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We prove existence and uniqueness of weak solutions to anisotropic and crystalline mean curvature flows, obtained as limit of the viscosity solutions to flows with smooth anisotropies.

Introduction

In this note we deal with anisotropic, and possibly crystalline, mean curvature flows, that is, flows of sets t → E(t) governed by the law (1.1)

V (x, t) = -ψ(ν E(t) )(κ

E(t) φ (x) + g(x, t)),
where V (x, t) stands for the outer normal velocity of the boundary ∂E(t) at x, φ is a given norm on R N representing the surface tension, κ

E(t) φ
is the anisotropic mean curvature of ∂E(t) associated with the anisotropy φ, ψ is a norm evaluated at the outer unit normal ν E(t) to ∂E(t), and g is a forcing term. The factor ψ plays the role of a mobility.

We refer to [START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF] for the motivations to study this flow, which originate in problems from phase transitions and materials science (see for instance [START_REF] Taylor | Crystalline variational problems[END_REF][START_REF] Gurtin | Thermomechanics of evolving phase boundaries in the plane[END_REF] and references therein). Its mathematical well-posedness is established in the smooth setting, that is when φ, ψ, g and the initial set are sufficiently smooth and φ satisfies suitable ellipticity conditions. However, it is also well-known that in dimensions N ≥ 3 singularities may form in finite time even in the smooth case and for regular initial sets. When this occurs the strong formulation of (1.1) ceases to be meaningful and thus needs to be replaced by weaker notions of global-in-time solution.

Among the different weak approaches that have been proposed in the literature for the classical mean curvature flow (and for several other "regular" flows) here we recall the so-called level set formulation [START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[END_REF][START_REF] Evans | Motion of level sets by mean curvature[END_REF][START_REF] Evans | Motion of level sets by mean curvature[END_REF][START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF][START_REF] Giga | Surface evolution equations. A level set approach[END_REF] and the flat flow formulation proposed by Almgren, Taylor and Wang [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF] and based on the minimizing movements variational scheme (referred to as the ATW scheme).

However, when the anisotropy φ in (1.1) is non-differentiable or crystalline, the lack of smoothness of the involved differential operators makes it much harder to pursue the aforementioned approaches. In fact, in the crystalline case the problem of finding a suitable weak formulation of (1.1) in dimension N ≥ 3 leading to a unique global-in-time solution for general initial sets has remained open until the very recent works [START_REF] Chambolle | Existence and uniqueness for a crystalline mean curvature flow[END_REF][START_REF] Giga | A level set crystalline mean curvature flow of surfaces[END_REF][START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF][START_REF] Giga | Approximation of general facets by regular facets with respect to anisotropic total variation energies and its application to the crystalline mean curvature flow[END_REF].

We refer also to [START_REF] Giga | On the dynamics of crystalline motions[END_REF][START_REF] Caselles | Anisotropic curvature-driven flow of convex sets[END_REF][START_REF] Bellettini | Crystalline mean curvature flow of convex sets[END_REF] for previous results holding for special classes of initial data, and to [START_REF] Giga | Periodic total variation flow of non-divergence type in R n[END_REF] for a well-posedness result dealing with a very specific anisotropy. The two-dimensional case is somehwat easier and has been essentially settled in [START_REF] Giga | Generalized motion by nonlocal curvature in the plane[END_REF] (when g is constant) by developing a crystalline version of the viscosity approach for the level-set equation, see also [START_REF] Taylor | Crystalline variational problems[END_REF][START_REF] Almgren | Flat flow is motion by crystalline curvature for curves with crystalline energies[END_REF][START_REF] Angenent | Multiphase thermomechanics with interfacial structure. II. Evolution of an isothermal interface[END_REF][START_REF] Giga | Evolving graphs by singular weighted curvature[END_REF][START_REF] Giga | A comparison theorem for crystalline evolution in the plane[END_REF] for relevant former work. We also mention the recent papers [START_REF] Chambolle | Existence and uniqueness for planar anisotropic and crystalline curvature flow[END_REF][START_REF] Mercier | Anisotropic curvature flow of immersed curves[END_REF], where short time existence and uniqueness of strong solutions for initial "regular" sets (in a suitable sense) is shown.

