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1. Introduction

In this note we deal with anisotropic, and possibly crystalline, mean curvature

flows, that is, flows of sets t 7→ E(t) governed by the law

(1.1) V (x, t) = −ψ(νE(t))(κ
E(t)
φ (x) + g(x, t)),

where V (x, t) stands for the outer normal velocity of the boundary ∂E(t) at x, φ is

a given norm on R
N representing the surface tension, κ

E(t)
φ is the anisotropic mean

curvature of ∂E(t) associated with the anisotropy φ, ψ is a norm evaluated at the

outer unit normal νE(t) to ∂E(t), and g is a forcing term. The factor ψ plays the

role of a mobility.
1
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We refer to [16] for the motivations to study this flow, which originate in problems

from phase transitions and materials science (see for instance [39, 35] and references

therein). Its mathematical well-posedness is established in the smooth setting, that

is when φ, ψ, g and the initial set are sufficiently smooth and φ satisfies suitable

ellipticity conditions. However, it is also well-known that in dimensions N ≥ 3

singularities may form in finite time even in the smooth case and for regular initial

sets. When this occurs the strong formulation of (1.1) ceases to be meaningful and

thus needs to be replaced by weaker notions of global-in-time solution.

Among the different weak approaches that have been proposed in the literature

for the classical mean curvature flow (and for several other “regular” flows) here

we recall the so-called level set formulation [37, 23, 24, 19, 30] and the flat flow for-

mulation proposed by Almgren, Taylor and Wang [2] and based on the minimizing

movements variational scheme (referred to as the ATW scheme).

However, when the anisotropy φ in (1.1) is non-differentiable or crystalline, the

lack of smoothness of the involved differential operators makes it much harder to

pursue the aforementioned approaches. In fact, in the crystalline case the problem

of finding a suitable weak formulation of (1.1) in dimension N ≥ 3 leading to a

unique global-in-time solution for general initial sets has remained open until the

very recent works [17, 33, 16, 34].

We refer also to [32, 14, 12] for previous results holding for special classes of initial

data, and to [28] for a well-posedness result dealing with a very specific anisotropy.

The two-dimensional case is somehwat easier and has been essentially settled in [27]

(when g is constant) by developing a crystalline version of the viscosity approach

for the level-set equation, see also [39, 1, 5, 26, 31] for relevant former work. We

also mention the recent papers [18, 36], where short time existence and uniqueness

of strong solutions for initial “regular” sets (in a suitable sense) is shown.

Let us now briefly describe the most recent progress on the problem. In [17], the

first global-in-time existence and uniqueness result for the level set flow associated

to (1.1), valid in all dimensions, for arbitrary (possibly unbounded) initial sets, and

for general (including crystalline) anisotropies φ was established, but under the

particular choice ψ = φ (and g = 0). The main contribution of that work is the

observation that the variant of the ATW scheme proposed in [15, 14]) converges

to solutions that satisfy a new stronger distributional formulation of the problem

in terms of distance functions. Such a formulation is only reminiscent of, but not

quite the same as, the distance formulation studied in [38] (see also [10, 4, 14, 3]),

and because of its distributional character it enables the use of parabolic PDE’s

arguments in order to establish a comparison result yielding uniqueness.

In [16], we first observe that the methods of [17] can be pushed to treat bounded

spatially Lispchitz continuous forcing terms g and more general mobilities ψ, which

are “regular” with respect to the anisotropy φ. More precisley, a norm ψ is said

to be φ-regular if the associated ψ-Wulff shape Wψ satisfies a uniform inner φ-

Wulff shape condition at all points of its boundary. Such a condition implies that
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the φ-curvature kφ of ∂Wψ is bounded above and it enables us to show that a

distributional formulation in the spirit of [17] still holds true. Next, owing to the

simple observation that the φ-regular mobilities are dense, we succeed in extending

the notion of solution to general mobilities by an approximation procedure. More

precisely, by establishing delicate stability estimates on the ATW scheme, we show

that if ψ is any norm and ψn → ψ, with ψn a φ-regular mobility for every n,

then the corresponding distributional level set solutions uψn , with the given initial

datum u0, admit a unique limit uψ (independent of the choice of the approximating

ψn), which we may therefore regard as the unique solution to the level set flow with

mobility ψ and initial datum u0. As a byproduct of this analysis, we also settle

the problem of the uniqueness (up to fattening) of flat flows for general mobilities.

Once again, our results hold in all dimensions, for arbitrary (possibly unbounded)

initial sets and general, possibly crystalline anisotropies φ.

By completely different methods, in [33] and more recently in [34], the authors

succeed in extending the viscosity approach of [27] to the case N = 3 and to the

general case N ≥ 3, respectively. In fact, as in [27] they are able to deal with very

general equations of the form

V = f(ν,−κEφ ) ,

with f continuous and non-decreasing with respect to the second variable, but with-

out spatial dependence, establishing existence and uniqueness for the corresponding

level set formulation. However, their method, as far as we know, works only for

purely crystalline anisotropies φ, bounded initial sets, and constant forcing terms.

Here we propose a variant of the approach of [16], by deriving existence, unique-

ness and some properties of anisotropic and crystalline flows directly from the

corresponding properties of smooth (i.e., with smooth anisotropies) flows, appro-

priately defined as viscosity solutions of a geometric PDE. This leads to a more

direct and easier proof of the well-posedness of (1.1) for general mobilities and

anisotropies, relying on purely viscosity methods, which however does not provide

any information about the uniqueness of flat flows.

Let us describe the new approach in more detail. The starting point is the

observation that when the anisotropy is smooth, the distributional formulation of

[17, 16] is equivalent to the classical viscosity formulation, see Section 2.2. Next,

in Section 2.3 we show that if φn → φ, with φn smooth, and if ψn → ψ, with ψn
φn-regular “uniformly” with respect to n (see the statement of Theorem 2.8 below

for the precise meaning), then the corresponding viscosity (and thus distributional)

level set solutions un converge locally uniformly to the unique distributional level

set flow with anisotropy φ and (φ-regular) mobility ψ. This leads to a new proof of

the existence of distributional level set solutions for φ-regular mobilities, without

using the ATW scheme as in [16].

In Sections 3.1 and 3.2 we establish the crucial stability estimates of the flow with

respect to changing φ-regular mobilities. This is achieved once again by exploiting
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the viscosity formulation in order to prove first the estimates in the case of smooth

anisotropies and to conclude by approximation.

Finally, in Section 3.3 we prove the main existence and uniqueness result for the

level set formulation of (1.1), in the case of general anisotropies and mobilities. In

this last step we proceed essentially as in [16]: we approximate any mobility ψ by

a sequence φ-regular mobilities ψn and show, by means of the stability estimates

of the previous sections, that the corresponding solutions admit a unique limit.
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2. Distributional mean curvature flows

Given a norm η on R
N (a convex, even, one-homogeneous real-valued function

with η(ν) > 0 if ν 6= 0), we define a polar norm η◦ by η◦(ξ) := supφ(ν)≤1 ν · ξ and

an associated anisotropic perimeter Pη as

Pη(E) := sup

{
ˆ

E

divζ dx : ζ ∈ C1
c (R

N ;RN ), η◦(ζ) ≤ 1

}

.

As is well known, (η◦)◦ = η so that when the set E is smooth enough one has

Pη(E) =

ˆ

∂E

η(νE)dHN−1 ,

which is the perimeter of E weighted by the surface tension η(ν).

We will make repeated use of the following identities

(2.1) ∂η(ν) = {ξ : η◦(ξ) ≤ 1 and ξ ·ν ≥ η(ν)} = {ξ : η◦(ξ) = 1 and ξ ·ν = η(ν)},
(and the symmetric statement for η◦) for ν 6= 0. Moreover, ∂η(0) = {ξ : η◦(ξ) ≤ 1}
while ∂η◦(0) = {ξ : η(ξ) ≤ 1}. For R > 0 we denote

W η(x,R) := {y : η◦(y − x) ≤ R} .
Such a set is called the Wulff shape (of radius R and center x) associated with the

norm η and represents the unique (up to translations) solution of the anisotropic

isoperimetric problem

min {Pη(E) : |E| = |W η(0, R)|} ,
see for instance [25].

