessing reduces all demands into
a single demand. The SECB formulation for a single demand containing
several vertices is exactly equivalent to the directed Steiner formulation. So,
it is expected that the gap for those types is very close zero and the times
small. The demands are not merged on the C instances, so the test of the
SECB formulation is significant for that type. The experiments show that the
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gaps obtained are small, however the number of variables in the formulation
(O(m.|D|) and the number of times that the min-cut separation algorithm
has to be called per separation round (O(|D|2) makes the formulation slow
when |D| grows. In 5 of the C instances the solution was stopped at 1800
seconds, before the cut separation converged.

• The DT can reduce the gaps significantly with respect to the natural for-
mulation. As expected, the average gaps decrease when L increase, but the
improvement quickly becomes marginal. The DT with L = 3 seems to be the
best compromise between gap and running times on most instances. While the
gap reductions are remarkable for SNDLib and C st instances, they are less
impressive for the C instances. We verified that their distance transformed
fractional solutions were divided into a number of connected components. All
those components, except the one that contained the vertex in S, are in level
L, where vertex splittings do not happen.

In order to make the DT effective on that last case, we devised an iterative
scheme for choosing a larger set S. We start with a single vertex in S and solve the
linear relaxation of the corresponding DT. While the fractional solution still contains
vertices in level L, we introduce one vertex from the larger connected component in
L and solve the new DT again. Table 3 shows the results of this dynamic procedure
for L = 3, L = 4, and L = 5. While the resulting gaps are quite better, they are still
large when compared with those obtained in other types of instances.

Finally, Table 4 compares the results of the full branch-and-cut over the original
formulation (37) with the branch-and-cut over the DT reformulation, for some chosen
parameterization. We mark in bold the time of the method that could solve the
instance faster. If no method could solve the instance, either because the time limit
of 7200 seconds was exceeded or because it went out of memory, we mark in bold
the smallest final gap obtained. We did not passed any external upper bound to the
branch-and-cut, those gaps are with respect to the best solution found by the method
itself. Although the harder instances could not be solved to optimality, it is clear that
the overall performance of the DT reformulation is much better.
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Natural Lifted-cut SECB DT L=3 DT L=4 DT L=5

Instance |V | |E| |D| UB Gap
(%)

T
(s)

Gap
(%)

T
(s)

Gap
(%)

T (s) Gap
(%)

T (s) Gap
(%)

T (s) Gap
(%)

T
(s)

pdh 11 34 27 897551 41.0 0.00 32.2 0.35 0.0 0.01 0.0 0.01 0.0 0.01
di-yuan 11 42 48 21570000 32.8 0.00 26.1 0.01 0.6 0.02 0.0 0.01 0.0 0.01
dfn-gwin 11 47 9 79960 29.8 0.00 28.5 0.00 1.0 0.04 0.9 0.10 0.9 0.11
polska 12 18 17 214100 38.1 0.00 29.2 0.01 0.0 0.01 0.0 0.01 0.0 0.01
nobel-us 14 21 33 8481000 30.5 0.00 20.1 0.01 1.2 0.02 1.2 0.04 0.8 0.16

Avg. 34.4 0.00 27.2 0.08 0.6 0.02 0.3 0.03 0.3 0.06

c01 st 500 625 4 85 16.5 0.03 12.4 0.07 0.0 1.38 0.0 2.05 0.0 3.77
c02 st 500 625 9 144 24.7 0.16 24.7 0.21 0.0 3.37 0.0 3.63 0.0 6.34
c03 st 500 625 82 754 23.1 0.27 20.6 1.27 0.8 2.10 0.8 4.19 0.8 7.26
c04 st 500 625 125 1079 20.8 0.29 19.6 2.40 0.1 1.09 0.1 6.32 0.1 5.99
c05 st 500 625 249 1579 19.5 0.22 18.6 2.07 0.3 1.58 0.3 7.88 0.3 12.29
c06 st 500 1000 4 55 17.3 0.16 14.6 0.28 4.2 4.00 3.6 10.10 4.2 8.89
c07 st 500 1000 9 102 18.6 0.18 14.2 0.44 0.0 1.26 0.0 1.69 0.0 1.79
c08 st 500 1000 82 509 25.5 0.29 24.3 1.27 0.1 4.73 0.1 13.65 0.1 27.45
c09 st 500 1000 124 707 28.3 0.59 26.9 3.40 0.6 14.70 0.6 11.48 0.6 21.30
c10 st 500 1000 249 1093 25.4 0.59 24.4 5.11 0.0 3.22 0.0 5.26 0.0 13.90

