
HAL Id: hal-01632972
https://hal.science/hal-01632972v3

Submitted on 1 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distance Transformation for Network Design Problems
Ali Ridha Mahjoub, Michael Poss, Luidi Simonetti, Eduardo Uchoa

To cite this version:
Ali Ridha Mahjoub, Michael Poss, Luidi Simonetti, Eduardo Uchoa. Distance Transformation
for Network Design Problems. SIAM Journal on Optimization, 2019, 29 (2), pp.1687-1713.
�10.1137/16M1108261�. �hal-01632972v3�

https://hal.science/hal-01632972v3
https://hal.archives-ouvertes.fr

DISTANCE TRANSFORMATION FOR NETWORK DESIGN
PROBLEMS

A. RIDHA MAHJOUB ∗, MICHAEL POSS † , LUIDI SIMONETTI ‡ , AND EDUARDO

UCHOA §

Abstract. We propose a new generic way to construct extended formulations for a large class
of network design problems with given connectivity requirements. The approach is based on a graph
transformation that maps any graph into a layered graph according to a given distance function. The
original connectivity requirements are in turn transformed into equivalent connectivity requirements
in the layered graph. The mapping is extended to the graphs induced by fractional vectors through
an extended linear integer programming formulation. While graphs induced by binary vectors are
mapped to isomorphic layered graphs, those induced by fractional vectors are mapped to a set of
graphs having worse connectivity properties. Hence, the connectivity requirements in the layered
graph may cut off fractional vectors that were feasible for the problem formulated in the original
graph. Experiments over instances of the Steiner Forest and Hop-constrained Survivable Network
Design problems show that significant gap reductions over the state-of-the art formulations can be
obtained.

Key words. Extended Formulations, Network Design, Benders decomposition.

AMS subject classifications.

1. Introduction. Let G = (V,E) be a connected and undirected graph with
n vertices and m edges with positive costs ce, e ∈ E. Let D ⊆ V × V be a set of
demands, each demand (u, v) ∈ D has its connectivity requirements: the existence of
a certain number of (u, v)-paths, possibly those paths may need to satisfy some side
constraints. The class of Network Design Problems (NDPs) considered in this paper
consists in finding a subgraph of G with minimum cost satisfying the connectivity
requirements of all demands. For examples:

• Steiner Tree Problem (STP): the input gives a set T ⊆ V of terminals. D
can be defined as {(u, v) : u, v ∈ T, u 6= v}. The connectivity requirement of
a demand (u, v) ∈ D is the existence of a path joining u and v.

• Steiner Forest Problem (SFP): An arbitrary set D is given as input. The
connectivity requirement is the existence of a path joining the vertices in
each demand.

• Hop-constrained Steiner Tree Problem (HSTP): the input gives a set T ⊆ V
of terminals, a root vertex r ∈ T and an integer H. The demand-set D is
defined as {(r, v) : v ∈ T \{r}}. The connectivity requirement is the existence
of a path with at most H edges (hops) joining the vertices in each demand.
In general, an NDP is said to be rooted if there is a common vertex (the root)
for all demands.

• Hop-constrained Survivable Network Design Problem (HSNDP): the set D
and integers H and K are given as input. The connectivity requirement of a
demand (u, v) ∈ D is the existence of K edge-disjoint (u, v)-paths, each path
having at most H edges.

∗Université Paris-Dauphine, Place du Maréchal De Lattre de Tassigny, 75775, Paris Cedex 16,
France (mahjoub@lamsade.dauphine.fr).
†LIRMM, University of Montpellier, CNRS, France. (michael.poss@lirmm.fr).
‡COPPE - PESC, Federal University of Rio de Janeiro, Cidade Universitria, Centro de Tecnologia,

Bloco H, zip 21941-972, Rio de Janeiro, Brazil. (luidi@ic.uff.br).
§Universidade Federal Fluminense, Rua Passo da Pátria, 156 CEP 24210-240, Niterói, Brazil

(uchoa@producao.uff.br).

1

mailto:mahjoub@lamsade.dauphine.fr
mailto:michael.poss@lirmm.fr
mailto:luidi@ic.uff.br
mailto:uchoa@producao.uff.br

2

Several other NDPs found in the literature also belong to this class, the connectivity
requirement may ask for a number of node-disjoint paths, side constraints may include
maximum delay, etc.

On all those cases, the natural formulations over the design variables xe, e ∈ E,
take the following format:

min
∑
e∈E

cexe(1a)

s.t. x ∈ P (u, v), ∀(u, v) ∈ D(1b)

xe binary, ∀e ∈ E,(1c)

where the binary points in polyhedra P (u, v) correspond to all subgraphs satisfying
the connectivity requirements of demand (u, v). Even on cases when each polyhedron
P (u, v) is integral, i.e., when the formulation already contains the best possible in-
equalities that are valid for each individual demand, the overall formulation is often
still weak.

For example, consider the classic STP, where the natural Formulation (1) cor-
responds to the one proposed by Aneja [1]. In that case, constraints (1b) are given
by the so called undirected cut constraints: for each cut separating two terminals
u and v, there must be at least an edge in the solution. The linear relaxation of
Aneja’s formulation does not provide very good bounds. Even when the formula-
tion is reinforced with sophisticated cuts discovered after polyhedral investigation
[4, 5], the duality gaps may be still significant. Fortunately, Wong [23] proposed
a much better STP formulation. The main observation is that the set of demands
D = {(u, v) : u, v ∈ T, u 6= v} can be replaced by D′ = {(r, v) : v ∈ T \ {r}}, where
r ∈ T is an arbitrary terminal chosen to be the root. Then, G can be replaced by a
bidirected graph G′ = (V,A) where A has two opposite arcs (i, j) and (j, i) for each
edge e = {i, j} in E, with c((i, j)) = c((j, i)) = c(e). The problem now consists in
looking for a minimum cost subgraph of G′ having a directed path from r to every
other terminal. The proposed formulation uses directed cut constraints: for each di-
rected cut separating r from a terminal, there must be at least an arc in the solution.
Wong’s formulation is remarkably strong. Its duality gaps are less than 0.1% on al-
most all SteinLIB instances [14], except on the artificial instances created with the
intent of being hard. In fact, some of the most effective STP codes of today, which are
capable of solving non-artificial instances (like those from VLSI design) with tenths
of thousands of vertices, usually do not bother to separate cuts other than the simple
directed cut constraints. Instead, their algorithmic effort is focused on devising graph
reductions and dual ascent procedures in order to speedup the solution of that linear
relaxation [19, 20].

Of course, one would like to have similar reformulation schemes able to produce
strong bounds for other NDPs. An advance in that direction was the work by Gouveia
et al. [11] on hop/diameter constrained spanning/Steiner Tree Problems. On all those
cases it was possible to show that the problem could be transformed into a STP over
a directed graph composed of up to H layers, each layer consisting of copies of the
original graph. Additional arcs joining the layers and a few extra vertices/arcs are
required. By applying Wong’s directed cut formulation over the transformed graphs,
very small gaps are obtained. Even though the layered graph approach multiplies the
size of the graph, it still allowed the solution of instances with hundreds of vertices.
Recently, the layered graph approach was successfully applied on a number of other
NDPs [21, 16, 9, 10], effective techniques were introduced to cope with the large

3

0

4

3

6

9

2
5

1

8

11

16
15

1718

12

20

10
14

13

19

7

Fig. 1. Optimal solution of a HSNDP instance with K = 3 and H = 3; n = 21, D = {(0, v) :
v = 1, . . . , 20}, complete graph, Euclidean costs.

transformed graphs and to handle other kinds of constraints.
Nevertheless, we should remark that all those strong reformulation schemes are

restricted to relatively simple NDPs. As the reformulations depend on transforming
the problem into a directed STP, they are restricted to problems where the optimal
solution topology should be a single tree. NDPs with more complex topologies do not
seem to admit directed formulations, for the reasons discussed below:

• Sometimes this is related to the fact that both orientations of an edge can be
used in the paths connecting different demands. Figure 1 shows the optimal
solution of a HSNDP instance with demand-set D = {(0, v) : v = 1, . . . , 20},
K = 3 and H = 3. Even though the instance is rooted at vertex 0, which
would make it a natural source for all paths, it can be seen that the same
edge can be used in different directions by different demands. For example,
demand (0, 7) is connected by paths 0−5−7, 0−8−9−7, and 0−12−8−7;
demand (0, 5) is connected by paths 0− 5, 0− 10− 6− 5 and 0− 8− 7− 5.
Suppose that G is transformed into a bidirected graph. The corresponding
directed solution would need to pay for both arcs (5, 7) and (7, 5), which is
not correct.

• Even the seemingly simple SFP, where the solution may be formed by a
set of disconnected subtrees, does not seem to admit a strong reformulation
by turning it into a directed problem over a transformed graph. Here, the
difficulty lies in the fact that it is not possible to know beforehand which
demands will be connected by the same subtree.

The Distance Transformation (DT) is an original reformulation technique pro-
posed to obtain stronger formulations for general NDPs, including those where the
currently known reformulation techniques do not seem to work. Starting from Formu-

4

lation (1), the resulting reformulation will have the following format:

min
∑
e∈E

cexe(2a)

s.t. Ax+Bw + Cy ≥ b(2b)

(w, y) ∈ P ′(u, v), ∀(u, v) ∈ D(2c)

xe binary, ∀e ∈ E,(2d)

where A, B, C and b are matrices of appropriate dimensions. Constraints (2b) are
problem-independent. They are devised to transform a solution over the variables
x into a distance expanded solution over the new variables w and y. The original
connectivity constraints in each P (u, v), over the x variables, are transformed into
equivalent connectivity constraints P ′(u, v), over the (w, y) variables.