We denote by distη(·, E) the distance from E induced by the norm η, that is, for

any x ∈ R
N

(2.2) distη(x,E) := inf
y∈E

η(x − y)
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if E 6= ∅ and distη(x, ∅) := +∞. Moreover, we denote by dηE the signed distance

from E induced by η, i.e.,

dηE(x) := distη(x,E) − distη(x,Ec) .

so that distη(x,E) = dηE(x)
+ and distη(x,Ec) = dηE(x)

−, where we adopted the

standard notation t+ := t ∨ 0 and t− := (−t)+). Note that by (2.1) we have

η(∇dη
◦

E ) = η◦(∇dηE) = 1 a.e. in R
N \ ∂E.

Finally we recall that a sequence of closed sets En in R
m converges to a closed

set E in the Kuratowski sense if the following conditions are satisfied

(i) if xn ∈ En, any limit point of {xn} belongs to E;

(ii) any x ∈ E is the limit of a sequence {xn}, with xn ∈ En.

and we write

En
K−→ E .

Since En
K−→ E if and only if (for any norm η) distη(·, En) → distη(·, E) locally

uniformly in R
m, by Ascoli-Arzelà’s Theorem any sequence of closed sets admits a

converging subsequence in the Kuratowski sense.

2.1. The weak formulation of the crystalline flow. In this section we recall

the weak formulation of the crystalline mean curvature flow introduced in [17, 16].

In what follows, we will consider forcing terms g : RN × [0,+∞) → R satisfying

the following two hypotheses:

H1) for every T > 0, g ∈ L∞(RN × (0,+∞));

H2) there exists L > 0 such that g(·, t) is L-Lipschitz continuous with respect to

the metric ψ◦ for a.e. t > 0. Here ψ is the norm representing the mobility

in (1.1).

Remark 2.1. Assumption H1) can be in fact weakened and replaced by

H1)’ for every T > 0, g ∈ L∞(RN × (0, T )).

Indeed under the weaker assumption H1)’, all the arguments and the estimates

presented throughout the paper continue to work in any time interval (0, T ), with

some of the constants involved possibly depending on T . In the same way, if one

restricts our study to the evolution of sets with compact boundary, then one could

assume that g is only locally bounded in space. We assume H1) instead of H1)’

only to simplify the presentation.

Let φ, ψ be two (possibly crystalline) norms representing the anisotropy and the

mobility in (1.1), respectively. We recall the following distributional formulation of

(1.1).

Definition 2.2 (See [16]). Let E0 ⊂ R
N be a closed set. Let E be a closed set in

R
N × [0,+∞) and for each t ≥ 0 denote E(t) := {x ∈ R

N : (x, t) ∈ E}. We say

that E is a superflow of (1.1) with initial datum E0 if

(a) Initial Condition: E(0) ⊆ E0;
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(b) Left Continuity: E(s)
K−→ E(t) as sր t for all t > 0;

(c) Extinction Time: If for t ≥ 0, E(t) = ∅, then E(s) = ∅ for all s > t;

(d) Differential Inequality: Set T ∗ := inf{t > 0 : E(s) = ∅ for s ≥ t},
and

d(x, t) := distψ
◦

(x,E(t)) for all (x, t) ∈ R
N × (0, T ∗) \ E.

Then there exists M > 0 such that the inequality

(2.3) ∂td ≥ divz + g −Md

holds in the distributional sense in R
N × (0, T ∗) \ E for a suitable z ∈

L∞(RN × (0, T ∗)) such that z ∈ ∂φ(∇d) a.e., divz is a Radon measure in

R
N × (0, T ∗) \ E, and (divz)+ ∈ L∞({(x, t) ∈ R

N × (0, T ∗) : d(x, t) ≥ δ})
for every δ ∈ (0, 1).

We say that A, open set in R
N× [0,+∞), is a subflow of (1.1) with initial datum

E0 if Ac is a superflow of (1.1) with g replaced by −g and with initial datum (E̊0)c.

Finally, we say that E, closed set in R
N × [0,+∞), is a solution of (1.1) with

initial datum E0 if it is a superflow and if E̊ is a subflow, both with initial datum

E0.

It is shown in [16] (also [17] for a simpler equation), using quite standard para-

bolic comparison arguments, that such evolutions satisfy a comparison principle:

Theorem 2.3 ([16, Thm 2.7]). Let E be a superflow with initial datum E0 and

F be a subflow with initial datum F 0 in the sense of Definition 2.2. Assume that

distψ
◦

(E0, F 0c) =: ∆ > 0. Then,

distψ
◦

(E(t), F c(t)) ≥ ∆e−Mt for all t ≥ 0,

where M > 0 is as in (2.3) for both E and F .

We now recall the corresponding notion of sub- and supersolution to the level

set flow associated with (1.1), see again [16].

Definition 2.4 (Level set subsolutions and supersolutions). Let u0 be a uniformly

continuous function on R
N . We will say that a lower semicontinuous function

u : RN × [0,+∞) → R is a level set supersolution corresponding to (1.1), with

initial datum u0, if u(·, 0) ≥ u0 and if for a.e. λ ∈ R the closed sublevel set

{(x, t) : u(x, t) ≤ λ} is a superflow of (1.1) in the sense of Definition 2.2, with

initial datum {u0 ≤ λ}.
We will say that an upper-semicontinuous function u : R

N × [0,+∞) → R

is a level set subsolution corresponding to (1.1), with initial datum u0, if −u is a

superlevel set flow in the previous sense, with initial datum −u0 and with g replaced

by −g.
Finally, we will say that a continuous function u : RN×[0,+∞) → R is a solution

to the level set flow corresponding to (1.1) if it is both a level set subsolution and

supersolution.
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As shown in [16], Theorem 2.3 easily yields that almost all closed sublevels of a

solution of the level set flows are solutions of (1.1) in the sense of Definition (2.2).

Moreover, the following comparison principle between level set subsolutions and

supersolutions holds true.

Theorem 2.5 ([16, Thm 2.8]). Let u0, v0 be uniformly continuous functions on

R
N and let u, v be respectively a level set subsolution with initial datum u0 and

a level set supersolution with initial datum v0, in the sense of Definition 2.4. If

u0 ≤ v0, then u ≤ v.

For smooth anisotropies, solutions to the level set flow and (minus the charac-

teristic function of) solutions of the geometric flow in the sence of Definition 2.2 are

in fact viscosity solutions of the (degenerate) parabolic equation (2.4) below. This

classical fact will be shown and exploited to some extent to non smooth anisotropies

in the next two sections.

2.2. Viscosity solutions. We show here that in the smooth cases, the notion of

solution in Definition 2.2 coincides with the definition of standard viscosity solutions

for geometric motions, as for instance in [11]. This property will be helpful to

establish estimates using standard approaches for viscosity solutions.

Lemma 2.6. Assume that φ, ψ, ψ◦ ∈ C2(RN \{0}), and that g is continuous. Let E

be a superflow in the sense of Definition 2.2. Then, −χE is a viscosity supersolution

of

(2.4) ut = ψ(∇u)
(

div∇φ(∇u) + g
)

.

in R
N × (0, T ∗] where T ∗ is the possible extinction time of E.

Conversely, a viscosity supersolution −χE(t) of (2.4) defines a superflow in the

sense of Definition 2.2.

Proof. A similar statement (in a simpler context) is proved in [17, Appendix], while

it is proved in [16] that a superflow defines a viscosity supersolution. We therefore

here focus on the converse: Given an evolving set E(t) such that −χE is a viscosity

supersolution of (2.4), we show that E(t) is a superflow in the sense of Definition 2.2

(with the constantM in (2.3) equal to the Lipschitz constant L of g(·, t) appearing
in the assumption H2)).

Step 1: Left Continuity and Extinction Time. Let T ∗ ∈ [0,+∞] be the (first)

extinction time of E, and assume without loss of generality T ∗ > 0. Let d(x, t) :=

distψ
◦

(x,E(t)). We fix δ > 0 and we set A = (RN × [0, T ∗)) \E and Aδ = A∩{d >
δ}. Let (x, t) with d(x, t) = R > 0. Then Wψ(x,R − ε) ∩ E(t) = ∅ for any

ε > 0 (small). There exists a constant C (depending on φ, ψ) such that, letting

W (s) = R
N \Wψ(x,R − ε − (C/R + ‖g‖∞)s), −χW (s) is a viscosity subsolution

of (2.6), for s ≤ R2/(2(C + R‖g‖∞)) and ε ≤ R/4. By standard comparison

results [10], it follows that E(t+ s) ⊂ W (s) for such times s, so that d(x, t + s) ≥
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R− ε− (C/R+ ‖g‖∞)s. Hence, letting ε→ 0, we find that

(2.5) d(x, t + s) ≥ d(x, t) − (C/δ + ‖g‖∞)s if (x, t), (x, t+ s) ∈ Aδ.