Avg. 21.7 0.26 19.3 1.60 1.0 3.92 0.9 7.06 0.9 12.60

c01 500 625 3 85 16.5 0.03 5.3 0.11 0.6 15.6 1.0 3.53 1.0 4.62 1.0 7.34
c02 500 625 5 143 24.1 0.19 18.2 0.31 0.4 23.4 17.5 2.84 17.5 3.03 17.5 3.84
c03 500 625 42 754 23.1 0.39 21.6 0.95 0.1 623.7 18.9 13.80 18.9 21.30 18.9 27.40
c04 500 625 63 1079 20.8 0.57 19.3 1.06 0.8 1800 11.0 23.70 11.0 47.80 11.0 86.70
c05 500 625 125 1579 19.6 4.32 18.7 1.36 8.0 1800 13.9 82.60 13.9 71.00 13.9 134.80
c06 500 1000 3 47 3.2 0.13 3.2 0.38 0.0 1.43 0.0 2.83 0.0 2.91 0.0 4.44
c07 500 1000 5 89 10.1 0.07 8.4 0.32 0.0 19.1 0.0 2.70 0.0 2.51 0.0 2.98
c08 500 1000 42 509 25.5 0.77 25.3 0.92 4.2 1800 18.7 59.40 18.7 111.80 18.7 236.20
c09 500 1000 63 707 28.3 1.20 27.2 2.16 3.9 1800 23.0 39.80 23.0 122.20 23.0 276.60
c10 500 1000 125 1093 25.4 1.38 24.4 2.57 12.6 1800 20.3 113.90 20.3 228.40 20.2 617.90

Avg. 18.5 0.84 16.1 1.00 3.1 968.3 11.4 31.70 11.3 56.40 11.3 127.90

Avg. 22.7 0.35 19.5 1.08 5.2 4.47 5.0 8.31 5.0 14.80
Table 2

Natural [1], Lifted-cut [15], Strengthened Extended Cut-Based [22] and DT reformulation (|S|=1) root gaps.
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L=3 L=4 L=5
Inst Gap(%) T(s) Gap(%) T(s) Gap(%) T(s)

c01 0.98 3.53 0.98 4.62 0.98 7.34
c02 6.29 2.99 5.83 4.73 5.60 8.36
c03 7.36 6.86 7.05 20.84 6.97 28.86
c04 4.50 10.64 4.32 25.12 4.20 31.95
c05 3.17 8.82 3.09 52.4 2.98 37.8
c06 0.00 2.83 0.00 2.91 0.00 4.44
c07 0.00 2.7 0.00 2.51 0.00 2.98
c08 9.89 20.16 9.69 40.14 9.57 62.45
c09 11.33 28.15 10.84 61.33 10.83 98.65
c10 8.12 40.38 7.88 82.15 7.78 135.88

Avg. 4.86 11.96 4.52 27.49 4.45 38.89
Table 3

Root gaps for the dynamic choice of S in DT.