Let us now briefly describe the most recent progress on the problem. In [START_REF] Chambolle | Existence and uniqueness for a crystalline mean curvature flow[END_REF], the first global-in-time existence and uniqueness result for the level set flow associated to (1.1), valid in all dimensions, for arbitrary (possibly unbounded) initial sets, and for general (including crystalline) anisotropies φ was established, but under the particular choice ψ = φ (and g = 0). The main contribution of that work is the observation that the variant of the ATW scheme proposed in [START_REF] Chambolle | An algorithm for mean curvature motion[END_REF][START_REF] Caselles | Anisotropic curvature-driven flow of convex sets[END_REF]) converges to solutions that satisfy a new stronger distributional formulation of the problem in terms of distance functions. Such a formulation is only reminiscent of, but not quite the same as, the distance formulation studied in [START_REF] Soner | Motion of a set by the curvature of its boundary[END_REF] (see also [START_REF] Barles | Front propagation and phase field theory[END_REF][START_REF] Ambrosio | Level set approach to mean curvature flow in arbitrary codimension[END_REF][START_REF] Caselles | Anisotropic curvature-driven flow of convex sets[END_REF][START_REF] Ambrosio | Geometric evolution problems, distance function and viscosity solutions[END_REF]), and because of its distributional character it enables the use of parabolic PDE's arguments in order to establish a comparison result yielding uniqueness.

In [START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF], we first observe that the methods of [START_REF] Chambolle | Existence and uniqueness for a crystalline mean curvature flow[END_REF] can be pushed to treat bounded spatially Lispchitz continuous forcing terms g and more general mobilities ψ, which are "regular" with respect to the anisotropy φ. More precisley, a norm ψ is said to be φ-regular if the associated ψ-Wulff shape W ψ satisfies a uniform inner φ-Wulff shape condition at all points of its boundary. Such a condition implies that the φ-curvature k φ of ∂W ψ is bounded above and it enables us to show that a distributional formulation in the spirit of [START_REF] Chambolle | Existence and uniqueness for a crystalline mean curvature flow[END_REF] still holds true. Next, owing to the simple observation that the φ-regular mobilities are dense, we succeed in extending the notion of solution to general mobilities by an approximation procedure. More precisely, by establishing delicate stability estimates on the ATW scheme, we show that if ψ is any norm and ψ n → ψ, with ψ n a φ-regular mobility for every n, then the corresponding distributional level set solutions u ψn , with the given initial datum u 0 , admit a unique limit u ψ (independent of the choice of the approximating ψ n ), which we may therefore regard as the unique solution to the level set flow with mobility ψ and initial datum u 0 . As a byproduct of this analysis, we also settle the problem of the uniqueness (up to fattening) of flat flows for general mobilities. Once again, our results hold in all dimensions, for arbitrary (possibly unbounded) initial sets and general, possibly crystalline anisotropies φ.

By completely different methods, in [START_REF] Giga | A level set crystalline mean curvature flow of surfaces[END_REF] and more recently in [START_REF] Giga | Approximation of general facets by regular facets with respect to anisotropic total variation energies and its application to the crystalline mean curvature flow[END_REF], the authors succeed in extending the viscosity approach of [START_REF] Giga | Generalized motion by nonlocal curvature in the plane[END_REF] to the case N = 3 and to the general case N ≥ 3, respectively. In fact, as in [START_REF] Giga | Generalized motion by nonlocal curvature in the plane[END_REF] they are able to deal with very general equations of the form

V = f (ν, -κ E φ ) ,
with f continuous and non-decreasing with respect to the second variable, but without spatial dependence, establishing existence and uniqueness for the corresponding level set formulation. However, their method, as far as we know, works only for purely crystalline anisotropies φ, bounded initial sets, and constant forcing terms.

Here we propose a variant of the approach of [START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF], by deriving existence, uniqueness and some properties of anisotropic and crystalline flows directly from the corresponding properties of smooth (i.e., with smooth anisotropies) flows, appropriately defined as viscosity solutions of a geometric PDE. This leads to a more direct and easier proof of the well-posedness of (1.1) for general mobilities and anisotropies, relying on purely viscosity methods, which however does not provide any information about the uniqueness of flat flows.