The purpose of DT can be informally described as follows. Let x be a binary
vector in {0, 1}m and G(x) = (V,E(x)) be the subgraph induced by x. The distance
transformation maps G(x) into a subgraph of the layered graph that consists of n+ 1
copies of G plus edges between adjacent layers. The mapping considers a chosen
source subset S ⊆ V and sends each vertex i ∈ V to a vertex in layer l, 0 ≤ l ≤ n,
according to its distance from set S. Each edge {i, j} ∈ G(x) is sent to an edge in the
layered graph according to the layers of i and j. The transformed graph is represented
by variables w and y, the mapping is encoded in Constraints (2b). The interest of the
transformation is the following. If x is integral, the transformed graph is isomorphic
to G(x). However, its extension to graphs G(x) induced by fractional vectors leads
to transformed graphs that are less connected than G(x). Hence, the corresponding
(w, y) fractional solution is much more likely to be cut by inequalities (2c).

At first glance, this concept may seem similar to the layered formulations used
in [11, 21, 16, 9, 10]. They are, however, completely different. In those previous
works, the role of the layered graphs was to model connectivity requirements with
hop/distance/delay constraints. In contrast, the DT is not linked to any particular
kind of connectivity requirements. In fact, those techniques are orthogonal: it is
possible to combine DT and layered formulations.

1.1. Contributions and structure of the paper. The idea behind DT has its
origin in an extended formulation (denoted as DT-HOP MCF) introduced in Mahjoub
et al. [18] for the HSNDP. The numerical results obtained were very positive: signifi-
cant gap reductions with respect to previous known formulations led to the solution
of several open instances from the literature. There was however no theoretical justifi-
cation for the gap reductions obtained by what seemed to be an ad-hoc reformulation
for that specific network design problem.

The purpose of this paper is to introduce the Distance Transformation, a generic
graph transformation that works for the aforementioned class of network design prob-
lems. We show in Section 2.1 how the distance transformation is naturally defined as
a graph transformation. The transformation is extended to graphs defined by frac-
tional vectors by using convexity arguments. We explain then in Section 2.2 how this
ideal distance transformation reduces the connectivity of fractional vectors by splitting
nodes. Section 3 studies linear programming formulations for the distance transforma-
tion. A natural formulation is presented in Section 3.1. Section 3.2 studies relaxations
of the formulation to make it computationally more effective. Section 4 shows how
basic connectivity requirements can be incorporated into the linear programming for-
mulations through inequalities or flow formulations. The resulting formulations are

5

1
3

2

4
10

5

9

11

8

7

6

(a) G′

l

0

1

2
…
10

1

3

2

4 10

5

9

11

8 7 6

(b) DT S(G′)

Fig. 2. Original graph G′ and DT S(G′) with S = {1, 2}.

illustrated numerically in Section 5 on two network design problems: the Steiner For-
est Problem and the Hop-constrained Survivable Network Design Problem. The paper
is finally concluded in Section 6.

1.2. Additional notations. Let F (0, 1) = [0, 1]m \{0, 1}m be the set of vectors
in the unit hypercube having at least one fractional component. Undirected edges are
denoted by {i, j}, and directed edges are denoted by (i, j). In addition, we use the
following conventions in all figures in the paper. The source set S is indicated by nodes
filled in black. When depicting fractional solutions, solid edges and nodes represent
edge and node variables with value 1, while dotted edges and nodes represent variables
with value 0.5. The set of extreme points of a polytope P is denoted as ext(P).

2. The unitary distance transformation. We introduce formally the distance
transformation in Subsection 2.1 and study in Subsection 2.2 the connectivity of the
layered graphs obtained for fractional vectors x. Linear programming formulations
for DT shall be discussed in the next section.

2.1. Definition. The distance transformation considers an arbitrary subset of
source nodes S ⊂ V (even if the problem is rooted, the root may belong to S or
not) and maps any (non-necessarily connected) subgraph G′ = (V,E′) of G = (V,E)
to a layered graph. The mapping is based on the distance in G′ between any node
i ∈ V and S. Define the layered and undirected graph G = (V,E), where V =
V 0 ∪ . . . ∪ V n, with V l = {il : i ∈ V } for each l = 0, . . . , n and let il be the
copy of vertex i in the l-th level of graph G. Then, the edge set is defined by
E = {{il, jl} | {i, j} ∈ E, l ∈ {0, . . . , n − 2, n}} ∪ {{il, jl+1} | {i, j} ∈ E, 0 ≤ l ≤
n−2}∪{{il+1, jl} | {i, j} ∈ E, 0 ≤ l ≤ n−2}. Let P(G) be the set of all subgraphs of
G that contain all nodes of V and P(G) be the set of all subgraphs of G that contain
exactly one copy of each node of V , formally: P(G) = {G′ = (V,E′) | E′ ⊆ E} and
P(G) = {G′ = (V′,E′) | V′ ⊆ V and |V∩{il : 0 ≤ l ≤ n}| = 1,∀i ∈ V,E′ ⊆ E(V′)}.

The distance transformation is a function DT S : P(G)→P(G) that maps any
subgraph G′ ∈ P(G) to layered graph DT S(G′) ∈ P(G) defined as follows. Let
distG′(i, S) be the length of the shortest path in G′ connecting i to a node in S or ∞
if no such path exists. For each i ∈ V such that distG′(i, S) < ∞, vertex idistG′ (i,S)

belongs to DT S(G′). Otherwise, in belongs to DT S(G′). For any {i, j} ∈ G′, {il1 , il2}
belongs to DT S(G′) if and only if l1 = distG′(i, S) and l2 = distG′(j, S). Remark that
for any {i, j} ∈ E′(G′), |distG′(i, S)− distG′(j, S)| ≤ 1. In other words, the images of
adjacent vertices in G′ lie in adjacent levels in DT S(G′). Figure 2 shows an example

6

of distance transformation. A crucial property of the distance transformation is that
G′ and DT S(G′) are isomorphic.

Any graph in P(G) can be characterized as G(x) = (V,E(x)) where x ∈ {0, 1}m
is a binary vector whose component {i, j} is equal to 1 if and only if {i, j} ∈ E(x);
we say that G(x) is induced by x. In what follows, we denote the binary variable
related to edge e = {i, j} interchangeably by xe and xij . We can also describe a
graph G′ = (V′,E′) in P(G) using vectors w ∈ {0, 1}n(n+1) and y ∈ {0, 1}(3n−2)m,
defined as follows:

• wli = 1 iff il ∈ V′;
• yl1l2ij = 1 iff {il1 , jl2} ∈ E′.

Conversely, given binary vectors w and y, G(w, y) denotes the subgraph of G that
contains the vertices (resp. edges) associated to the components of w (resp. y) equal
to 1. Hence, we also define the function DT intS : {0, 1}m → {0, 1}n(n+1)+(3n−2)m as
DT intS (x) = (w, y) where (w, y) characterizes the graph DT S(G(x)).

In this paper, we address network design problems formulated as linear programs
with binary variables. In this context, x is a vector of optimization variables comprised
between 0 and 1. To use the distance transformation, we must describe the Distance
Transformation through a system of linear constraints such that for each x ∈ {0, 1}m,
(x,w, y) is feasible if and only if (w, y) = DT intS (x). Certainly, the smallest polytope
defined by such constraints is

(3) PS = conv{(x,DT intS (x)), x ∈ {0, 1}m}.

Using PS , we are able to extend the definition of DT intS to any vector in x ∈ [0, 1]m,
fractional or not, as the following projection:

(4) DTS(x) = {(w, y) | (x,w, y) ∈ PS}.

The more general definition (4) is compatible with the previous definition for integral
vectors because whenever x is integral DTS(x) reduces to the singleton {DT intS (x)}.
Otherwise, set DTS(x) is a polytope with non-zero dimension. Therefore, DTS :
[0, 1]m→[0, 1]n(n+1)+(3n−2)m is a point-to-set mapping. We introduce next a charac-
terization of DTS(x).

Theorem 1. Let xq, q = 1, . . . , 2m, be the enumerated set of all vectors in
{0, 1}m. A vector (w, y) belongs to DTS(x) if and only if there exists a vector of

convex multipliers λ such that x =
∑2m

q=1 λ
qxq and (w, y) =

∑2m

q=1 λ
qDT intS (xq).

Proof. From (3) and (4), (w, y) ∈ DTS(x) if and only (x,w, y) ∈ conv{(xq, DT intS (xq)),
1 ≤ q ≤ 2m}. So, by the definition of convexity, this is true if and only if there exists

convex multipliers λ such that (x,w, y) = (
∑2m

q=1 λ
qxq,

∑2m

q=1 λ
qDT intS (xq)).

Extending the previous definitions to fractional vectors, we can define G(x) and
G(w, y) as the graphs induced by the positive components of x and (w, y), respectively.
We provide next an example ofDTS(x̃) for the fractional vector x̃ = (0.5, 0.5, 0.5) asso-
ciated to the graph G′ = (V ′, E′) with V ′ = {1, 2, 3} and E′ = {{1, 2}, {1, 3}, {2, 3}},
and S = {1}. Figures 3(a)–3(h) represent the graphs induced by the vectors of DTS(x)
for each x ∈ {0, 1}3= {x1, . . . , x8}. In view of Theorem 1, we obtain

(5) DTS(x̃) =

{
8∑
q=1

λqDT intS (xq) | 0 ≤ λ ≤ 1,

8∑
q=1

λq = 1,

8∑
q=1

xqeλ
q = 0.5, e ∈ E′

}
.

7

3 2

l

0

1

2

3

1

3 2

1

DT
S
()=

(a) G(w1, y1)

l

0

1

2

3 3 2

1

3 2

1

DT
S
()=

(b) G(w2, y2)

2

l

0

1

2

3

1

3
3 2

1

DT
S
()=

(c) G(w3, y3)

3

l

0

1

2

3

1

2
3 2

1

DT
S
()=

(d) G(w4, y4)

3 2

l

0

1

2

3

1

3 2

1

DT
S
()=

(e) G(w5, y5)

2

l

0

1

2

3 3

1

3 2

1

DT
S
()=

(f) G(w6, y6)

3

l

0

1

2

3 2

1

3 2

1

DT
S
()=

(g) G(w7, y7)

l

0

1

2

3 3 2

1

3 2

1

DT
S
()=

(h) G(w8, y8)

Fig. 3. Graph induced by DT int
S (x) for each x ∈ {x1, . . . , x8} = {0, 1}3.