Inst Nodes Gap(%) T Nodes Gap(%) T(s)

pdh 20183 0.00 10.52 1 0.00 0.01 L=4 |S|=1
di-yuan 236 0.00 0.19 1 0.00 0.01 L=4 |S|=1
dfn-gwin 1389 0.00 0.64 5 0.00 0.10 L=4 |S|=1
polska 332 0.00 0.15 1 0.00 0.01 L=4 |S|=1
nobel-us 186 0.00 0.09 3 0.00 0.05 L=4 |S|=1

c01 st 52 0.00 2.17 2 0.00 2.65 L=3 |S|=1
c02 st 4275 0.00 60.52 1 0.00 4.56 L=4 |S|=1
c03 st 10887 28.38 o.m. 1212 0.53 7200 L=7 |S|=1
c04 st 20979 22.89 7200 255 0.00 6.18 L=7 |S|=1
c05 st 45310 20.52 7200 149 0.06 7200 L=7 |S|=1
c06 st 241 0.00 5.48 14 0.00 10.77 L=3 |S|=1
c07 st 11409 0.00 565.24 1 0.00 1.55 L=3 |S|=1
c08 st 12700 42.44 o.m. 12 0.00 30.74 L=3 |S|=1
c09 st 16270 43.85 o.m. 514 0.32 7200 L=3 |S|=1
c10 st 29232 46.02 7200 20 0.00 292.58 L=4 |S|=1

c01 56 0.00 2.13 3 0.00 3.38 L=3 |S|=1
c02 4942 0.00 84.54 69 0.00 41.13 L=4 |S|=2
c03 18113 28.51 7200 119 10.61 7200 L=7 |S|=8
c04 29877 23.91 o.m. 821 3.99 7200 L=3 |S|=11
c05 34645 21.47 7200 198 3.04 7200 L=4 |S|=9
c06 3 0.00 1.12 1 0.00 2.39 L=3 |S|=1
c07 239 0.00 10.59 2 0.00 2.33 L=3 |S|=1
c08 12312 41.06 o.m. 439 8.84 7200 L=4 |S|=13
c09 15243 48.37 o.m. 235 11.0 7200 L=3 |S|=16
c10 17361 44.28 7200 17 7.41 7200 L=4 |S|=27

Table 4
Comparison of full branch-and-cut over natural formulation and over DT reformulation. Gaps

are given with respect to the UBs found by branch-and-cut itself, not to the best known solutions.

5.2. The Survivable Network Design with Hop Constraints Problem.
We consider in this section the HSNDP that has been defined in the introduction of
the paper. We address the connectivity requirements by using the layered flow formu-
lation described in Section 4.2, which results in a large extended formulation for the
problem. It can be verified that using the flow formulations proposed in Section 4.2
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to model the connectivity requirements of HSNDP results in a formulation that is
equivalent to the one originally proposed in [18]. Our objective in the section is to
provide numerical evidence that the formulation is well-suited for Benders decomposi-
tion. Specifically, we compare the following three approaches for solving the extended
formulation. First, we feed the formulation directly into CPLEX, leaving all parame-
ters to their default values. Second, we consider the automatic Benders decomposition
algorithm implemented in CPLEX 12.8, which decomposes the extended formulation
into a master problem, that contains only the design variables x,w and y and Benders
cuts, and one subproblem for each demand D that contains the flow variables g asso-
ciated to that demand together with the flow conservations constraints and capacity
constraints described in Section 4.2. Last, we implement an ad-hoc Benders decom-
position algorithm using Callbacks and following closely the lines of [3]. Specifically,
our algorithm solves the master problem through a branch-and-cut algorithm. Every
time an integer solution (x̄, w̄, ȳ) is found in the branch-and-cut tree, all subproblems
are solved to see if the solution (x̄, w̄, ȳ) is feasible for the original problem. If this is
not the case, the subproblems return one or more Benders cuts that are added to the
master problem at all nodes of the branch-and-cut tree.

All algorithms are we fed the solver with the best known solution (denoted BKS
in Table 5) and allow it to fathom any node worse than BKS. Table 5 reports the
results of our computational experiments. The table also contains the results obtained
by using the classical layered formulations from [3] (denoted HOP formulation in the
table) where the connectivity requirements are imposed through flows on layered
graphs that are built directly on the original graph G. Hence, the HOP formulations
contrasts with the the HOP-level formulation that models flows on layered graphs
that are built on the top of the layered graph G.
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Compact Benders auto Benders via Callbacks
H K BKS root