Let us describe the new approach in more detail. The starting point is the observation that when the anisotropy is smooth, the distributional formulation of [START_REF] Chambolle | Existence and uniqueness for a crystalline mean curvature flow[END_REF][START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF] is equivalent to the classical viscosity formulation, see Section 2.2. Next, in Section 2.3 we show that if φ n → φ, with φ n smooth, and if ψ n → ψ, with ψ n φ n -regular "uniformly" with respect to n (see the statement of Theorem 2.8 below for the precise meaning), then the corresponding viscosity (and thus distributional) level set solutions u n converge locally uniformly to the unique distributional level set flow with anisotropy φ and (φ-regular) mobility ψ. This leads to a new proof of the existence of distributional level set solutions for φ-regular mobilities, without using the ATW scheme as in [START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF].

In Sections 3.1 and 3.2 we establish the crucial stability estimates of the flow with respect to changing φ-regular mobilities. This is achieved once again by exploiting the viscosity formulation in order to prove first the estimates in the case of smooth anisotropies and to conclude by approximation.

Finally, in Section 3.3 we prove the main existence and uniqueness result for the level set formulation of (1.1), in the case of general anisotropies and mobilities. In this last step we proceed essentially as in [START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF]: we approximate any mobility ψ by a sequence φ-regular mobilities ψ n and show, by means of the stability estimates of the previous sections, that the corresponding solutions admit a unique limit.

Distributional mean curvature flows

Given a norm η on R N (a convex, even, one-homogeneous real-valued function with η(ν) > 0 if ν = 0), we define a polar norm η • by η • (ξ) := sup φ(ν)≤1 ν • ξ and an associated anisotropic perimeter P η as

P η (E) := sup ˆE divζ dx : ζ ∈ C 1 c (R N ; R N ), η • (ζ) ≤ 1 .
As is well known, (η • ) • = η so that when the set E is smooth enough one has

P η (E) = ˆ∂E η(ν E )dH N -1 ,
which is the perimeter of E weighted by the surface tension η(ν).

We will make repeated use of the following identities

(2.1) ∂η(ν) = {ξ : η • (ξ) ≤ 1 and ξ • ν ≥ η(ν)} = {ξ : η • (ξ) = 1 and ξ • ν = η(ν)},
(and the symmetric statement for η • ) for ν = 0. Moreover, ∂η(0

) = {ξ : η • (ξ) ≤ 1} while ∂η • (0) = {ξ : η(ξ) ≤ 1}. For R > 0 we denote W η (x, R) := {y : η • (y -x) ≤ R} .
Such a set is called the Wulff shape (of radius R and center x) associated with the norm η and represents the unique (up to translations) solution of the anisotropic isoperimetric problem

min {P η (E) : |E| = |W η (0, R)|} ,
see for instance [START_REF] Fonseca | A uniqueness proof for the Wulff theorem[END_REF]. We denote by dist η (•, E) the distance from E induced by the norm η, that is, for any

x ∈ R N (2.2) dist η (x, E) := inf y∈E η(x -y)
if E = ∅ and dist η (x, ∅) := +∞. Moreover, we denote by d η E the signed distance from E induced by η, i.e.,

d η E (x) := dist η (x, E) -dist η (x, E c ) . so that dist η (x, E) = d η E (x) + and dist η (x, E c ) = d η E (x)
-, where we adopted the standard notation t + := t ∨ 0 and t -:= (-t) + ). Note that by (2.1) we have η(∇d E) locally uniformly in R m , by Ascoli-Arzelà's Theorem any sequence of closed sets admits a converging subsequence in the Kuratowski sense.

η • E ) = η • (∇d η E ) = 1 a.e. in
) dist η (•, E n ) → dist η (•,
2.1. The weak formulation of the crystalline flow. In this section we recall the weak formulation of the crystalline mean curvature flow introduced in [START_REF] Chambolle | Existence and uniqueness for a crystalline mean curvature flow[END_REF][START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF].