Some of the extreme points of the polytope DTS(x̃), obtained by setting four of the
components of λ to 0, are depicted on Figure 4. One can see the splitting of nodes
occurring in the graphs depicted in Figure 4. The splitting of nodes corresponds to
fractional values of w. As will be seen in the next section, the splitting of nodes for
all vectors of ext(DTS(x̃)) is a necessary condition for DT to be useful.

This does not always happen. Consider a similar example, except that S = {1, 2}.
The graphs corresponding to some vectors in ext(DTS(x̃)) are depicted in Figure 5.
We see that the left graph does not contain split nodes. Hence, that choice of S would
not give a useful transformation.

2.2. Connectivity of DTS. The distance transformation translates the original
network design problem defined in G into a network design problem defined in G, by
importing to G the connectivity requirements described in G. In this section, we il-
lustrate how this is done for the simpler case of demands requiring the existence of K
edge-disjoint paths between some pairs of vertices. To this end, we add up to 2|D| su-
pervertices to G and G(w, y), obtaining G = (V,E) and G(w, y) = (V(w),E(w, y)),
respectively. Namely, for each demand (u, v) ∈ D, we create two supervertices s(u)
and t(v) respectively linked to vertices ul and vl by directed edges (s(u), ul) and
(vl, t(v)) for each 0 ≤ l ≤ n. For any x ∈ {0, 1}m, the requirement of the existence
in G(x) of K edge-disjoint (u, v)-paths becomes the requirement of the existence in

8

3 2

l
0

1

2

3 3 2

1

3 2

1

= ½ DT
S
()+ ½ DT

S
()3 2

1

3 2

l
0

1

2

3 3 2

1

3 2

1

= ½ DT
S
()+ ½ DT

S
()3 2

1

3 2

l
0

1

2

3

3

2

1

3 2

1

= ½ DT
S
()+ ½ DT

S
()3 2

1

3 2

l
0

1

2

3 3

2

1

3 2

1

= ½ DT
S
()+ ½ DT

S
()3 2

1

Fig. 4. Examples of graphs induced by the elements of ext(DTS(x̃)) when S = {1}.

1 2

3

l

0

1

2

3

1 2

3

3

l

0

1

2

3

Fig. 5. Examples of graphs induced by the elements of ext(DTS(x̃)) when S = {1, 2}.

G(w, y) of K edge-disjoint (s(u), t(v))-paths. The example from Figure 6 illustrates
why the edges connecting the supervertices to G must be directed since otherwise one
can send 1 unit flow from s(1) to t(2) (0.5 unit going through t(3)).

To model these connectivity requirements by linear constraints, we need to in-
troduce capacities for the edges of G(x) and G(w, y). The capacity on any edge in
G(x) is equal to the value of the associated component of x. For G(w, y), we must
distinguish between the undirected edges, and the directed ones that link G(w, y) to
the supervertices. The capacity on any undirected edge is equal to the value of the
associated component of y, while the capacity on any directed edge linking s(u) (resp.
t(v)) and ul (resp. vl) is equal to Kwlu (resp. Kwlv). We define next the connectivity

of the graph G(x) as the vector C(x) ∈ R|D|+ with Cuv(x) equal to the maximum flow

between u and v in G(x). Similarly, we define the connectivity of the graph G(w, y)

as the vector C(w, y) ∈ R|D|+ with Cuv(w, y) equal to the maximum flow between the

supervertices s(u) and t(v) in G(w, y). With these definitions, the network design

9

3 2

l

0

1

2

3 23

1

3 2

s(1)

t(2)t(3)

Fig. 6. Graph G(w, y) = (V(w),E(w, y)) associated to the second extreme point (w, y) depicted
in Figure 4 and considering demands (1, 2) and (1, 3). Thin edges (resp. nodes) correspond to the
components of y (resp. w) equal to zero and do not belong to E(w, y) (resp. V(w)).

problem defined in G with optimization variables x and connectivity requirements

(6) Cuv(x) ≥ K, ∀(u, v) ∈ D,

can be reformulated as a network design problem defined in G with optimization
variables x,w, and y, and containing two groups of constraints:

1. Constraints specifying that (x,w, y) ∈ PS ;
2. Connectivity requirements constraints

(7) Cuv(w, y) ≥ K, ∀(u, v) ∈ D.

In the following we denote the feasibility set of constraints (6) by

C0 = {x ∈ [0, 1]m | Cuv(x) ≥ K, ∀(u, v) ∈ D}

and the projected feasibility set of constraints (7) by

CPS = Projx{(x, y, w) ∈ PS | Cuv(w, y) ≥ K, ∀(u, v) ∈ D},

where Projx(X) denotes the projection of set X on variables x. We also denote
the convex hull of the feasible solutions of the network design problem defined by
connectivity requirements (6) as

Copt = conv{x ∈ {0, 1}m | Cuv(x) ≥ K, ∀(u, v) ∈ D}.

The result below shows that the approximation of Copt provided by CPS is tighter
than the one provided by C0.

Proposition 2. For any connectivity requirements constraints of the form (6)
and any S, it always holds that

(8) Copt ⊆ CPS ⊆ C0.

Proof. Let x ∈ {0, 1}m and DTS(x) = (w, y). The first inclusion follows from the
fact that G(x) and G(w, y) are isomorphic, and thus, Cuv(x) = Cuv(w, y) for each
(u, v) ∈ D. To prove the second inclusion, we first prove that

Cuv(x) ≥ Cuv(w, y), ∀(u, v) ∈ D.

10

Let (u, v) ∈ D and let g be any vector defining a flow from s(u) to t(v) in G(w, y).
Then, we can flatten G(w, y) to obtain a flow f from u to v. Namely, we define
the flow f on edge {i, j} ∈ G(x) as the sums of the flows described by g on all
{il1 , jl2} ∈ G(w, y). The flows on the directed edges linking the supervertices s(u)
and t(v) to G do not matter since we are only interested in a flow from u to v. It
is easy to see that the resulting flow f satisfies the capacity constraints, the balance
constraints and conveys the same amount of flow from u to v that g conveys from s(u)
to s(v). Therefore, if x ∈ CPS , then we also have that x ∈ C0, proving the inclusion.

The power of the distance transformation lies in its reduction of the connectivity of
the graphs induced by (w, y) ∈ DTS(x) for fractional vectors x ∈ (0, 1)m. Even when a
fractional solution x is not cut by connectivity requirement constraints (6), meaning
that x ∈ C0, it may well happen that all (w, y) ∈ DTS(x) are cut by connectivity
requirement constraints (7), implying x /∈ CPS . The next result provides an example
of x ∈ C0 \ CPS .

Proposition 3. Consider the network design problem defined on graph G′ from
Figure 3 under the connectivity requirements C12(x) ≥ 1 and C13(x) ≥ 1. It holds
that

(9) CPS ⊂ C0.

Proof. The inclusion follows from Proposition 2. To see that the inclusion is strict,
we show that the fractional solution x̃ defined by x̃12 = x̃23 = x̃13 = 0.5 belongs to
C0\CPS . Clearly, x̃ ∈ C0 since we can use the cycle to send half a unit in each direction
for both demands in D. To see that x̃ /∈ CPS , consider any (w̃, ỹ) ∈ DTS(x). We show
below that either C12(w̃, ỹ) < 1 or C13(w̃, ỹ) < 1.

First, notice using definition (5), that if λ2 = λ6 = λ7 = λ8 = 0, then (w, y) =∑8
q=1 λ

q(wq, yq) /∈ ext(DTS(x̃)). Therefore, for each (w, y) ∈ ext(DTS(x̃)) we have

that w3
2 > 0 or w3

3 > 0, which in turn implies

(10) w̃3
2 > 0 or w̃3

3 > 0.

What is more,
∑n
l=0 w̃

l
i = 1 for each i ∈ V . Hence, (10) implies that w̃1

2 + w̃2
2 < 1 or

w̃1
3+w̃2

3 < 1. If w̃1
2+w̃2

2 < 1 (the case w̃1
3+w̃2

3 < 1 is similar), we consider demand (1, 2)
and the cut associated with the partition W = {t(2), 23, 33} and W̄ = V(w̃, ỹ) \W .
The capacity of the cut is equal to w̃1

2 + w̃2
2 < 1, proving C12(w̃, ỹ) < 1.

The intuitive idea behind the distance transformation is that fractional solutions
are often mapped to layered graphs where node splitting occurs, as in Figure 4.
The node splitting then cuts some paths in the original graph which results in a
decrease of connectivity. This decrease is often enough to cut the fractional solutions.
Figure 4 shows that the node splitting breaks the cycle in all cases but the upper
one. Nevertheless, the connectivity of the upper-left graph is also reduced because
of the limited capacity available on the directed edges linking the supervertices to
the layered graph. When no node-splitting occurs, as in the left graph of Figure 5,
graphs G(x) and G(w, y) are isomorphic so that they satisfy the same connectivity
requirements. It is therefore useful to be able to discover whether a given distance
transformation leads to splitting of the fractional vectors. The result below partially
answers this question by providing an approach to find out whether the graph induced
by a given fractional solution (x,w, y) ∈ PS contains split nodes.

11

Proposition 4. Let x ∈ F (0, 1) and (w, y) ∈ DTS(x). Consider a set of Q
positive convex multipliers λ such that

(11) (x,w, y) =

Q∑
q=1

λq(xq, wq, yq),

where xq ∈ {0, 1}m and (wq, yq) = DTS(xq) for each q = 1, . . . , Q. Then, any node
i ∈ V is split Q′ times in G(w, y), where Q′ ∈ {1, . . . , Q} corresponds to the number
of different values in set

(12) {distG(xq)(i, S), q = 1, . . . , Q}.