LB
root
gap(%)

final
LB

final
UB

nodes Time
(s)

final
LB

final
UB

nodes Time
(s)

final
LB

final
UB

nodes Time
(s)

H
O

P
fo

rm
u

la
ti

o
n

TC-20 3 2 607 495.1 18.4 607.0 607 67K 2353 607.0 607 3.6M 10748 607.0 607 973K 9294
3 3 842 769.1 8.7 842.0 842 23K 1068 842.0 841 665K 1835 842.0 842 246K 1253
4 2 536 442.3 17.5 506.5 57K 36000 508.4 2.8M 36000 523.0 2.4M 36000
4 3 750 699.7 6.7 750.0 750 16K 8776 750.0 750 421K 1530 750.0 750 286K 2469

TE-20 3 2 776 603.1 22.3 776.0 776 59K 3508 724.4 6.2M 36000 745.0 1.5M 36000
3 3 1082 911.6 15.8 1082.0 1082 184K 9733 1011.5 3.8M 36000 1024.9 1.2M 36000
4 2 670 516.9 22.8 587.5 47K 36000 569.1 1.6M 36000 573.2 720K 36000
4 3 919 793.0 13.7 847.2 44K 36000 830.4 675K 36000 838.0 558K 36000

TC-40 3 2 632 516.9 18.2 623.1 632 136K 36000 593.9 3.6M 36000 592.2 472K 36000
3 3 889 795.0 10.6 881.5 889 127K 36000 856.4 2.9M 36000 853.6 489K 36000
4 2 538 456.4 15.2 476.4 1.6K 36000 501.9 2.2M 36000 494.0 341K 36000
4 3 795 710.4 10.6 728.8 1.8K 36000 747.8 2.3M 36000 747.4 437K 36000

TE-40 3 2 790 616.9 21.9 746.7 37K 36000 704.9 2.1M 36000 695.3 260K 36000
3 3 1094 932.5 14.8 1045.0 33K 36000 1009.5 2.0M 36000 999.4 319K 36000
4 2 661 528.4 20.1 546.4 676 36000 568.2 1.5M 36000 558.5 68K 36000
4 3 968 808.6 16.5 826.9 764 36000 841.5 1.3M 36000 833.7 88K 36000

Compact Benders auto Benders via Callbacks
H K BKS root

LB
root
gap(%)

final
LB

final
UB

nodes Time
(s)

final
LB

final
UB

nodes Time
(s)

final
LB

final
UB

nodes Time
(s)

D
T

-H
O

P
fo

rm
u
la

ti
o
n

TC-20 3 2 607 581.0 4.3 607.0 607 2.6K 43 607.0 607 3.3K 16 607.0 607 2.8K 191
3 3 842 798.8 5.1 842.0 842 2.9K 319 842.0 842 11K 60 842.0 842 11K 601
4 2 536 501.0 6.5 536.0 536 5.2K 20615 536.0 536 15K 148 536.0 536 7.1K 1052
4 3 750 714.8 4.7 737.2 750 2.5K 36000 750.0 750 28K 392 750.0 750 10K 1872

TE-20 3 2 776 764.3 1.5 776.0 776 47 27 776.0 776 13 8 776.0 776 9 46
3 3 1082 1025.5 5.2 1082.0 1082 15K 8955 1082.0 1082 124K 1048 1082.0 1082 182K 12865
4 2 670 607.0 9.4 623.4 834 36000 670.0 670 239K 5454 652.3 128K 36000
4 3 919 843.2 8.3 854.4 692 36000 886.5 881K 36000 876.7 98K 36000

TC-40 3 2 632 595.8 5.7 632.0 632 2.0K 317 632.0 632 11K 183 632.0 632 2.4 2169
3 3 889 840.1 5.5 889.0 889 12K 11099 889.0 889 141K 4361 882.0 46K 36000
4 2 538 515.8 4.1 527.5 189 36000 538.0 538 868 258 538.0 538 817 10349
4 3 795 738.6 7.1 743.1 75 36000 780.1 785 297K 36000 763.6 785 10K 36000