In particular, it follows that ∂td is bounded from below in such sets and hence is a

measure. By (2.5) and the fact that E is closed we deduce that the left continuity

(b) of Definition 2.2 holds for E(t). Moreover, the same argument shows that if

t > T ∗ then d(x, t) = +∞, showing also point (c).

Step 2: The distance function is a viscosity supersolution. We now show that the

function d(x, t) is a viscosity supersolution of

(2.6) ut = ψ(∇u)
(

D2φ(∇u) : D2u+ g − Lu
)

.

In fact, this is essentially classical [38], however the proof in this reference needs to

be adapted to deal with the forcing term. An elementary proof is as follows: let η be

a smooth test function and assume (x̄, t̄) is a contact point, where η(x̄, t̄) = d(x̄, t̄)

and η ≤ d. If the common value of η, d at (x̄, t̄) is zero then it is also a contact

point of 1− χE and η, so that

(2.7) ∂tη(x̄, t̄) ≥ ψ(∇η(x̄, t̄))
(

D2φ(∇η(x̄, t̄)) : D2η(x̄, t̄) + g(x̄, t̄)− Lη(x̄, t̄)
)

obviously holds, by definition (recalling (2.4) and that η(x̄, t̄) = 0). Hence we

consider the case where R = d(x̄, t̄) > 0. Let ȳ ∈ ∂E(t̄) such that R = ψ◦(x̄ − ȳ).

We let

η′(y, t) := η(y + x̄− ȳ, t)−R ≤ d(y + x̄− ȳ, t)−R ≤ d(y, t)

since d is 1-Lipschitz in the ψ◦ norm. In particular, in a neighborhood of (ȳ, t̄),

η′(y, t) ≤ 1 − χE(t)(y). On the other hand, η′(ȳ, t̄) = 0 = d(ȳ, t̄) = 1 − χE(t̄)(ȳ).

Hence, by (2.4)

∂tη(x̄, t̄) = ∂tη
′(ȳ, t̄) ≥ ψ(∇η′(ȳ, t̄))

(

D2φ(∇η′(ȳ, t̄)) : D2η′(ȳ, t̄) + g(ȳ, t̄)
)

.

Since g(ȳ, t̄) ≥ g(x̄, t̄)− Lη(x̄, t̄), (2.7) follows.

Step 3: Differential inequality. A classical remark is that d2, as an infimum of the

uniformly semiconcave functions ψ◦(· − y)2, y ∈ E(t), is semiconcave, hence in Aδ

one has D2d ≤ C/δI in the sense of measures for some constant C depending only

on ψ◦. In particular, div∇φ(∇d) = D2φ(∇d) : D2d ≤ C/δ in Aδ in the sense of

measures.

We proceed as in [17]: for n ≥ 1, let dn(x, t) := mins(d(x, t − s) + ns2) which

is semiconcave and converges to d as n → ∞. Moreover, one can easily check that

dn(·, t) → d(·, t) locally uniformly if t is a continuity point of d. Let B ⊂ Aδ be

an open ball, (where in particular d is bounded from below by δ and from above),

and observe that dn is still a supersolution of (2.6), provided g(x, t) is replaced

with g(x, t) − ωn) for some ωn → 0 as n → +∞. Since dn, which is semi-concave,

has a second-order jet almost everywhere in B, equation (2.6) holds for dn almost

everywhere in B. Reasoning as in [17, Appendix], we deduce that

(2.8) ∂tdn ≥ ψ(∇dn)
(

divzn + g − ω(C/n)− Ldn
)

.
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in the distributional sense (or as measures) in B, where zn := ∇φ(∇dn). It remains

to send n → ∞: clearly, ∂tdn → ∂td in the distributional sense. Consider (x, t) a

point where ∇d(x, t), and ∇dn(x, t) exist for all n. First, if d(x, t− s)+ns2 attains

the minimum in sn, one has for any p ∈ ∂+d(x, t − sn) (the spatial supergradient

of the semiconcave function d(·, t− sn)) that

dn(x+ h, t) ≤ d(x+ h, t− sn) + ns2n

≤ d(x, t − sn) + p · h+
C

δ
|h|2 + ns2n = dn(x, t) + p · h+

C

δ
|h|2

showing that p ∈ ∂+dn(x, t) = {∇dn(x, t)}. We deduce that d(·, t− sn) is differen-

tiable at x, with gradient ∇dn(x, t), and in particular that ψ(∇dn(x, t)) = 1.

Assume now that in addition d is continuous at t. Then dn(·, t) → d(·, t) uni-

formly in B ∩ (RN ×{t}), and using the (uniform) semiconcavity of these functions

one also deduces that ∇dn(x, t) → ∇d(x, t) a.e.: hence, zn(x, t) = ∇φ(∇dn(x, t))
converges to z(x, t) = ∇φ(∇d(x, t)) almost everywhere. Hence we may send n to

∞ in (2.8) to find that

∂td ≥ divz + g − Ld

in the distributional sense in B, with z = ∇φ(∇d) a.e.
This shows the Lemma. �

2.3. The level set formulation. Let u0 ∈ BUC(RN ) (a Bounded, Uniformly

Continuous function). Then, it is well known [19] that if φ ∈ C2(RN \ {0}), ψ, g
are continuous, there exists a unique viscosity solution u of (2.4) with initial datum

u0. Moreover, for all λ ∈ R, −χ{u<λ} is a viscosity supersolution and −χ{u≤λ} a

viscosity subsolution of the same equation. If in addition ψ, ψ◦ ∈ C2(RN \ {0}), it
follows from Lemma 2.6 that Eλ(t) := {u(·, t) ≤ λ} is a superflow in the sense of

Definition 2.2, while Aλ(t) := {u(·, t) < λ} is a subflow1.

In what follows we will say that a given norm η is smooth and elliptic if both η

and η◦ belong to C2(RN \ {0}).
We now consider sequences φn, ψn of smooth and elliptic anisotropies/mobilities

converging to φ, ψ. We also consider gn(x, t) a smooth forcing term, which converges

to g(x, t) weakly-∗ in L∞(RN × [0,+∞)). We assume also that gn is uniformly

spatially Lipschitz continuous and we denote by L, M the (uniform) Lispchitz

constants of gn with respect to ψ◦
n and φ◦n, respectively. Given un the corresponding

unique viscosity solution of (2.4) (with ψn, φn, gn instead of ψ, φ, g) with initial

datum u0, we want to study the possible limits of un. If the limiting anisotropies

and forcing term are still smooth enough, it is well known that the limiting u is the

unique viscosity solution of the corresponding limit problem. If not, we will show

that the limit is still unique. We recall (see [16]) the following

Definition 2.7. We will say that a norm ψ is φ-regular if the associated Wulff

shape Wψ(0, 1) satisfies a uniform interior φ-Wulff shape condition, that is, if

1In case of “fattening”, also {u < λ} is a superflow, and the interior of {u ≤ λ} a subflow.
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there exists ε0 > 0 with the following property: for every x ∈ ∂Wψ(0, 1) there exists

y ∈ Wψ(0, 1) such that Wφ(y, ε0) ⊆Wψ(0, 1) and x ∈ ∂Wφ(y, ε0).

Notice that it is equivalent to saying that Wψ(0, 1) is the sum of a convex set

andWφ(0, ε0), or equivalently that ψ(ν) = ψ0(ν)+ε0φ(ν) for some convex function

ψ0.

We now show the following result.

Theorem 2.8. Let (ψn)n, (φn)n and (gn)n as above, and, in addition, assume

that the mobilities (ψn)n are uniformly φn-regular, meaning that ε0 > 0 in the

Defintion 2.7 does not depend on n. Let un be the level set solutions to (1.1) in

the sense of Definition 2.4, with initial datum u0, anisotropy (ψn)n, mobility (φn)n
and forcing term (gn)n. Then, un converge locally uniformly to the unique level set

solution u to (1.1) in the sense of Definition 2.4, with initial datum u0, anisotropy

ψ, mobility φ and forcing term g.