Proof. From equation (11), we have that wli =
∑Q
q=1 λ

qwqli . By definition of DTS ,

we further have that w
q distG(xq)(i,S)

i = 1 for each q ∈ {1, . . . , Q}, so that

wli =

Q∑
q=1

λqwq =
∑

q:distG(xq)(i,S)=l

λq,

which is positive for each l ∈ {0, . . . , n} corresponding to a value in the set defined in
(12).

Proposition 4 is an important result in understanding the structure of fractional vec-
tors in PS , which is the key to efficiently apply distance transformation to network
design problems. In particular, the proposition shows that any node i ∈ V corre-
sponding to (x,w, y) defined by equation (11) is split if and only if

(13) distG(xq)(i, S) 6= distG(xq′)(i, S),

for some q 6= q′ in {1, . . . , Q}. The difficulty of using the node splitting to cut a
particular fractional solution x is that we must ensure that the splitting occurs for
all (w, y) ∈ DTS(x), which is a complex task in general. Nevertheless, for some very
special cases it is possible to predict that splitting always occurs (see the result below).

Proposition 5. Consider the distance transformation defined by a unitary source
S = {i} for some i ∈ V , let x ∈ F (0, 1), and consider a node j ∈ V \{i}. If xij ∈ (0, 1),
node j is split in G(w, y) for all (w, y) ∈ DTS(x).

Proof. Let

(x,w, y) =

Q∑
q=1

λq(xq, wq, yq)

be any vector in PS . Because xij ∈ (0, 1), there exists q and q′ in Q such that xqij = 1

and xq
′

ij = 0. Hence, (13) holds, yielding the result.

3. Linear programming formulations for the DT.

3.1. “Natural” formulation for PS. So far we have been using abstract dis-
tance transformations based on the ideal polytope PS . To use DT in practice, we
need a linear formulation for PS , providing its convex hull in the ideal case. Un-
fortunately, the complete description of PS is not easy to find. Below, we provide a
polynomial formulation for PS which, although not completely describing PS , leads to
very good improvements in the linear programming relaxation of some network design

12

2

1

3

4

(a) G(x)

l

0

1

2

3

4

2

1

3

2 3 4

(b) G(w, y)
for the unique
(w, y) ∈ DTS(x)

2

1

3

2

4

l

0

1

2

3

4

(c) G(w, y) for some
(w, y) ∈ DTF

S (x)

Fig. 7. Example of fractional x, the single point in DTS(x), and a point in DTF
S (x) (S = {1}).

problems with connectivity requirements. Let δE(S) = {{i, j} ∈ E, |{i, j} ∩ S| = 1}
and E′ = E \ δE(S). The formulation below links the three groups of variables x,w,
and y using the following constraints:

w0
i = 1,∀i ∈ S(14a)

n∑
l=1

wli = 1,∀i ∈ V \S(14b)

y01ij = xij ,∀{i, j} ∈ δE(S) : i ∈ S(14c)

n∑
l=1

yllij +

n−2∑
l=1

(y
l(l+1)
ij + y

l(l+1)
ji) = xij ,∀{i, j} ∈ E′(14d)

y01ij ≤ w1
j ,∀{i, j} ∈ δE(S) : i ∈ S(14e)

y11ij + y12ij ≤ w1
i ,

y11ij + y12ji ≤ w1
j ,
∀{i, j} ∈ E′(14f)

yllij + y
l(l+1)
ij + y

(l−1)l
ji ≤ wli,

yllij + y
l(l+1)
ji + y

(l−1)l
ij ≤ wlj ,

∀{i, j} ∈ E′; l = 2, . . . , n− 2(14g)

y
(n−2)(n−1)
ji + y

(n−1)(n−1)
ji ≤ wn−1i ,

y
(n−2)(n−1)
ij + y

(n−1)(n−1)
ij ≤ wn−1j ,

∀{i, j} ∈ E′(14h)

wli ≤
∑
{j,i}∈E

y
(l−1)l
ji ,∀i ∈ V \S; l = 1, . . . , n− 1(14i)

0 ≤ x,w, y ≤ 1.(14j)

Constraints (14a–14b) state that each vertex should be in one of its possible levels.
Constraints (14c–14h) state that each original edge variable xij should be translated

into a variable yl1l2ij such that both wl1i and wl2j have value one. Constraints (14i)
state that a vertex i can only be in level l < n if it is reached by at least one edge
{j, i} from level (l−1). Let PFS be the polytope defined by constraints (14). We prove
below that the above constraints yield a valid formulation for the set {(x,DT intS (x)) :
x ∈ {0, 1}m)}.

Proposition 6. Linear constraints (14) yield a valid formulation for X = {(x,DT intS (x)) :
x ∈ {0, 1}m)}. Hence, given x ∈ {0, 1}m, (x,w, y) ∈ PFS if and only if (w, y) =
DT intS (x).

13

Proof. The validity of (14a–14j) follows from the observation that (x,DT intS (x))
satisfies the constraints for each x ∈ {0, 1}m. To see that (14a–14j) is also a formula-
tion for X, we consider a binary vector x ∈ {0, 1}m and prove next by induction on
k = 0, . . . , n − 1 that PFS contains a unique integer solution where, for each node i
connected to S in G(x),

(15) wki = 1⇔ distG(x)(S, i) = k.

The case k = 0 is immediate from (14a) while the case k = 1 follow from (14c), (14e)
and (14i).

Consider k ∈ {2, . . . , n− 2} (the proof is similar for k = n− 1) and suppose (15)
is true for l ∈ {0, . . . , k − 1}. Let j′ ∈ V be such that distG(x)(j

′, S) = k. There
exists an edge {i′, j′} ∈ E(x) such that distG(x)(i

′, S) = k − 1. Hence, by induction,

wk−1i′ = 1. Because wli′ = 0 for each l 6= k− 1, the first inequalities of (14f) and (14g)

imply that yl1l2i′j′ = 0 if l1 6= k − 1, so (14d) written for {i′, j′} becomes y
(k−1)(k−1)
i′j′ +

y
(k−1)k
i′j′ +y

(k−2)(k−1)
j′i′ . Then, because wli′ = 0 for each l ≤ k−1, the second inequalities

of (14g) imply y
(k−2)(k−1)
j′i′ = 0 and y

(k−1)(k−1)
i′j′ = 0, so y

(k−1)k
i′j′ = 1. Hence, the second

inequality of (14g) written for {i′, j′} and l = k yields wkj′ = 1.

Reciprocally, suppose wkj′ = 1. By induction, distG(x)(j
′, S) ≥ k. What is more,

(14i) implies that there exists {i′, j′} such that y
(k−1)k
i′j′ = 1. Therefore, wk−1i′ = 1, so

by induction, distG(x)(i
′, S) = k − 1, which in turn implies distG(x)(j

′, S) ≤ k.
If i is not connected to S, the corresponding (14b) constraint ensures that wni =

1.

The above formulation enables us to extend DTS to fractional vectors as done in
Section 2.1. The counterpart of equation (4) for PFS is

(16) DTFS (x) = {(w, y) | (x,w, y) ∈ PFS },

and P ⊆ PFS implies that DTS(x) ⊆ DTFS (x) for any x ∈ [0, 1]n. When x is fractional,
the example from Figure 7 shows that the inclusion can be strict. Namely, Figure 7(c)
depicts the graph induced by a vector (w, y) ∈ DTFS (x) that does not belong to
DTS(x) because it cannot be obtained as the convex combination of binary vectors.
In fact, for that example, DTS(x) is reduced to the singleton (w, y) that induces the
graph in Figure 7(b).

For any x ∈ [0, 1]m, one can also extend the connectivity requirements to the
graphs induced by any (w, y) ∈ DTFS (x). We define

CFS = Projx{(x, y, w) ∈ PFS | Cuv(w, y) ≥ K, ∀(u, v) ∈ D},

and Proposition 2 can be completed with the following result.

Proposition 7. For any connectivity requirements constraints, it always holds
that

(17) CPS ⊆ CFS ⊆ C0.

Proof. The inclusion CPS ⊆ CFS follows from the fact that P ⊆ PFS . Then,
constraints (14d) and (14f) enable us to prove inclusion CFS ⊆ C0 by using the same
flattening argument as the one used in the proof of Proposition 2.

14

We study next whether inclusions in (17) can be strict. One can verify numerically
that Proposition 3 extends to CFS , providing an instance for which CFS ⊂ C0. We
then turn to inclusion CPS ⊆ CFS . The example from Figure 7 does not lead to strict
inclusion because the graphs of Figures 7(b) and 7(c) satisfy the same connectivity
requirements, namely C23(w, y) ≥ 1. However, we do have numerical evidence that
the inclusion can be indeed strict, which is left out of the manuscript to simplify our
exposure.

3.2. Limiting the levels. The DT described in the previous subsections can
lead to large formulations. Due to the number of layers in graph G, formulation (14)
introduces O(nm) variables and constraints. For some NDPs, we can eliminate most
levels without affecting the transformation. For instance, if all demands in D have
a common extremity, and the connectivity requirements asks for paths bounded by
some number H, then we can restrict the number of layers to H + 1. This example
arises in the survivable network design problems studied by [18].

However, it is possible to define DTs that use only a small number of layers L,
regardless of the NDP under consideration. This decreases the size of the associated
linear programming formulations, but may also decrease the node splitting, and thus,
the gains in terms of gap reduction. In fact, there is a trade-off between the chosen
value of L and the quality of the DT. We suppose that G(x) is the graph induced
by some binary vector x and that GL is a graph that consists of L layers. The
truncated distance transformation DTLS sets the image of node i in GL to layer
min(distG(x)(i, S), L−1). This means that levels from L−1 to n−1 of the original G
are flattened into a single level L − 1 in GL; nodes not connected to S are still
mapped to layer L. Edges are mapped subsequently according to the images of
their extremities. This will not affect much the quality of the DT when few nodes i
have distG(x)(i, S) ≥ L in typical solutions x. Formulation (14) is adapted for this
modification by changing constraints (14g–14i), reducing the size of the formulation
to O(Lm) variables and constraints.