TE-40 3 2 790 758.3 4.0 790.0 790 789 688 790.0 790 5.7K 202 790.0 790 2.1K 2239
3 3 1094 1025.2 6.3 1062.5 4.18K 36000 1094.0 1094 456K 21341 1065.3 31K 36000
4 2 661 614.4 7.1 618.2 25 36000 654.0 654 33K 5585 623.6 1.1K 36000
4 3 968 857.4 11.4 859.9 23 36000 883.7 126K 36000 860.5 57 36000

Table 5
Comparison of HOP and DT-HOP formulations: direct solution by CPLEX MIP solver through compact or Benders approaches, and add-hoc branch-and-cut

based Benders decomposition.
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Those experiments were carried out on a computer equipped with a processor
Intel(R) Xeon(R) CPU X5460 at 3.16GHz and 32 GB of RAM memory, using Concert
Technology for JAVA of CPLEX 12.8 [6]. The time limit was set to 36000 seconds. The
TC and TE instances used in tests are widely used the literature. They correspond
to complete graphs, vertices are associated to points in the plane, the costs are the
Euclidean distances. TC-20 has vertex 0 in the center and demands D = {(0, v) : v =
1, . . . , 20}, TE-20 is similar but has vertex 0 in a corner, TC-40 and TE-40 are similar
but |D| = 40. We performed tests taking H ∈ {3, 4} and K ∈ {2, 3}.

Table 5 is divided into two parts. On the top, it shows results for HOP fomulation;
on the bottom for DT-HOP formulation. Columns root LB and root gap show the
lower bounds and gap with respect to the Best Known Solution for HOP and DT-HOP
formulations (those values do not depend whether Benders decomposition is used or
not). The remaining columns are statistics for the exact methods. In particular, the
number of nodes are written in thousands (K ) or millions (M ). Therefore, we are
comparing six methods on each instance. We mark in bold the time of the method
that could solve the instance faster. If no method could solve the instance within the
time limit we mark in bold the best final lower bounds obtained. It can be seen that:

• DT works very well for that problem. For all instances, a method based on
DT-HOP was the winner.

• Benders decomposition can be a good alternative for mitigating the problems
related to the large size of the reformulations obtained by DT. DT-HOP with
automatic Benders was the best method for all instances, allowing us to
close most open instances. In addition, the automatic Benders decomposition
performs significantly better than the ad-hoc algorithm.

6. Conclusions. A growing part of the Integer Programming research is de-
voted to finding new effective extended formulations for certain families of problems.
This paper contributes in this direction, introducing a technique with the potential
of strengthening existing formulations for a large class of NDPs. The increase in for-
mulation size is not necessarily exaggerated (actually, the increase can be controlled
by the parameter L), making the overall approach computationally appealing in a
number of cases.

In principle, DT is a very generic technique that could be applied on many other
network design problems. The question that has to be answered for any candidate
problem is: the reduction of root gaps is significant enough to compensate for the
increased size of the formulation? Based on the presented experiments, there are two
factors that seem to make the DT more or less suited to a particular NDP.

• The DT seems to work better on NDPs with sparser solutions. For example,
on HSND instances with K = 2 the average gap was reduced by 72%, on
HSND instances with K = 3 the more modest average gap reduction of 43%
was obtained. This is coherent with the theory presented in Section 2 that
asserts that DT works by splitting nodes according to the different distances
(to the sources) induced by decomposing fractional solutions. Denser frac-
tional solutions provide more ways of performing the decomposition, resulting
in less node splittings.

• The DT seems to work better on problems where the solutions are likely to
have a “small diameter”. For example, this happens on HSND because the of
the hop constraint. This allows using small values of L without compromising
the strength of the reformulation. Remark that SFP solutions are very sparse,
but typically have large diameter. Although the last characteristic is not
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favorable, the DT with limited values of L still provided good results.
There are also important issues that need to be addressed in future research on

DT. One of them is devising a general method for choosing the set S and the limit L.
The experiments on STF with ad-hoc methods showed that those choices can make
a lot a difference.
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