In what follows, we will consider forcing terms g : R N × [0, +∞) → R satisfying the following two hypotheses: H1) for every T > 0, g ∈ L ∞ (R N × (0, +∞)); H2) there exists L > 0 such that g(•, t) is L-Lipschitz continuous with respect to the metric ψ • for a.e. t > 0. Here ψ is the norm representing the mobility in (1.1).

Remark 2.1. Assumption H1) can be in fact weakened and replaced by H1)' for every T > 0, g ∈ L ∞ (R N × (0, T )).

Indeed under the weaker assumption H1)', all the arguments and the estimates presented throughout the paper continue to work in any time interval (0, T ), with some of the constants involved possibly depending on T . In the same way, if one restricts our study to the evolution of sets with compact boundary, then one could assume that g is only locally bounded in space. We assume H1) instead of H1)' only to simplify the presentation.

Let φ, ψ be two (possibly crystalline) norms representing the anisotropy and the mobility in (1.1), respectively. We recall the following distributional formulation of (1.1). Definition 2.2 (See [START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF]). Let E 0 ⊂ R N be a closed set. Let E be a closed set in R N × [0, +∞) and for each t ≥ 0 denote E(t) := {x ∈ R N : (x, t) ∈ E}. We say that E is a superflow of (1.1) with initial datum

E 0 if (a) Initial Condition: E(0) ⊆ E 0 ; (b) Left Continuity: E(s) K -→ E(t) as s ր t for all t > 0; (c) Extinction Time: If for t ≥ 0, E(t) = ∅, then E(s) = ∅ for all s > t; (d) Differential Inequality: Set T * := inf{t > 0 : E(s) = ∅ for s ≥ t}, and 
d(x, t) := dist ψ • (x, E(t)) for all (x, t) ∈ R N × (0, T * ) \ E.
Then there exists M > 0 such that the inequality

(2.3) ∂ t d ≥ divz + g -M d holds in the distributional sense in R N × (0, T * ) \ E for a suitable z ∈ L ∞ (R N × (0, T * )) such that z ∈ ∂φ(∇d) a.e., divz is a Radon measure in R N × (0, T * ) \ E, and (divz) + ∈ L ∞ ({(x, t) ∈ R N × (0, T * ) : d(x, t) ≥ δ})
for every δ ∈ (0, 1).

We say that A, open set in R N ×[0, +∞), is a subflow of (1.1) with initial datum E 0 if A c is a superflow of (1.1) with g replaced by -g and with initial datum ( E0 ) c .

Finally, we say that E, closed set in R N × [0, +∞), is a solution of (1.1) with initial datum E 0 if it is a superflow and if E is a subflow, both with initial datum E 0 .

It is shown in [START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF] (also [START_REF] Chambolle | Existence and uniqueness for a crystalline mean curvature flow[END_REF] for a simpler equation), using quite standard parabolic comparison arguments, that such evolutions satisfy a comparison principle: Theorem 2.3 ([16, Thm 2.7]). Let E be a superflow with initial datum E 0 and F be a subflow with initial datum F 0 in the sense of Definition 2.2. Assume that dist ψ • (E 0 , F 0 c ) =: ∆ > 0. Then,

dist ψ • (E(t), F c (t)) ≥ ∆e -Mt for all t ≥ 0,
where M > 0 is as in (2.3) for both E and F .

We now recall the corresponding notion of sub-and supersolution to the level set flow associated with (1.1), see again [START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF]. Definition 2.4 (Level set subsolutions and supersolutions). Let u 0 be a uniformly continuous function on R N . We will say that a lower semicontinuous function u : R N × [0, +∞) → R is a level set supersolution corresponding to (1.1), with initial datum u 0 , if u(•, 0) ≥ u 0 and if for a.e. λ ∈ R the closed sublevel set {(x, t) : u(x, t) ≤ λ} is a superflow of (1.1) in the sense of Definition 2.2, with initial datum {u 0 ≤ λ}.

We will say that an upper-semicontinuous function u : R N × [0, +∞) → R is a level set subsolution corresponding to (1.1), with initial datum u 0 , if -u is a superlevel set flow in the previous sense, with initial datum -u 0 and with g replaced by -g.

Finally, we will say that a continuous function u : R N ×[0, +∞) → R is a solution to the level set flow corresponding to (1.1) if it is both a level set subsolution and supersolution.