4. Formulating the connectivity requirements.

4.1. Simple connectivity requirements. In order to provide a linear pro-
gramming formulation for an NDP, one still has to reformulate the connectivity re-
quirements constraints with linear constraints. We start our approach with the simple
constraints

(18) Cuv(w, y) ≥ K, ∀(u, v) ∈ D

considered in the previous sections. Recall that constraints (18) impose that, for each
(u, v) ∈ D, the value of the maximum flow between s(u) and t(v) in G(w, y) be not
smaller than K, see Figure 6 for an example of graph G(w, y) = (V(w),E(w, y)).
We describe next how to express the constraints for a single demand {u, v} ∈ D
using either flow variables or cut inequalities, and disregarding the level reductions
discussed in the previous section. The flow formulation complements Formulation
(14) with two flow variables f l1l2ij and f l2l1ji for each undirected edge {il1 , jl2}∈ E, and

two flow variables f ls(u)u and f lvt(v) for each demand (u, v) ∈ D and l ∈ {1, . . . , n}
(notice that if u belongs to S, we only introduce flow variable f0s(u)u, see Figure 6,

15

and similarly if v ∈ S). Then, we impose that the capacity be respected for all edges

(19)

f l1l2ij + f l2l1ji ≤ y
l1l2
ij , ∀{il1 , jl2} ∈ E

f ls(u)i ≤ Kw
l
i, ∀il ∈ V

f lit(v) ≤ Kw
l
i, ∀il ∈ V

,

the flow be conserved for nodes in V

(20)
∑

{il1 ,jl2}∈δE(il1)

(
f l2l1ji − f

l1l2
ij

)
= 0, ∀il1 ∈ V,

adding the term f l1s(i)i (resp. f l1it(i)) if i = u (resp. i = v) for some (u, v) ∈ D, and

that the flow exiting supervertex s(u) exceeds K

(21)

f0s(u)i ≥ K, if u ∈ S,
n∑
l=1

f ls(u)i ≥ K, otherwise.

Alternatively to constraints (19–21), cut inequalities (e.g. [1]) impose that

(22)
∑

l:ul∈V\U

Kwlu +
∑
l:vl∈U

Kwlv +
∑

{il1 ,jl2}∈δE(U)

yl1l2ij ≥ K, ∀U ⊆ V.

We illustrate next cut inequalities on an example based on the solution depicted
in Figure 6 together with connectivity requirement C12(w, y) ≥ 1. If U = {10, 21, 31},
then inequality (22) becomes

w1
2 + y1223 + y1232 ≥ 1,

which is violated by the solution depicted in Figure 6.

4.2. Hop constraints. We study next the more complex connectivity require-
ments obtained by limiting the path length (hops) used to transmit the flow by a

given integer H. Namely, we consider matrix C(x) ∈ R|D|×(n−1)+ with CHuv(x) equal
to the maximum flow between u and v in G(x) using paths with at most H hops.

Similarly, we define matrix C(w, y) ∈ R|D|×(n−1)+ with CHuv(w, y) equal to the max-

imum flow between the supervertices s(u) and t(v) in G(w, y) using paths with at
most H + 2 hops. With these definitions, we see immediately that C(x) = Cn−1(x)
and C(w, y) = Cn−1(w, y). The counterparts of (6) and (18) for C are

(23) CHuv(x) ≥ K, ∀(u, v) ∈ D,

and

(24) CHuv(w, y) ≥ K, ∀(u, v) ∈ D.

Remind that connectivity constraints (23) can be expressed by a hop-indexed flow
formulation first introduced in [8]. The formulation has been extended to handle (24)
in [18], denoted DT-HOP indexed flow formulation therein, and we recall it below.
Given a demand (u, v) ∈ D and an integer H, the formulation considers a directed
layered graph Guv = (Vuv,Auv), where the definition of Vuv = Vuv

1 ∪ · · · ∪Vuv
H+3

depends on whether {u, v} intersects S. If {u, v} ∩ S = ∅, then Vuv
1 = {s(u)},

16

3

21

4

(a) Graph G.

3

2

1
4

l

0

1

2

3

4
(b) Graph G.

s(1) t(4)12
0

23
1 33

1

23
2 33

2

23
3 33

3

23
4 33

4

24
1 34

1

24
2 34

2

24
3 34

3

24
4 34

4

45
1

45
2

45
3

45
4

(c) Graph G14 for H = 3.

Fig. 8. Hop-level graph.

Vuv
2 = {ul | 1 ≤ l ≤ n}, Vuv

h = V \ {{ul, vl} | 1 ≤ l ≤ n}, h = 3, . . . ,H + 1,
Vuv
H+2 = {vl | 1 ≤ l ≤ n} and Vuv

H+3 = {t(v)}. If u ∈ S or v ∈ S, we have instead
Vuv

2 = {u0} or Vuv
H+2 = {v0}, respectively, see Figure 8 for an example where u ∈ S

and v /∈ S. Let ih be the copy of i ∈ V in the h-th layer of graph Guv, that is, i = il

for some i ∈ V, 0 ≤ l ≤ n and ih = ilh. The arc set is defined by (see again Figure 8)

Auv = {(s(u),u2) | u2 ∈ Vuv
2 }(25)

∪ {(u2, i3) | {u, i} ∈ E,u2 ∈ Vuv
2 , i3 ∈ Vuv

3 }(26)

∪ {(ih, jh+1) | {i, j} ∈ E, ih ∈ Vuv
h , jh+1 ∈ Vuv

h+1, 3 ≤ h ≤ H}(27)

∪ {(ih, ih+1) | 3 ≤ h ≤ H, ih ∈ Vuv
h }(28)

∪ {(iH+1,vH+2) | {v, i} ∈ E,vH+2 ∈ Vuv
H+2, iH+1 ∈ Vuv

H+1}(29)

∪ {(vH+2, t(v)) | vH+2 ∈ Vuv
H+2}(30)

∪ {(u2,vH+2) | {u,v} ∈ E,u2 ∈ Vuv
2 ,vH+2 ∈ Vuv

H+2}.(31)

Given this auxiliary graph, the DT-HOP indexed flow formulation complements
formulation (14) with a flow variable guv,hij for each arc (ih, jh+1) ∈ Auv. To simplify
notations, we omit index uv from the flow variables in what follows. Then, we impose

17

that capacity be respected for all edges

g1s(u)u ≤ Kwu,∀u2 ∈ Vuv
2(32)

g2ui ≤ yui,∀{u, i} ∈ E,u2 ∈ Vuv
2 , i3 ∈ Vuv

3(33)

H∑
h=3

(
ghij + ghji

)
≤ yij,∀{i, j} ∈ E, ih ∈ Vuv

h , jh+1 ∈ Vuv
h+1, 3 ≤ h ≤ H(34)

gH+1
iv ≤ yvi,∀{v, i} ∈ E,vH+2 ∈ Vuv

H+2, iH+1 ∈ Vuv
H+1(35)

gH+2
vt(v) ≤ Kwv,∀vH+2 ∈ Vuv

H+2(36)

guv ≤ yuv,∀{u,v} ∈ E,u2 ∈ Vuv
2 ,vH+2 ∈ Vuv

H+2.(37)

Arcs in (28) have an infinite capacity so that no capacity constraints are written for
these arcs. The counterpart of flow conservation constraints in graph Guv is readily
obtained from (20). Finally, we need to impose that the flow exiting supervertex
s(u) ∈ Vuv

1 exceeds K:

(38)
∑

u2∈Vuv
2

g0s(u)u2
≥ K.

Capacity constraints (34) prevent the above system to define a pure network
flow problem, having the integrality property. Hence, in general we need to impose
integrality restrictions on g. However, in the cases H = 2, 3, one can readily extend
the results from [12, 2] to show that the DT-HOP indexed formulation is indeed
integral. Actually, for those cases it is possible to avoid including the DT-HOP indexed
variables and constraints in the Formulation (14) and replace them by cuts separated
by the min-cut algorithm over Guv, as shown in the following example.

Consider graph G = (V,E), defined by V = {1, 2, 3, 4, 5} and E = {{1, 2},
{1, 3}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}, let G = (V,E) be the associated layered graph
and Figure 9(a) represent a fractional solution that satisfies C3

15(x) ≥ 1. Figure 9(b)
represents the graph associated to some (w, y) ∈ DTS(x) that violates C3

15(w, y) ≥ 1.
We show next how to separate a violated cut violated by G(w, y). Without loss of
generality, we can restrict ourselves to the subsets of nodes and edges of G that be-
long to at least one graph of {G(DT (x̃)) : x̃ ∈ {0, 1}m}, which are represented in
Figure 9(c) and can be obtained automatically using preprocessing algorithms. The
feasibility of C3

15(w, y) ≥ 1 is tested by looking for a feasible flow of one unit between
s(1) and t(5) in the expanded graph depicted in Figure 9(d). Looking for a cut of
minimum capacity that contains s(1), we obtain either inequality

y0113 + y2335 ≥ 1,

or inequality
w2

5 + y2335 ≥ 1,

which are both violated by the solution depicted in Figure 9(b). Those inequalities
correspond to the counterparts of the 3-path-cut inequalities proposed in [12, 2].

Whenever H ≥ 4, the DT-HOP indexed flow formulation cannot be replaced
by inequalities obtained by the min-cut algorithm. However, it can be numerically
efficient to avoid the inclusion of the formulation and replace it by Benders inequalities
for variables y and w, similarly as [3].

5. Numerical experiments for the DT.

18

1

2

4

53

(a) Fractional solution G(x) that
satisfies C3

15(x) ≥ 1.

1

2

4

5

3

l

0

1

2

3

4

5

3 5

2 4

(b) G(w, y) for some
(w, y) ∈ DTS(x) that vio-
lates C3

15(w, y) ≥ 1.