Proof. A first observation is that the functions un remain uniformly continuous

in space and time on R
N × [0, T ] for all T > 0, with a modulus depending only

on the modulus of continuity ω of u0 and the Lipschitz constant M . Indeed, by

Proposition 3.4 below it follows that for any λ < λ′

distφ
◦

n({un(·, t) ≤ λ}, {un(·, t) ≥ λ′}) ≥ ∆e−βMt ,

where ∆ := ω−1(λ′−λ) ≥ distφ
◦

({u0 ≤ λ}, {u0 ≥ λ′}) > 0, and β > 0 depends (for

large n) only on φ and ψ (see (3.16)). Therefore, un(·, t) is uniformly continuous

with modulus of continuity with respect to the norm φ◦n given by ω(eβMt·). As for
the equicontinuity in time, we set ωT (s) := ω(eβMT s) and we start by observing

that for any x ∈ R
N , ε > 0, t ∈ (0, T ], and n ∈ N we have

Wφn(x, ω−1
T (ε)) ⊆ {y : un(y, t) > un(x, t)− ε}.

Therefore, by standard comparison results we have that un(x, t
′) > un(x, t) − ε

provided that 0 < t′ − t < τ , where τ is the extintion time for Wφn(x, ω−1
T (ε))

under the evolution (1.1). Analogously, one shows that un(x, t
′) < un(x, t) + ε if

0 < t′ − t < τ . Since τ is bounded away from zero by a quantity independent of n

(depending only on ε, supn ‖gn‖∞ and, for n large, on φ and ψ), see for instance

[16, Remark 4.6]. This establishes the equicontinuity in time.

Hence, up to a subsequence (not relabelled), we may assume that un converges

locally uniformly to some u. In view of Theorem 2.5, it is enough to show that

u is a solution in the sense of Definition 2.4, that is, that for a.e. λ ∈ R the set

Eλ := {u ≤ λ} is a superflow in the sense of Definition 2.2 and Aλ := {u < λ} a

subflow.

We prove the assertion for Eλ. We first notice that since un → u locally uni-

formly, the Kuratowski limit superior of the sets En := {un ≤ λ} as n → ∞ is

contained in Eλ.

By Lemma 2.6, the sets En are superflows in the sense of Definition 2.2. We

consider dn(x, t) := distψ
◦

n(x,En(t)), d(x, t) := distψ
◦

(x,Eλ(t)), the corresponding
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distance functions, which are finite up to some time T ∗
n , T

∗ ∈ (0,+∞] respectively,

where T ∗ is defined according with Definition 2.2. Notice that T ∗ is increasing

with respect to λ, and that if λ is a continuity point, then we have T ∗
n → T ∗,

as n → ∞. Reasoning as in the proof of Lemma 2.6-Step 1 we can show that

dn(x, t + s)2 ≥ dn(x, t)
2 − 2Cs for some constant C which does not depend on

n. Indeed, C is essentially the maximal speed of the Wulff shape Wψn , which is

bounded by maxξ ψn(max∂Wψn κφn + ‖gn‖∞). The curvature κφn of ∂Wψn is in

[0, (N−1)/ε], thanks to the assumption that ψ′
n := ψn−εφn is convex, which yields

that Wψn =Wψ′

n + εWφn .

This implies (see for instance details in the proof of [17, Prop. 4.4]) that one can

find a set at most countable N ⊂ (0, T ∗), such that for all t 6∈ N , dn(·, t) → d(·, t)
locally uniformly. If B ⊂⊂ (RN × (0, T ∗)) \ Eλ, one has B ∩ En = ∅ for n large

enough and

∂tdn ≥ divzn + gn − Ldn

in the distributional sense in B, thanks to (2.3) and Lemma 2.6. Here, zn =

∇φn(∇dn). Notice that zn are (for n large) well defined and bounded in L∞(RN ×
(0, T )) for any T < T ∗. In the limit, we find that (2.3) holds for d, with z the weak-

∗ (local in time) limit of (zn)n (or rather, in fact, a subsequence). It remains to

show that z ∈ ∂φ(∇d) a.e. in B. An important observation is that, using again the

φn-regularity of ψn, one can show that div∇φn(∇dn) ≤ (N − 1)/(ε0dn), hence it is

bounded in {dn > δ}. In particular, in the limit, (divz)+χ{d>δ} ∈ L∞(RN×(0, T )∗).

To show z ∈ ∂φ(∇d) a.e. in B, we establish that z · ∇d ≥ φ(∇d) a.e. in B. The

proof here is as in [17]. There exists δ such that for all n large enough, dn ≥ δ in

B, hence divzn ≤ (N − 1)/(ε0δ). Let η ∈ C∞
c (B;R+), then

ˆ

B

φ(∇d)ηdxdt ≤ lim inf
n

ˆ

B

φn(∇dn)ηdxdt = lim inf
n

ˆ

B

(zn · ∇dn)η dxdt.

On the other hand,

(2.9)

ˆ

B

(zn · ∇dn)ηdxdt =
ˆ

B

(zn · ∇d)ηdxdt +
ˆ

B

(zn · ∇(dn − d))η dxdt,

and limn

´

B
(zn · ∇d)ηdxdt =

´

B
(z · ∇d)η dxdt since zn ∗

⇀ z.

It remains to prove that the second addend in the right hand side of (2.9) tends

to zero as n→ +∞. Set

mn(t) = min
x:(x,t)∈B

(dn(x, t) − d(x, t)), Mn(t) = max
x:(x,t)∈B

(dn(x, t) − d(x, t)).

Then for all t 6∈ N , Mn(t)−mn(t) → 0. One has

ˆ

B

(zn · ∇(dn − d))ηdxdt =

ˆ

B

(zn · ∇(dn − d−mn(t)))η dxdt

= −
ˆ

B

(dn − d−mn)η divzn dxdt−
ˆ

B

(dn − d−mn)zn · ∇η dxdt.
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The last integral goes to zero as n→ ∞. Since (dn − d−mn(t))η ≥ 0 we have

−
ˆ

B

(dn − d−mn)η divzn dxdt ≥ −N − 1

ε0δ

ˆ

B

(dn − d−mn)ηdxdt
n→∞−→ 0.

Using instead dn − d−Mn, we show the reverse inequality, and we deduce
ˆ

B

φ(∇d)ηdxdt ≤
ˆ

B

(z · ∇d)η dxdt

which concludes the proof. �

3. Existence by approximation

3.1. A useful estimate: comparison with different forcing terms. We prove

in this section and the following a series of comparison results, which will then be

combined together to deduce a global comparison result for flows with possibly

different mobilities. In this section, we shall assume that the surface tensions φ, ψ

are smooth and elliptic, so that we can work in the classical viscosity setting. In

the limit, our main estimate will also hold for crystalline flows in the sense of

Definition 2.2.

We start by recalling standard comparison results for flows with constant ve-

locities, however we pay a special attention to the particular metrics in which our

velocities are expressed. We first consider the equation

(3.1) ut = ψ(∇u)g(x, t).

The following result is a slight variant of the well known result [9, Theorem 8.1]:

Lemma 3.1. Consider u0 : RN → R, bounded and Λ-Lipschitz continuous with

respect to a norm η, smooth and elliptic, such that

(3.2) ψ ≤ βη◦.

Assume g is bounded, continuous and M -Lipschitz in space in the norm η. Let

u(x, t) be a viscosity solution of (3.1) with initial datum u0. Then for all t ≥ 0, the

function u(·, t) is ΛeβMt-Lipschitz continuous in the norm η.

Proof. We start by observing that by classical results the solution u is uniformly

continuous, see for instance [29]. The rest of the proof is an adaptation of the

argument in [9, proof of Theorem 8.1]. Let δ > 0 be given, and let C be a smooth

function such that

(3.3) C′ − βMC ≥ βMδ > 0,

with C(0) = Λ. Set

σ := sup
x,y∈R

N

t∈[0,T ]

u(x, t)− u(y, t)− C(t)η(x − y).

We claim that σ = 0. Using this claim, we have that

u(x, t)− u(y, t) ≤ (ΛeβMt + δ(eβMt − 1))η(x− y)
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for all x, y, t ≤ T , and sending δ → 0 we conclude the proof of the lemma.