1

2

4

5

3

l

0

1

2

3

4

5

3 5

2 4

2

4

4

5

53

(c)
⋃

x̃∈{0,1}m
G(DTS(x̃)).

s(1) t(5)1
12
0

23
1

33
1

33
2

43
3

43
4

43
2

23
2

24
1

34
1

34
2

44
3

44
4

44
2

24
2

55
2

55
3

55
4

(d) Transformation of G(w, y) following Figure 1 from [13].
Thin nodes (resp. edges) correspond to the components of w
(resp. y) equal to zero. Nodes in level 5 are omitted because
they are not connected to 1.

Fig. 9. Separation of 3-path cut inequalities following [13].

5.1. The Steiner Forest Problem. The SFP has the following natural formu-
lation:

min
∑
e∈E

cexe(39a)

s.t.
∑

e∈δE(S)

xe ≥ 1, ∀(u, v) ∈ D;∀S ⊂ V, u ∈ S, v /∈ S(39b)

xe binary, ∀e ∈ E.(39c)

Constraints (39b) are known as undirected cut inequalities. This formulation is the
basis for the classical primal-dual 2-approximated algorithm for the SFP [7]. Never-

19

theless, (39) does not provide effective exact branch-and-cut algorithms, duality gaps
of more than 20% are typical on practical instances. For example, consider an instance
defined over a complete graph with vertices {1, 2, 3} and D = {(1, 2), (1, 3)}. The frac-
tional solution x12 = x13 = x23 = 0.5 mentioned previously satisfies all constraints
(39b).

The difficulty of devising a directed formulation for SFP lies in the fact that it is
not known beforehand which demands will belong to the same connected component
(a subtree) of an optimal solution. A strong SFP formulation was proposed by Mag-
nanti and Raghavan [17], based on the concept of consistent edge orientations across
demands. In that concept, each connected component is represented by a directed
tree rooted at the first vertex of the demand with smaller index in the component.
However, the formulation in [17] is not much practical since it contains an exponential
number of constraints and no polynomial algorithm for separating them is known. The
lifted-cut formulation proposed by Konemann et al. [15] can be stronger than (39) and
its linear relaxation can be solved in polynomial time. Recently, Schmidt et al. [22]
presented four new formulations (essentially three formulations, since two of them are
equivalent). The strongest new formulations are based on the same consistent edge
orientations across demands concept from [17], however, their linear relaxations can
be solved in polynomial time.

Figure 10 depicts a small STF instance with 8 vertices and 12 edges considered
in [22], edge costs are unitary and the 4 demands are represented by pairs of identical
symbols. The optimal solution value is 7. Table 1 presents the linear relaxation
values for each existing formulation (taken from [22]) and also for the new formulation
obtained by applying the DT to the natural formulation.

Formulation Linear Relaxation

Natural (39) 4
Lifted-cut [15] 4
Full directed flow based [17] 6
Tree-based [22] 5
Extended cut-based [22] 5.14
Strengthened extended cut-based [22] 6

Distance Transformation 7
Distance Transformation L= 3 5

Table 1
Linear relaxation value for instance in Figure 10

This small example illustrates the potential power of the DT on STF. In fact, it
proves that the weak natural formulation is transformed into a new formulation that
can be strictly stronger than any other known STF formulation in some instances. On
the other hand, the result obtained by setting L = 3 shows that the limitation of levels,
necessary on larger instances, may affect the linear relaxation bounds significantly.

The following experiments were performed in a single core of a machine with
processor i7 at 2.5 GHz and 16 GB of RAM. The tested formulations were implemented
over the XPRESS-Optimizer 7.3. We performed tests with 3 types of instances:

• Small STF instances (pdh, di-yuan, dfn-gwin, polska and nobel-us) available
in the SNDLib.

• Steiner instances C01 st,...,C10 st from the SteinLib. Those instances are
defined over random graphs with 500 vertices. For an instance with terminal-
set T , we defined D as {(r, v) : v ∈ T, v 6= r}, where r is the terminal with

20

Fig. 10. STF instance with 4 demands (pairs of identical symbols), unitary edge costs.

smaller index. Those instances can be easily solved by SPG codes using a
directed formulation. Nevertheless, it is interesting to see how the DT can
improve the undirected formulation.

• SPF instances C01,...,C10 derived from the above instances as follows. The
set D is obtained by pairing consecutive terminals in T . If |T | is odd, an
extra demand from the first to the last terminal is included. To the best of
our knowledge, some of those instances can be very hard for current solution
methods.

Table 2 compares gaps (with respect to optimal or best known UBs) and times to
solve linear relaxations for: (1) natural formulation (39); (2) Lifted-cut formulation
[15]; (3) Strengthened Extended Cut-Based (SECB) [22]; (4) DT reformulation over
the natural formulation, for L = 3, L = 4, and L = 5, using unitary distances and
with a singleton set S containing the first terminal. Some comments on those results:

• The lifted-cut formulation gaps are not much better than those from the
natural formulation.

• The SECB formulation assumes that demands with a common vertex will be
merged into demands containing more than two vertices. The connectivity
requirement of those demands is the existence of paths joining all its vertices.
In all SNDLib and C st instances this preprocessing reduces all demands into
a single demand. The SECB formulation for a single demand containing sev-
eral vertices is exactly equivalent to the directed Steiner formulation. So, it
is expected that the gap for those types is nearly zero and the times small.
The demands are not merged on the C instances, so the test of the SECB
formulation is more relevant for that type of instances. The experiments
show that the gaps obtained are small, however the number of variables in
the formulation (O(m|D|)) and the number of times that the min-cut sepa-
ration algorithm has to be called per separation round (O(|D|2)) make the
formulation slow when |D| grows. In 5 of the C instances the solution was
stopped at 1800 seconds, before the cut separation converged.

• The DT can reduce the gaps significantly with respect to the natural formu-
lation. As expected, the average gaps decrease when L increases, but the
improvement quickly becomes marginal. The DT with L = 3 seems to be the
best compromise between gap and running times on most instances. While the
gap reductions are remarkable for SNDLib and C st instances, they are less
impressive for the C instances. We verified that their distance transformed
fractional solutions were divided into a number of connected components. All
those components, except the one that contained the vertex in S, are in level
L, where vertex splittings do not happen.

In order to make the DT effective on that last case, we devised an iterative

21

scheme for choosing a larger set S. We start with a single vertex in S and solve the
linear relaxation of the corresponding DT. While the fractional solution still contains
vertices in level L, we introduce one vertex from the larger connected component in
L and solve the new DT again. Table 3 shows the results of this dynamic procedure
for L = 3, L = 4, and L = 5. While the resulting gaps are quite better, they are still
large when compared with those obtained in other types of instances.

Finally, Table 4 compares the results of the full branch-and-cut over the original
formulation (39) with the branch-and-cut over the DT reformulation, for some chosen
parameterization. We mark in bold the time of the method that could solve the
instance faster. If no method could solve the instance, either because the time limit
of 7200 seconds was exceeded or because it went out of memory, we mark in bold
the smallest final gap obtained. We did not passed any external upper bound to the
branch-and-cut, those gaps are with respect to the best solution found by the method
itself. Although the harder instances could not be solved to optimality, it is clear that
the overall performance of the DT reformulation is much better.

2
2Natural Lifted-cut SECB DT L=3 DT L=4 DT L=5

Instance |V | |E| |D| UB Gap
(%)

T
(s)

Gap
(%)

T
(s)

Gap
(%)

T (s) Gap
(%)

T (s) Gap
(%)

T (s) Gap
(%)

T
(s)

pdh 11 34 27 897551 41.0 0.00 32.2 0.35 0.0 0.01 0.0 0.01 0.0 0.01
di-yuan 11 42 48 21570000 32.8 0.00 26.1 0.01 0.6 0.02 0.0 0.01 0.0 0.01
dfn-gwin 11 47 9 79960 29.8 0.00 28.5 0.00 1.0 0.04 0.9 0.10 0.9 0.11
polska 12 18 17 214100 38.1 0.00 29.2 0.01 0.0 0.01 0.0 0.01 0.0 0.01
nobel-us 14 21 33 8481000 30.5 0.00 20.1 0.01 1.2 0.02 1.2 0.04 0.8 0.16

Avg. 34.4 0.00 27.2 0.08 0.6 0.02 0.3 0.03 0.3 0.06

c01 st 500 625 4 85 16.5 0.03 12.4 0.07 0.0 1.38 0.0 2.05 0.0 3.77
c02 st 500 625 9 144 24.7 0.16 24.7 0.21 0.0 3.37 0.0 3.63 0.0 6.34
c03 st 500 625 82 754 23.1 0.27 20.6 1.27 0.8 2.10 0.8 4.19 0.8 7.26
c04 st 500 625 125 1079 20.8 0.29 19.6 2.40 0.1 1.09 0.1 6.32 0.1 5.99
c05 st 500 625 249 1579 19.5 0.22 18.6 2.07 0.3 1.58 0.3 7.88 0.3 12.29
c06 st 500 1000 4 55 17.3 0.16 14.6 0.28 4.2 4.00 3.6 10.10 4.2 8.89
c07 st 500 1000 9 102 18.6 0.18 14.2 0.44 0.0 1.26 0.0 1.69 0.0 1.79
c08 st 500 1000 82 509 25.5 0.29 24.3 1.27 0.1 4.73 0.1 13.65 0.1 27.45
c09 st 500 1000 124 707 28.3 0.59 26.9 3.40 0.6 14.70 0.6 11.48 0.6 21.30
c10 st 500 1000 249 1093 25.4 0.59 24.4 5.11 0.0 3.22 0.0 5.26 0.0 13.90