We are left to prove the claim that σ = 0. Arguing by contradiction, assume

that σ > 0. Consider a maximum point (x̄, ȳ, t̄, s̄) in R
2N × [0, T ]2 for the function

ϕ(x, y, s, t) = u(x, t)− u(y, s)− C(t)η(x − y)− |t− s|2
2a

− b
|x|2 + |y|2

2
,

where a, b > 0 are small parameters (notice that ϕ(x, y, 0, 0) ≤ 0). For b small

enough, then ϕ(x̄, ȳ, t̄, s̄) ≥ σ/2 > 0, and then by standard arguments (using in

particular that |x̄|, |ȳ| ≤ c/
√
b, and that for fixed b, both t̄ and s̄ converge, up to a

subsequence, to the same positive value as a→ 0, see for instance [9, Lemma 5.2])

we may assume 0 < t̄, s̄ ≤ T , so that:

C′(t̄)η(x̄ − ȳ) +
t̄− s̄

a
≤ ψ(C(t̄)∇η(x̄ − ȳ) + bx̄)g(x̄, t̄) ,

t̄− s̄

a
≥ ψ(C(t̄)∇η(x̄ − ȳ)− bȳ)g(ȳ, s̄) .

Evaluating the difference and recalling (3.3) we obtain:

βM(C(t̄)+δ)η(x̄− ȳ) ≤ ψ(C(t̄)∇η(x̄− ȳ)+bx̄)g(x̄, t̄)−ψ(C(t̄)∇η(x̄− ȳ)−bȳ)g(ȳ, s̄).

For fixed b > 0, we can then let a → 0 and denote by t̃ ∈ (0, T ] subsequence) the

common limit of t̄ and s̄ as a→ 0, and by x̃ and ỹ the limit of x̄ and ȳ respectively.

Thus, using (3.2), we obtain

M(C(t̃) + δ)η(x̃ − ỹ)

≤ 1

β
ψ(C(t̃)∇η(x̃ − ỹ) + bx̃)g(x̃, t̃)− 1

β
ψ(C(t̃)∇η(x̃ − ỹ)− bỹ)g(ỹ, t̃)

≤ 1

β
(ψ(C(t̃)∇η(x̃− ỹ) + bx̃)− ψ(C(t̃)∇η(x̃− ỹ)− bỹ))g(ỹ, t̃)

+ η◦(C(t̃)∇η(x̃ − ỹ) + bx)Mη(x̃− ỹ).

We deduce

C(t̃) + δ ≤ η◦(C(t̃)∇η(x̃ − ỹ) + bx̃)

+
ψ(C(t̃)∇η(x̃ − ỹ) + bx̃)− ψ(C(t̃)∇η(x̃ − ỹ)− bỹ)

βMη(x̃− ỹ)
‖g‖∞,

and sending b → 0 (and observing that η(x̃ − ỹ) 6→ 0 as σ > 0 and u is uniformly

continuous), we find that if t̂ is a limit point of t̃, then C(t̂)+ δ ≤ C(t̂), which gives

a contradiction. Hence one must have σ = 0. �

In the next lemma we show that if E0 ⊂ F 0 are initial sets and 1− χE , 1− χF
are viscosity solutions of (3.1), starting from 1 − χE0 and 1 − χF 0 , respectively,

then distη(∂E(t), ∂F (t)) ≥ distη(∂E0, ∂F 0)e−βMt.

A splitting strategy will then extend this result to the solutions of (2.4).
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Lemma 3.2. Let η be a smooth and elliptic norm satisfying (3.2). Let g1, g2 be

two admissible forcing terms satisfying assumptions H1), H2) of Section 2.1, and

both M -Lipschitz in the η norm. Assume

(3.4) g2 − g1 ≤ c < +∞ in R
N × [0,+∞).

Let E0 ⊂ F 0 be two closed sets with distη(E0,RN \ F 0) := ∆ > 0. Assume that

1 − χE(t) is a viscosity supersolution of ut = ψ(∇u)g1(x, t) starting from 1 − χ0
E,

and 1 − χF (t) a subsolution of vt = ψ(∇v)g2(x, t) starting from 1 − χ0
F . Then at

all time t ≥ 0,

(3.5) distη(E(t),RN \ F (t)) ≥ ∆e−βMt + c
1− e−βMt

M
.

Proof. With Lemma 3.1 at hand, this is a straight application of standard com-

parison principles. We consider first u0(x) := −∆ ∨ (2∆ ∧ dηE(x)) and v0(x) :=

−2∆ ∨ (∆ ∧ dηF (x)), so that v0 +∆ ≤ u0. These functions are both 1-Lipschitz in

the norm η. We then consider the viscosity solutions u of ut = ψ(∇u)g1(x, t) start-
ing from u0, and v of vt = ψ(∇v)g2(x, t), starting from v0. By standard comparison

results, E(t) ⊆ {u(t) ≤ 0} and F (t) ⊇ {v(t) ≤ 0}, for all t ≥ 0.

Thanks to Lemma 3.1, u(·, t), v(·, t) are eβMt-Lipschitz. Let now w(·, t) = v(·, t)+
∆ − c(eβMt − 1)/M , then at t = 0, w(·, 0) = v0 + ∆ ≤ u0. We show that w is a

subsolution of ut = ψ(∇u)g1(x, t), so that w ≤ u. Indeed, if ϕ is a smooth test

function and (x̄, t̄) a point of maximum of w − ϕ, then it is a point of maximum

of v − (ϕ − ∆ + cβ(eβMt − 1)/M) so that, using (3.4) and the fact that v is a

subsolution, we get

∂tϕ(x̄, t̄) + cβeβMt̄ ≤ ψ(∇ϕ(x̄, t̄))g2(x̄, t̄) ≤ ψ(∇ϕ(x̄, t̄))g1(x̄, t̄) + cψ(∇ϕ(x̄, t̄)).

Since x̄ is a contact point of the smooth function ϕ(·, t̄) and the eβMt̄-Lipschitz func-

tion w(·, t̄) (in the η norm), then η◦(∇ϕ) ≤ eβMt̄ at (x̄, t̄). By (3.2), cψ(∇ϕ(x̄, t̄)) ≤
cβeβMt̄, whence

∂tϕ ≤ ψ(∇ϕ)g1
and this shows that w is a subsolution of this equation, hence that w ≤ u. Therefore,

for all x, t, v(x, t) ≤ u(x, t) −∆+ c(eβMt − 1)/M . Thus, for t ≥ 0 and x, y ∈ R
N ,

recalling that v is eβMt̄-Lipschitz,

v(y, t) ≤ u(x, t)− eβMt

(

∆e−βMt − c
1− e−βMt

M
− η(x− y)

)

.

It follows that if distη(y, E(t)) ≤ ∆e−βMt − c(1 − e−βMt)/M , then v(y, t) ≤ 1,

and hence y ∈ F (t), which shows the lemma. �

3.2. Comparison for different mobilities. In this section we provide the crucial

stability estimates with respect to varying mobilities, not necessarily smooth and

elliptic.
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3.2.1. A comparison result with a constant forcing term. In this subsection we shall

assume that φ, ψ1, ψ2 are smooth and elliptic, and that

(3.6) (1− δ)ψ2(ξ) ≤ ψ1(ξ) ≤ (1 + δ)ψ2(ξ) for all ξ ∈ R
N ,

for some (small) δ > 0. We first show the following:

Lemma 3.3. There exists a constant c0 > 0 depending only on N such that the

following holds: let ∆ > 0, and let E be a superflow for the equation V = −ψ1(ν)κφ
and F be a subflow for the equation V = −ψ2(ν)(κφ−c0δ/∆), with distφ

◦

(E(0),RN\
F (0)) = ∆. Then for all t until extinction of E or F c, there holds distφ

◦

(E(t),RN \
F (t)) ≥ ∆.

Proof. We first assume that ∂E(t), ∂F (t) are bounded for all t.

We shall use the fact that u(x, t) = −χE(x, t) is a viscosity supersolution of

(3.7) ∂tu = ψ1(∇u)div∇φ(∇u),

while v(x, t) = −χF (x, t) is a viscosity subsolution of (see Lemma 2.6)

(3.8) ∂tv = ψ2(∇v)
(

div∇φ(∇v) − c0
δ

∆

)

.

A first remark is that since the equations are translationally invariant, then also

u′(x, t) = inf
φ◦(z)≤∆/4

u(x+ z, t)

is a supersolution of (3.7), and similarly,

v′(x, t) = sup
φ◦(z)≤∆/4

v(x + z, t)

is a subsolution of (3.8). Remark that u′ = −χE′ and v′ = −χF ′ , with the tubes

E′, F ′ defined by

E′(t) = E(t) +Wφ(0, ∆4 ) , R
N \ F ′(t) = (RN \ F (t)) +Wφ(0, ∆4 )

until their respective extinction time. We denote t∗ the minimum extinction time

of these sets. In particular,

distφ
◦ (

E′(0),RN \ F ′(0)
)

=
∆

2
.

Using [16, Lemma 2.6], there is a time t0 such that for t ≤ t0,

distφ
◦ (

E′(t),RN \ F ′(t)
)

≥ ∆

4
.

Let ε > 0, and consider a point (x̄, t̄, ȳ, s̄) (depending on ε) which reaches

(3.9)

Mε = min
x, y∈R

N

0≤s, t<t0

1

ε
(1 + u′(x, t)− v′(y, s)) +

φ◦(x− y)

2

2

+
(t− s)2

2ε
+

ε

t0 − t
+

ε

t0 − s
.
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Observe that for every fixed x ∈ E′(0), y 6∈ F ′(0) and s = t = 0, this quantity is

less than
φ◦(x− y)

2

2

+ 2
ε

t0

and in particular, Mε ≤ ∆2/8 + 2ε/t0. If ε is small enough, one must have

1 + u′(x̄, t̄) − v′(ȳ, s̄) = 0, that is, x̄ ∈ E′(t̄) and ȳ 6∈ F ′(s̄), hence φ◦(x̄ − ȳ) =

distφ
◦

(E′(t̄),RN \ F ′(s̄)).

If both t̄, s̄ > 0, then from [20, Thm. 3.2] (with ε = 1, in their notation), there

exist (N + 1)× (N + 1) symmetric matrices

(3.10) X̃ =

(

X ζ

ζT ζ0

)

, Ỹ =

(

Y η

ηT η0

)

such that

(3.11)







(∇φ◦(ȳ − x̄), s̄−t̄ε − ε
(t0−t̄)2

, X̃) ∈ J2,− u′

ε (x̄, t̄) ,

(∇φ◦(ȳ − x̄), s̄−t̄ε + ε
(t0−s̄)2

, Ỹ ) ∈ J2,+ v′

ε (ȳ, s̄) ,

and such that

(3.12) − (1 + ‖A‖) Id ≤
(

−X̃ 0

0 Ỹ

)

≤ A+A2

where

A =











D2φ◦(x̄− ȳ) 0 −D2φ◦(x̄− ȳ) 0

0 1
ε − 2 ε

(t0−t̄)3
0 − 1

ε

−D2φ◦(x̄− ȳ) 0 D2φ◦(x̄− ȳ) 0

0 − 1
ε 0 1

ε − 2 ε
(t0−s̄)3











.

In particular, for all ξ ∈ R
N , letting ξ̃ = (ξ, 0, ξ, 0) ∈ R

2N+2, from (3.12) and (3.10)

we get

−ξTXξ + ξTY ξ ≤ ξ̃TAξ̃ + ξ̃TA2ξ̃ = 0,

which gives the inequality

(3.13) X ≥ Y.

Recall that u′/ε is a supersolution and v′/ε is a subsolution. Thanks to (3.11),

letting p = ∇φ◦(ȳ − x̄) and a = s̄−t̄
ε , one has







a− ε
(t0−t̄)2

≥ ψ1(p)D
2φ(p) : X ,

a+ ε
(t0−s̄)2

≤ ψ2(p)(D
2φ(p) : Y − c0

δ
∆ ) ,

yielding

(3.14) 0 <
ε

(t0 − t̄)2
+

ε

(t0 − s̄)2
≤ ψ2(p)(D

2φ(p) : Y − c0
δ
∆)− ψ1(p)D

2φ(p) : X .

Now, we observe that as E′(t̄) = E(t̄)+Wφ(0,∆/4) and (necessarily) x̄ ∈ ∂E′(t̄), we

find that (p,X) is also a subjet of −χWφ(x′,∆/4) for some x′ ∈ E(t̄) with φ◦(x̄−x′) =
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∆/4. In particular, it follows that D2φ(p) : X ≤ 4(N − 1)/∆. In the same way,

D2φ(p) : Y ≥ −4(N − 1)/∆ and using (3.13), we obtain

(3.15) −4
N − 1

∆
≤ D2φ(p) : Y ≤ D2φ(p) : X ≤ 4

N − 1

∆
.

Thanks to (3.6) and (3.15),

− ψ1(p)D
2φ(p) : X ≤ −ψ2(p)D

2φ(p) : X + δψ2(p)|D2φ(p) : X |

≤ −ψ2(p)D
2φ(p) : X + 4(N − 1)

δ

∆
ψ2(p),

So that (3.14) and (3.13) yield

0 < ψ2(p)(D
2φ(p) : Y − c0

δ
∆ )− ψ1(p)D

2φ(p) : X

= ψ2(p)(D
2φ(p) : (Y −X)− c0

δ
∆ ) + (ψ1(p)− ψ2(p))D

2φ(p) : X

≤ ψ2(p)
(

D2φ(p) : (Y −X)− (c0 − 4(N − 1)) δ∆
)

≤ 0

as soon as c0 ≥ 4(N − 1), yielding a contradiction.

We deduce that at least one of t̄ or s̄ is zero; without loss of generality let us

assume s̄ = 0. For any t < t0, thanks to (3.9) (choosing s = t), if ε is small enough

one has

1

2
distφ

◦

(E′(t),RN \F ′(t))2+2
ε

t0 − t
≥ 1

2
distφ

◦

(E′(t̄),RN \F ′(0))2+
t̄2

2ε
+

ε

t0 − t̄
+
ε

t0

from which we see, in particular, that t̄ → 0 as ε → 0. Hence, in the limit ε → 0,

using also that E is closed (see [16, Remark 2.3] for more details), we deduce

1

2
distφ

◦

(E′(t),RN \ F ′(t))2 ≥ lim inf
t̄→0

1

2
distφ

◦

(E′(t̄),RN \ F ′(0))2

≥ 1

2
distφ

◦

(E′(0),RN \ F ′(0))2 =
∆2

8

which shows the thesis of the Lemma, until t = t0 (thanks to the continuity prop-

erty (b)). Starting again from t0, we have proven the Lemma for bounded sets (or

sets with bounded boundary).

If ∂E(0) or ∂F (0) is unbounded, we proceed as follows: we first consider, for

ε > 0, the sets

Eε0 := E(0) +Wφ(0, ε), F ε0 =: RN \
(

(RN \ F (0)) +Wφ(0, ε)
)

,

which satisfy distφ
◦

(Eε0 ,R
N \ F ε0 ) ≥ ∆− 2ε.

Then, for R > 0, we consider the initial sets Eε,R0 = Eε0 ∩ BR and and F ε,R0 =

F ε0 ∩ (BR +Wφ(0,∆)). The result holds for the evolutions starting from these two

sets, with the distance ∆ − 2ε. Hence in the limit R → ∞, it must hold for the

(viscosity) evolutions starting from Eε0 and F ε0 (which are unique for almost all

choice of ε).

By standard comparison results for discontinuous viscosity solutions [7, 11, 10], it

then follows that the superflow E (which is also a viscosity superflow) is contained
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in the evolution starting from Eε0 , while F contains the evolution starting from

F ε0 (the ε-regularization has been introduced to avoid issues due to the possible

non-uniqueness of viscosity solutions).

We deduce that distφ
◦

(E(t),RN \F (t)) ≥ ∆−2ε for all t, until extinction. Since

this is true for any ε > 0, the lemma is proven. �

3.2.2. Comparison with a non-constant forcing term. In this section we prove the

crucial stability estimate for motions corresponding to different but close mobilities.

We start with the following:

Proposition 3.4. Assume that φ, ψ1, ψ2 are smooth and elliptic, that ψ1, ψ2 sat-

isfy (3.6), and that

(3.16) ψ2(ξ) ≤ βφ(ξ) for all ξ ∈ R
N .

Let E0 ⊂ F0 be a closed and an open set, respectively, such that distφ
◦

(E0,R
N \

F0) =: ∆ > 0, and let E, F be a closed and open “tube” in R
N×[0,∞), respectively,

with E(0) = E0, F (0) = F0, such that −χE is a supersolution of

(3.17) ut = ψ1(∇u)(div∇φ(∇u) + g) ,

and −χF is a subsolution of

(3.18) ut = ψ2(∇u)(div∇φ(∇u) + g) .