Avg. 21.7 0.26 19.3 1.60 1.0 3.92 0.9 7.06 0.9 12.60

c01 500 625 3 85 16.5 0.03 5.3 0.11 0.6 15.6 1.0 3.53 1.0 4.62 1.0 7.34
c02 500 625 5 143 24.1 0.19 18.2 0.31 0.4 23.4 17.5 2.84 17.5 3.03 17.5 3.84
c03 500 625 42 754 23.1 0.39 21.6 0.95 0.1 623.7 18.9 13.80 18.9 21.30 18.9 27.40
c04 500 625 63 1079 20.8 0.57 19.3 1.06 0.8 1800 11.0 23.70 11.0 47.80 11.0 86.70
c05 500 625 125 1579 19.6 4.32 18.7 1.36 8.0 1800 13.9 82.60 13.9 71.00 13.9 134.80
c06 500 1000 3 47 3.2 0.13 3.2 0.38 0.0 1.43 0.0 2.83 0.0 2.91 0.0 4.44
c07 500 1000 5 89 10.1 0.07 8.4 0.32 0.0 19.1 0.0 2.70 0.0 2.51 0.0 2.98
c08 500 1000 42 509 25.5 0.77 25.3 0.92 4.2 1800 18.7 59.40 18.7 111.80 18.7 236.20
c09 500 1000 63 707 28.3 1.20 27.2 2.16 3.9 1800 23.0 39.80 23.0 122.20 23.0 276.60
c10 500 1000 125 1093 25.4 1.38 24.4 2.57 12.6 1800 20.3 113.90 20.3 228.40 20.2 617.90

Avg. 18.5 0.84 16.1 1.00 3.1 968.3 11.4 31.70 11.3 56.40 11.3 127.90

Avg. 22.7 0.35 19.5 1.08 5.2 4.47 5.0 8.31 5.0 14.80
Table 2

Natural [1], Lifted-cut [15], Strengthened Extended Cut-Based [22] and DT reformulation (|S|=1) root gaps.

23

L=3 L=4 L=5
Inst Gap(%) T(s) Gap(%) T(s) Gap(%) T(s)

c01 0.98 3.53 0.98 4.62 0.98 7.34
c02 6.29 2.99 5.83 4.73 5.60 8.36
c03 7.36 6.86 7.05 20.84 6.97 28.86
c04 4.50 10.64 4.32 25.12 4.20 31.95
c05 3.17 8.82 3.09 52.4 2.98 37.8
c06 0.00 2.83 0.00 2.91 0.00 4.44
c07 0.00 2.7 0.00 2.51 0.00 2.98
c08 9.89 20.16 9.69 40.14 9.57 62.45
c09 11.33 28.15 10.84 61.33 10.83 98.65
c10 8.12 40.38 7.88 82.15 7.78 135.88

Avg. 4.86 11.96 4.52 27.49 4.45 38.89
Table 3

Root gaps for the dynamic choice of S in DT.

Inst Nodes Gap(%) T Nodes Gap(%) T(s)

pdh 20183 0.00 10.52 1 0.00 0.01 L=4 |S|=1
di-yuan 236 0.00 0.19 1 0.00 0.01 L=4 |S|=1
dfn-gwin 1389 0.00 0.64 5 0.00 0.10 L=4 |S|=1
polska 332 0.00 0.15 1 0.00 0.01 L=4 |S|=1
nobel-us 186 0.00 0.09 3 0.00 0.05 L=4 |S|=1

c01 st 52 0.00 2.17 2 0.00 2.65 L=3 |S|=1
c02 st 4275 0.00 60.52 1 0.00 4.56 L=4 |S|=1
c03 st 10887 28.38 o.m. 1212 0.53 7200 L=7 |S|=1
c04 st 20979 22.89 7200 255 0.00 6.18 L=7 |S|=1
c05 st 45310 20.52 7200 149 0.06 7200 L=7 |S|=1
c06 st 241 0.00 5.48 14 0.00 10.77 L=3 |S|=1
c07 st 11409 0.00 565.24 1 0.00 1.55 L=3 |S|=1
c08 st 12700 42.44 o.m. 12 0.00 30.74 L=3 |S|=1
c09 st 16270 43.85 o.m. 514 0.32 7200 L=3 |S|=1
c10 st 29232 46.02 7200 20 0.00 292.58 L=4 |S|=1

c01 56 0.00 2.13 3 0.00 3.38 L=3 |S|=1
c02 4942 0.00 84.54 69 0.00 41.13 L=4 |S|=2
c03 18113 28.51 7200 119 10.61 7200 L=7 |S|=8
c04 29877 23.91 o.m. 821 3.99 7200 L=3 |S|=11
c05 34645 21.47 7200 198 3.04 7200 L=4 |S|=9
c06 3 0.00 1.12 1 0.00 2.39 L=3 |S|=1
c07 239 0.00 10.59 2 0.00 2.33 L=3 |S|=1
c08 12312 41.06 o.m. 439 8.84 7200 L=4 |S|=13
c09 15243 48.37 o.m. 235 11.0 7200 L=3 |S|=16
c10 17361 44.28 7200 17 7.41 7200 L=4 |S|=27

Table 4
Comparison of full branch-and-cut over natural formulation and over DT reformulation. Gaps

are given with respect to the UBs found by branch-and-cut itself, not to the best known solutions.

5.2. The Survivable Network Design with Hop Constraints Problem.
We consider in this section the HSNDP that has been defined in the introduction
of the paper. We address the connectivity requirements by using the layered flow
formulation described in Section 4.2, which results in a large extended formulation
for the problem. It can be verified that using the flow formulations proposed in Sec-

24

tion 4.2 to model the connectivity requirements of HSNDP results in a formulation
that is equivalent to the one originally proposed in [18]. Our objective in the section
is to provide numerical evidence that the formulation is well-suited for Benders de-
composition. Specifically, we compare the following three approaches for solving the
extended formulation. First, we feed the formulation directly into CPLEX, leaving
all parameters to their default values. Second, we consider the automatic Benders de-
composition algorithm implemented in CPLEX 12.8, which decomposes the extended
formulation into a master problem, that contains only the design variables x,w and
y and Benders cuts, and one subproblem for each demand D that contains the flow
variables g associated to that demand together with the flow conservation constraints
and capacity constraints described in Section 4.2. Last, we implement an ad-hoc Ben-
ders decomposition algorithm using Callbacks and following closely the lines of [3].
Specifically, our algorithm solves the master problem through a branch-and-cut algo-
rithm. Every time an integer solution (x̄, w̄, ȳ) is found in the branch-and-cut tree,
all subproblems are solved to see if the solution (x̄, w̄, ȳ) is feasible for the original
problem. If this is not the case, the subproblems return one or more Benders cuts
that are added to the master problem at all nodes of the branch-and-cut tree.

For each algorithm, we feed the solver with the best known solution (denoted BKS
in Table 5) and allow it to fathom any node worse than BKS. Table 5 reports the
results of our computational experiments. The table also contains the results obtained
by using the classical layered formulations from [3] (denoted HOP formulation in the
table) where the connectivity requirements are imposed through flows on layered
graphs that are built directly on the original graph G. Hence, the HOP formulation
contrasts with the HOP-level formulation that models flows on layered graphs that
are built on the top of the layered graph G.

25
Compact Benders auto Benders via Callbacks

H K BKS root
LB

root
gap(%)

final
LB

final
UB

nodes Time
(s)

final
LB

final
UB

nodes Time
(s)

final
LB

final
UB

nodes Time
(s)

H
O

P
fo

rm
u

la
ti

o
n

TC-20 3 2 607 495.1 18.4 607.0 607 67K 2353 607.0 607 3.6M 10748 607.0 607 973K 9294
3 3 842 769.1 8.7 842.0 842 23K 1068 842.0 841 665K 1835 842.0 842 246K 1253
4 2 536 442.3 17.5 506.5 57K 36000 508.4 2.8M 36000 523.0 2.4M 36000
4 3 750 699.7 6.7 750.0 750 16K 8776 750.0 750 421K 1530 750.0 750 286K 2469

TE-20 3 2 776 603.1 22.3 776.0 776 59K 3508 724.4 6.2M 36000 745.0 1.5M 36000
3 3 1082 911.6 15.8 1082.0 1082 184K 9733 1011.5 3.8M 36000 1024.9 1.2M 36000
4 2 670 516.9 22.8 587.5 47K 36000 569.1 1.6M 36000 573.2 720K 36000
4 3 919 793.0 13.7 847.2 44K 36000 830.4 675K 36000 838.0 558K 36000

TC-40 3 2 632 516.9 18.2 623.1 632 136K 36000 593.9 3.6M 36000 592.2 472K 36000
3 3 889 795.0 10.6 881.5 889 127K 36000 856.4 2.9M 36000 853.6 489K 36000
4 2 538 456.4 15.2 476.4 1.6K 36000 501.9 2.2M 36000 494.0 341K 36000
4 3 795 710.4 10.6 728.8 1.8K 36000 747.8 2.3M 36000 747.4 437K 36000

TE-40 3 2 790 616.9 21.9 746.7 37K 36000 704.9 2.1M 36000 695.3 260K 36000
3 3 1094 932.5 14.8 1045.0 33K 36000 1009.5 2.0M 36000 999.4 319K 36000
4 2 661 528.4 20.1 546.4 676 36000 568.2 1.5M 36000 558.5 68K 36000
4 3 968 808.6 16.5 826.9 764 36000 841.5 1.3M 36000 833.7 88K 36000

Compact Benders auto Benders via Callbacks
H K BKS root

LB
root
gap(%)

final
LB

final
UB

nodes Time
(s)

final
LB

final
UB

nodes Time
(s)

final
LB

final
UB

nodes Time
(s)

D
T

-H
O

P
fo

rm
u
la

ti
o
n

TC-20 3 2 607 581.0 4.3 607.0 607 2.6K 43 607.0 607 3.3K 16 607.0 607 2.8K 191
3 3 842 798.8 5.1 842.0 842 2.9K 319 842.0 842 11K 60 842.0 842 11K 601
4 2 536 501.0 6.5 536.0 536 5.2K 20615 536.0 536 15K 148 536.0 536 7.1K 1052
4 3 750 714.8 4.7 737.2 750 2.5K 36000 750.0 750 28K 392 750.0 750 10K 1872

TE-20 3 2 776 764.3 1.5 776.0 776 47 27 776.0 776 13 8 776.0 776 9 46
3 3 1082 1025.5 5.2 1082.0 1082 15K 8955 1082.0 1082 124K 1048 1082.0 1082 182K 12865
4 2 670 607.0 9.4 623.4 834 36000 670.0 670 239K 5454 652.3 128K 36000
4 3 919 843.2 8.3 854.4 692 36000 886.5 881K 36000 876.7 98K 36000

TC-40 3 2 632 595.8 5.7 632.0 632 2.0K 317 632.0 632 11K 183 632.0 632 2.4 2169
3 3 889 840.1 5.5 889.0 889 12K 11099 889.0 889 141K 4361 882.0 46K 36000
4 2 538 515.8 4.1 527.5 189 36000 538.0 538 868 258 538.0 538 817 10349
4 3 795 738.6 7.1 743.1 75 36000 780.1 785 297K 36000 763.6 785 10K 36000

TE-40 3 2 790 758.3 4.0 790.0 790 789 688 790.0 790 5.7K 202 790.0 790 2.1K 2239
3 3 1094 1025.2 6.3 1062.5 4.18K 36000 1094.0 1094 456K 21341 1065.3 31K 36000
4 2 661 614.4 7.1 618.2 25 36000 654.0 654 33K 5585 623.6 1.1K 36000
4 3 968 857.4 11.4 859.9 23 36000 883.7 126K 36000 860.5 57 36000

Table 5
Comparison of HOP and DT-HOP formulations: direct solution by CPLEX MIP solver through compact or Benders approaches, and add-hoc branch-and-cut

based Benders decomposition.

26

Those experiments were carried out on a computer equipped with a processor
Intel(R) Xeon(R) CPU X5460 at 3.16GHz and 32 GB of RAM memory, using Concert
Technology for JAVA of CPLEX 12.8 [6]. The time limit was set to 36000 seconds.
The TC and TE instances used in tests are widely used in the literature. They
correspond to complete graphs, vertices are associated to points in the plane, the
costs are the Euclidean distances. TC-20 has vertex 0 in the center and demands
D = {(0, v) : v = 1, . . . , 20}, TE-20 is similar but has vertex 0 in a corner, TC-40
and TE-40 are similar but |D| = 40. We performed tests taking H ∈ {3, 4} and
K ∈ {2, 3}.

Table 5 is divided into two parts. On the top, it shows results for HOP fomulation;
on the bottom for DT-HOP formulation. Columns root LB and root gap show the
lower bounds and gap with respect to the Best Known Solution for HOP and DT-HOP
formulations (those values do not depend whether Benders decomposition is used or
not). The remaining columns are statistics for the exact methods. In particular, the
number of nodes are written in thousands (K) or millions (M). Therefore, we are
comparing six methods on each instance. We mark in bold the time of the method
that could solve the instance faster. If no method could solve the instance within the
time limit, we mark in bold the best final lower bounds obtained. It can be seen that:

• DT works very well for that problem. For all instances, a method based on
DT-HOP was the winner.

• Benders decomposition can be a good alternative for mitigating the problems
related to the large size of the reformulations obtained by DT. DT-HOP
with automatic Benders was the best method for all instances, allowing us to
close most open instances. In addition, the automatic Benders decomposition
performs significantly better than the ad-hoc algorithm.

6. Conclusions. A growing part of the Integer Programming research is de-
voted to finding new effective extended formulations for certain families of problems.
This paper contributes in this direction, introducing a technique with the potential
of strengthening existing formulations for a large class of NDPs. The increase in for-
mulation size is not necessarily exaggerated (actually, the increase can be controlled
by the parameter L), making the overall approach computationally appealing in a
number of cases.

In principle, DT is a very generic technique that could be applied on many other
network design problems. The question that has to be answered for any candidate
problem is: the reduction of root gaps is significant enough to compensate for the
increased size of the formulation? Based on the presented experiments, there are two
factors that seem to make the DT more or less suited to a particular NDP.

• The DT seems to work better on NDPs with sparser solutions. For example,
on HSND instances with K = 2 the average gap was reduced by 72%, on
HSND instances with K = 3 the more modest average gap reduction of 43%
was obtained. This is coherent with the theory presented in Section 2 that
asserts that DT works by splitting nodes according to the different distances
(to the sources) induced by decomposing fractional solutions. Denser frac-
tional solutions provide more ways of performing the decomposition, resulting
in less node splittings.

• The DT seems to work better on problems where the solutions are likely to
have a “small diameter”. For example, this happens on HSND because the of
the hop constraint. This allows using small values of L without compromising
the strength of the reformulation. Remark that SFP solutions are very sparse,

27

but typically have large diameter. Although the last characteristic is not
favorable, the DT with limited values of L still provided good results.

There are also important issues that need to be addressed in future research on
DT. One of them is devising a general method for choosing the set S and the limit L.
The experiments on STF with ad-hoc methods showed that those choices can make
a lot a difference.

Acknowledgments. The authors would like to thank the referees for suggesting
numerous improvements to the manuscript.

REFERENCES

[1] Yash P Aneja, An integer linear programming approach to the steiner problem in graphs,
Networks, 10 (1980), pp. 167–178.

[2] F. Bendali, I. Diarrassouba, A.R. Mahjoub, and J. Mailfert, The k edge-disjoint 3-hop-
constrained paths polytope, Discrete Optimization, 7 (2010), pp. 222–233.

[3] Q. Botton, B. Fortz, L. Gouveia, and M. Poss, Benders decomposition for the hop-
constrained survivable network design problem, INFORMS Journal on Computing, 25
(2013), pp. 13–26.

[4] Sunil Chopra and Mendu Rammohan Rao, The Steiner tree problem i: Formulations, com-
positions and extension of facets, Mathematical Programming, 64 (1994), pp. 209–229.

[5] , The Steiner tree problem ii: Properties and classes of facets, Mathematical Program-
ming, 64 (1994), pp. 231–246.

[6] IBM ILOG CPLEX, V12. 1: Users manual for cplex, International Business Machines Cor-
poration, 46 (2009), p. 157.

[7] Michel X. Goemans and David P. Williamson, The primal-dual method for approximation
algorithms and its application to network design problems, PWS, Boston, 1997, pp. 144–
191.

[8] Luis Gouveia, Multicommodity flow models for spanning trees with hop constraints, European
Journal of Operational Research, 95 (1996), pp. 178 – 190.

[9] Luis Gouveia, Markus Leitner, and Ivana Ljubić, Hop constrained Steiner trees with mul-
tiple root nodes, European Journal of Operational Research, 236 (2014), pp. 100–112.

[10] , The two-level diameter constrained spanning tree problem, Mathematical Programming,
150 (2015), pp. 49–78.

[11] L. Gouveia, L. Simonetti, and E. Uchoa, Modeling hop-constrained and diameter-
constrained minimum spanning tree problems as Steiner tree problems over layered graphs,
Mathematical Programming, 128 (2011), pp. 123–148.

[12] D. Huygens and A.R. Mahjoub, Integer programming formulations for the two 4-hop-
constrained paths problem, Networks, 49 (2007), pp. 135–144.

[13] D. Huygens, A.R. Mahjoub, and P. Pesneau, Two edge-disjoint hop-constrained paths and
polyhedra, SIAM Journal on Discrete Mathematics, 18 (2004), pp. 287–312.

[14] Thorsten Koch, Alexander Martin, and Stefan Voß, Steinlib: An updated library on
Steiner tree problems in graphs, in Steiner trees in industry, Springer, 2001, pp. 285–325.

[15] Jochen Könemann, Stefano Leonardi, Guido Schäfer, and Stefan HM van Zwam, A
group-strategyproof cost sharing mechanism for the Steiner forest game, SIAM Journal on
Computing, 37 (2008), pp. 1319–1341.

[16] Ivana Ljubic and Stefan Gollowitzer, Layered graph approaches to the hop constrained
connected facility location problem, INFORMS Journal on Computing, 25 (2013), pp. 256–
270.

[17] Thomas L Magnanti and S Raghavan, Strong formulations for network design problems with
connectivity requirements, Networks, 45 (2005), pp. 61–79.

[18] A. R. Mahjoub, L. Simonetti, and E. Uchoa, Hop-level flow formulation for the survivable
network design with hop constraints problem, Networks, 61 (2013), pp. 171–179.

[19] M. Poggi de Aragão, E. Uchoa, and R.F. Werneck, Dual heuristics on the exact solution
of large Steiner problems, Electronic Notes in Disc. Mathematics, 7 (2001), pp. 150–153.

[20] T. Polzin and S.V. Daneshmand, Improved algorithms for the Steiner problem in networks,
Discrete Applied Mathematics, 112 (2001), pp. 263–300.

[21] Mario Ruthmair and Günther R Raidl, A layered graph model and an adaptive layers
framework to solve delay-constrained minimum tree problems, in International Conference
on Integer Programming and Combinatorial Optimization, Springer, 2011, pp. 376–388.

28

[22] D. Schmidt, B. Zey, and F. Margot, MIP Formulations for the Steiner Forest Problem,
ArXiv e-prints, (2017).

[23] R.T. Wong, A dual ascent approach for Steiner tree problems on a directed graph, Mathemat-
ical programming, 28 (1984), pp. 271–287.

	Introduction
	Contributions and structure of the paper
	blackAdditional notations

	The unitary distance transformation
	Definition
	Connectivity of DTS

	Linear programming formulations for the DT
	``Natural'' formulation for PS
	Limiting the levels

	Formulating the connectivity requirements
	Simple connectivity requirements
	Hop constraints

	Numerical experiments for the DT
	The Steiner Forest Problem
	The Survivable Network Design with Hop Constraints Problem

	Conclusions
	References