Then, there holds

(3.19) distφ
◦

(E(t),RN \ F (t)) ≥ ∆e−βMt − δ
2c0/∆+ ‖g‖∞

M
(1 − e−βMt)

as long as this quantity is larger than ∆/2, where c0 is as in Lemma 3.3 and M is

the Lipschitz constant of g with respect to φ◦.

Proof. In order to obtain the estimate, we combine the results of Lemmas 3.3

and 3.2 (with η = φ◦), together with a splitting result which follows from [6]

(cf Example 1, see also [8]).

As before, we may need to slightly perturb the initial sets, considering rather

Es0 = E0 +Wφ(0, s) and F s0 = R
N \ (RN \ F0 +Wφ(0, s)), for a small s (which

eventually will go to 0).

Given s > 0 small, we start with building, for ε > 0 given, the motions uε(x, t),

vε(x, t) defined as follows: we let uε(x, 0) = −χEs
0
and define recursively uε for

j ≥ 0 as a viscosity solution of:














uεt = 2ψ1(∇uε)div∇φ(∇vε) 2jε < t ≤ 2jε+ ε,

uεt = 2ψ1(∇uε)
 2(j+1)ε

2jε

g(x, s)ds 2jε+ ε < t ≤ 2(j + 1)ε.

(In case of nonuniqueness, we select for instance the smallest (super)solution, corre-

sponding to the largest set Eε(t) = {uε = −1}.) Similarly, we let vε(x, 0) = −χF s
0
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and let vε(x, t) be the largest (sub)solution of:














vεt = 2ψ2(∇vε)
(

div∇φ(∇vε)− 2c0
δ
∆

)

2jε < t ≤ 2jε+ ε,

vεt = 2ψ2(∇vε)
(

 2(j+1)ε

2jε

g(x, s)ds+ 2c0
δ
∆

)

2jε+ ε < t ≤ 2(j + 1)ε,

where c0 is as in Lemma 3.3. Thanks to [6, 8], as ε → 0 each of these functions

converges to the viscosity solution of (3.17) and (3.18), respectively, starting from

−χEε
0
and −χF ε

0
, provided these solutions are uniquely defined, which is known to

be true for almost all ε (in fact all but a countable set of values), in which case it

is also known that they are (opposite of) characteristic functions.

We now show that we can estimate the distance between the corresponding

geometric evolutions, using Lemmas 3.3 and 3.2.

Let δ be as in (3.6). A first observation is that for j ≥ 0, if we consider on the

interval [2jε+ ε, 2(j + 1)ε] the smallest solution ũε(x, t) of

ũεt = 2ψ2(∇ũε)
(

 2(j+1)ε

2jε

g(x, s)ds− δ‖g‖∞
)

, ũε(·, 2jε+ ε) = uε(·, 2jε+ ε)

then, since for any p ∈ R
N ,

ψ1(p)

 2(j+1)ε

2jε

g(x, s)ds ≥ ψ2(p)

 2(j+1)ε

2jε

g(x, s)ds− δψ2(p)‖g‖∞

one has ũε(x, t) ≤ uε(x, t) for 2jε+ ε ≤ t ≤ 2(j + 1)ε, and thus Eε(t) ⊆ {ũε(·, t) =
−1}. Hence, Lemma 3.2 yields that for 2jε+ ε ≤ t ≤ 2(j + 1)ε,

distφ
◦

(Eε(t),RN \ F ε(t)) ≥ distφ
◦

({ũε(·, t) = −1},RN \ F ε(t)})

≥
(

distφ
◦

(Eε(2jε+ ε),RN \ F ε(2jε+ ε))− c

M

)

e−2βM(t−2jε−ε) +
c

M
,

for c = −δ(2c0/∆+ ‖g‖∞). Note that here we use the fact that the mobility 2ψ2

satisfies 2ψ2 ≤ 2βφ, cf (3.16).

On the other hand, Lemma 3.3 yields that for all j ≥ 0 and 2jε ≤ t ≤ 2jε+ ε,

then

distφ
◦

(Eε(t),RN \ F ε(t)) ≥ distφ
◦

(Eε(2jε),RN \ F ε(2jε))
as long as distφ

◦

(Eε(2jε),RN \ F ε(2jε)) ≥ ∆/2.

In particular, denoting dj = distφ
◦

(Eε(2jε),RN \ F ε(2jε)), one obtains by in-

duction that

dj+1 ≥ (dj − c
M )e−2βMε + c

M ≥ (d0 − c
M )e−2βM(j+1)ε + c

M ,

as long as dj ≥ ∆/2. In the limit, we find that, letting Es(t) = {u(·, t) = −1} and

F s(t) = {v(·, t) = −1} and recalling that distφ
◦

(Es0 ,R
N \ F s0 ) ≥ ∆− 2s,

distφ
◦

(Es(t),RN \ F s(t)) ≥ (∆− 2s)e−βMt − δ
2c0/∆+ ‖g‖∞

M
(1− e−βMt)

as long as this quantity is larger than ∆/2.
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By comparison, it is clear that E ⊂ Es and F s ⊂ F , hence (letting eventually

s → 0), we deduce that (3.19) holds as long as the right-hand side is larger than

∆/2. �

We are now ready to state and prove the main result of the section.

Theorem 3.5. Let ψ1, ψ2 and φ satisfy (3.6) and (3.16). Assume also that ψ1, ψ2

are φ-regular in the sense of Definition 2.7. Let the forcing term g(x, t) be contin-

uous, bounded, and spatially M -Lipschitz continuous with respect to the distance

φ◦, and denote by E a superflow for V = −ψ1(ν)(κφ + g) and by F be a subflow

for V = −ψ2(ν)(κφ + g), both in the sense of Definition 2.2. Finally, assume that

distφ
◦

(E(0),RN \ F (0)) ≥ ∆ > 0. Then for all t,

(3.20) distφ
◦

(E(t),RN \ F (t)) ≥ ∆e−βMt − δ
2c0/∆+ ‖g‖∞

M
(1 − e−Mβt)

as long as this quantity is larger than ∆/2.

Proof. Consider smooth, elliptic approximations of ψi (i = 1, 2), φ, denoted ψni , φ
n,

such that (3.6)-(3.16) hold also for ψni , φ
n (with slightly larger constants δ and β

that, with a small abuse of notation, will not be relabeled) and with ψni −εφn convex

(i = 1, 2), that is, ψni are uniformly φn-regular (see statement of cf Theorem 2.8).

Consider as before, for s > 0 small, the initial sets Es0 := E0 +Wφn(0, s) and

F s0 := R
N \ [(RN \ F0) +Wφn(0, s)]. As in Theorem 2.8 we can build subflows

Asn and superflows Bsn for the evolution V = −ψn1 (ν)(κφn + g) both starting from

Es0 , such that Asn ⊂ Bsn, and a subflow A′s
n and superflow B′s

n for the evolution

V = −ψn2 (ν)(κφn + g) both starting from F s0 , such that A′s
n ⊂ B′s

n . Thanks to

Lemma 2.6, −χBsn is a viscosity supersolution and −χA′s
n
is a viscosity subsolution,

so that we can apply Proposition 3.4 and estimate their (φn)◦-distance according

to (3.19).

Againg thanks to Theorem 2.8, RN \ Asn converges in the Kuratowski sense as

n→ ∞ to the complement of a subflow, which contains E thanks to Theorem 2.3,

and analogously B′s
n converges to a superflow contained in F . We deduce (3.20)

letting s→ 0. �

3.3. Existence and uniqueness by approximation. We recall that the exis-

tence theory for level set flows (in the sense of Definition 2.4) that we have so far

works only for φ-regular mobilities. The goal of this section is to extend the exis-

tence theory to general mobilities. To this aim, we consider the following notion of

solution via approximation:

Definition 3.6 (Level set flows via approximation). Let ψ, g, and u0 be a mo-

bility, an admissible forcing term, and a uniformly continuous function on R
N ,

respectively.

We will say that a continuous function uψ : RN × [0,+∞) → R is a solution

via approximation to the level set flow corresponding to (1.1), with initial datum

u0, if uψ(·, 0) = u0 and if there exists a sequence {ψn} of φ-regular mobilities such
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that ψn → ψ and, denoting by uψn the unique solution to (1.1) (in the sense od

Definition 2.4) with mobility ψn and initial datum u0, we have uψn → uψ locally

uniformly in R
N × [0,+∞).

The next theorem is the main result of this section: it shows that for any mobility

ψ, a solution-via-approximation uψ in the sense of the previous definition always

exists; such a solution is also unique in that it is independent of the choice of the

approximating sequence of φ-regular mobilities {ψn}. In particular, in the case of a

φ-regular mobility, the notion of solution via approximation is consistent with that

of Definition 2.4.

Theorem 3.7. Let ψ, g, and u0 be as in Definition 3.6. Then, there exists a

unique solution uψ in the sense of Definition 3.6 with initial datum u0.

Proof. We have to prove that for any sequence {ψn} of φ-regular mobilities such

that ψn → ψ, the corresponding solutions uψn to (1.1) with initial datum u0 con-

verge to some function u locally uniformly in R
N × [0,+∞). We split the proof of

the theorem into two steps.

Step 1. Let β be as in (3.16). Let T0 > 0 be defined by e−2βMT0 = 3
4 , where as

usual M is the spatial Lipschitz constant of the forcing term g with respect to the

distance induced by φ◦. We claim that for every ε > 0 there exists n̄ ∈ N such that

(3.21) ‖uψn − uψm‖L∞(RN×[0,T0]) ≤ ε for all n,m ≥ n̄.

To this aim, we observe that since ψn → ψ, for n large enough

(3.22) ψn(ξ) ≤ 2βφ(ξ) for all ξ ∈ R
N ,

and there exists δj → 0 such that

(3.23) (1− δj)ψn ≤ ψm ≤ (1 + δj)ψn for all m,n ≥ j.

Set Eψnλ (t) := {uψn(·, t) ≤ λ}, Fψnλ (t) := {uψn(·, t) < λ} and recall that Eψnλ is a

superflow, while Fψnλ is a subflow in the sense of Definition 2.2.

Let ω be a modulus of continuity for u0 with respect to φ◦ and recall that for

any λ ∈ R

distφ
◦

(Eψmλ (0),RN \ Fψnλ+ε(0)) = distφ
◦

({u0 ≤ λ}, {u0 ≥ λ+ ε}) ≥ ω−1(ε).

By (3.22), (3.23) and Theorem 3.5, for all n,m ≥ j we have

distφ
◦

(Eψmλ (t),RN \Fψnλ+ε(t)) ≥ ω−1(ε)e−2βMt−δj
2c0/ω

−1(ε) + ‖g‖∞
M

(1−e−2βMt),

as long as the right-hand side is larger than ω−1(ε)/2, that is, for all t ∈ [0, T0],

provided j is large enough. In particular, for n,m large enough Eψmλ (t) ⊂ Fψnλ+ε(t)

for all t ∈ [0, T0] which yields

uψn(·, t) ≤ uψm(·, t) + ε for all t ∈ [0, T0].

By switching the role of n and m we deduce (3.21).
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Step 2. First arguing as in the proof of Theorem 2.8 and using (3.22) we see that

ω(e2βMt·) is a spatial modulus of continuity for uψn(·, t) for all n. Observe that

from (3.21) it follows that for n,m large enough we have

Eψmλ (T0) ⊆ Eψnλ+ε(T0),

which in turn implies

distφ
◦

(Eψmλ (T0),R
N \ Fψnλ+2ε(T0)) ≥ distφ

◦

(Eψnλ+ε(T0),R
N \ Fψnλ+2ε(T0))

≥ ω−1(e2βMT0ε).

We can now argue as in the Step 1 to conclude that, for n, m large enough

‖uψn − uψm‖L∞(RN×[T0,2T0]) ≤ 2ε.

Therefore, by an easy iteration argument we can shown that, for every given T > 0,

the sequence {uψn} is a Cauchy sequence in L∞(RN × [0, T ]). This concludes the

proof of the theorem. �

We conlcude by recalling the following remarks, referring to [16] for the details.

Remark 3.8 (Stability). As a byproduct of the previous theorem, and a standard

diagonal argument, we have the following stability property for solutions to (1.1):

let {ψn}n∈N be a sequence of mobilities and φn a sequence of anisotropies such that

ψn → ψ and φn → φ as n → +∞, then uψn converge to uψ locally uniformly in

R
N × [0,+∞) as h → 0 (where uψn is the solution to (1.1) with ψ replaced by ψn

and φ replaced by φn).

Remark 3.9 (Comparison with the Giga-Pozar solution). When φ is purely crys-

talline and g ≡ c for some c ∈ R the unique level set solution in the sense of

Definition 3.6 coincides with the viscosity solution constructed in [33, 34].

We also recall that when g is constant, (1.1) admits a phase-field approximation

by means of anisotropic Allen-Cahn equation, see [16, Remark 6.2] for the details.

In the next theorem we recall the main properties of the level set solutions

introduced in Definition 3.6. In the statement of the theorem, we will say that a

uniformly continuous initial function u0 is well-prepared at λ ∈ R if the following

two conditions hold:

(a) If H ⊂ R
N is a closed set such that dist(H, {u0 ≥ λ}) > 0, then there exists

λ′ < λ such that H ⊆ {u0 < λ′};
(b) If A ⊂ R

N is an open set such that dist({u0 ≤ λ},RN \A) > 0, then there

exists λ′ > λ such that {u0 ≤ λ′} ⊂ A.

Here dist(·, ·) denotes the distance function with respect to a given norm. Clearly,

the properties stated in (a) and (b) above do not depend on the choice of such a

norm.

Remark 3.10. Note that the above assumption of well-preparedness is automatically

satisfied if the set {u0 ≤ λ} is bounded.
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Theorem 3.11 (Properties of the level set flow). Let uψ be a solution in the sense

Definition 3.6, with initial datum u0. The following properties hold true:

(i) (Non-fattening of level sets) There exists a countable set N ⊂ R such that for

all t ∈ [0,+∞), λ 6∈ N

(3.24)
{(x, t) : uψ(x, t) < λ} = Int ({(x, t) : uψ(x, t) ≤ λ}) ,
{(x, t) : uψ(x, t) < λ} = {(x, t) : uψ(x, t) ≤ λ}.

(ii) (Distributional formulation when ψ is φ-regular) If ψ is φ-regular, then uψ

coincides with the distributional solution in the sense of Definition 2.4.

(iii) (Comparison) Assume that u0 ≤ v0 and denote the corresponding level set

flows by uψ and vψ, respectively. Then uψ ≤ vψ.

(iv) (Geometricity) Let f : R → R be increasing and uniformly continuous. Then

uψ is a solution with initial datum u0 if and only if f ◦ uψ is a solution with initial

datum f ◦ u0.
(v) (Independence of the initial level set function) Assume that u0 and v0 are

well-prepared at λ. If {u0 < λ} = {v0 < λ}, then {uψ(·, t) < λ} = {vψ(·, t) < λ} for

all t > 0. Analogously, if {u0 ≤ λ} = {v0 ≤ λ}, then {uψ(·, t) ≤ λ} = {vψ(·, t) ≤ λ}
for all t > 0.

For the proof we refer to [16, Theorem 5.9].

We conclude with a remark about conditions that prevent the occurrence of

fattening.

Remark 3.12 (Star-shaped sets, convex sets and graphs). It is well-known [38,

Sec. 9] that for the motion without forcing, strictly star-shaped sets do not develop

fattening so that, in particular, their evolution is unique. The proof of this fact,

given for instance in [38] for the mean curvature flow, works also for solutions

in the sense of Definition 2.2 when the mobility ψ is φ-regular, and in turn, by

approximation, also for the generalized motion associated to level set solutions in

the sense of Definition 3.6, when ψ is general. Uniqueness also holds for motions

with a time-dependent forcing g(t) [13, Theorem 5] as long as the set remains strictly

star-shaped. This remark obviously applies to initial convex sets, which, in addition,

remain convex for all times, as was shown in [12, 14, 13] with a spatially constant

forcing term.2 The case of unbounded initial convex sets was not considered in

these references but can be easily addressed by approximation (and uniqueness still

holds with the same proof).

In the same way, if the initial set E0 = {xN ≤ v0(x1, . . . , xN−1)} is the subgraph

of a uniformly continuous functions v0, and the forcing term does not depend on

xN , then one can show that fattening does not develop and E(t) is still the subgraph

of a uniformly continuous function for all t > 0, as in the classical case [21, 22] (see

also [26] for the 2D crystalline case).

2Convexity is preserved also with a spatially convex forcing term but uniqueness is not known

in this case.
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