As shown in [START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF], Theorem 2.3 easily yields that almost all closed sublevels of a solution of the level set flows are solutions of (1.1) in the sense of Definition (2.2). Moreover, the following comparison principle between level set subsolutions and supersolutions holds true.

Theorem 2.5 ([16, Thm 2.8]). Let u 0 , v 0 be uniformly continuous functions on R N and let u, v be respectively a level set subsolution with initial datum u 0 and a level set supersolution with initial datum v 0 , in the sense of Definition 2.4. If

u 0 ≤ v 0 , then u ≤ v.
For smooth anisotropies, solutions to the level set flow and (minus the characteristic function of) solutions of the geometric flow in the sence of Definition 2.2 are in fact viscosity solutions of the (degenerate) parabolic equation (2.4) below. This classical fact will be shown and exploited to some extent to non smooth anisotropies in the next two sections.

Viscosity solutions.

We show here that in the smooth cases, the notion of solution in Definition 2.2 coincides with the definition of standard viscosity solutions for geometric motions, as for instance in [START_REF] Barles | A new approach to front propagation problems: theory and applications[END_REF]. This property will be helpful to establish estimates using standard approaches for viscosity solutions.

Lemma 2.6. Assume that φ, ψ, ψ • ∈ C 2 (R N \{0}), and that g is continuous. Let E be a superflow in the sense of Definition 2.2. Then, -χ E is a viscosity supersolution of (2.4)

u t = ψ(∇u) div∇φ(∇u) + g .
in R N × (0, T * ] where T * is the possible extinction time of E.

Conversely, a viscosity supersolution -χ E(t) of (2.4) defines a superflow in the sense of Definition 2.2.

Proof. A similar statement (in a simpler context) is proved in [START_REF] Chambolle | Existence and uniqueness for a crystalline mean curvature flow[END_REF]Appendix], while it is proved in [START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF] that a superflow defines a viscosity supersolution. We therefore here focus on the converse: Given an evolving set E(t) such that -χ E is a viscosity supersolution of (2.4), we show that E(t) is a superflow in the sense of Definition 2.2 (with the constant M in (2.3) equal to the Lipschitz constant L of g(•, t) appearing in the assumption H2)).

Step 1: Left Continuity and Extinction Time. Let T * ∈ [0, +∞] be the (first) extinction time of E, and assume without loss of generality

T * > 0. Let d(x, t) := dist ψ • (x, E(t)). We fix δ > 0 and we set A = (R N × [0, T * )) \ E and A δ = A ∩ {d > δ}. Let (x, t) with d(x, t) = R > 0. Then W ψ (x, R -ε) ∩ E(t) = ∅ for any ε > 0 (small). There exists a constant C (depending on φ, ψ) such that, letting W (s) = R N \ W ψ (x, R -ε -(C/R + g ∞ )s), -χ W (s) is a viscosity subsolution of (2.6), for s ≤ R 2 /(2(C + R g ∞ )) and ε ≤ R/4. By standard comparison results [10], it follows that E(t + s) ⊂ W (s) for such times s, so that d(x, t + s) ≥ R -ε -(C/R + g ∞ )s. Hence, letting ε → 0, we find that (2.5) d(x, t + s) ≥ d(x, t) -(C/δ + g ∞ )s if (x, t), (x, t + s) ∈ A δ .
In particular, it follows that ∂ t d is bounded from below in such sets and hence is a measure. By (2.5) and the fact that E is closed we deduce that the left continuity (b) of Definition 2.2 holds for E(t). Moreover, the same argument shows that if t > T * then d(x, t) = +∞, showing also point (c).

Step 2: The distance function is a viscosity supersolution. We now show that the function d(x, t) is a viscosity supersolution of (2.6)

u t = ψ(∇u) D 2 φ(∇u) : D 2 u + g -Lu .
In fact, this is essentially classical [START_REF] Soner | Motion of a set by the curvature of its boundary[END_REF], however the proof in this reference needs to be adapted to deal with the forcing term. An elementary proof is as follows: let η be a smooth test function and assume (x, t) is a contact point, where η(x, t) = d(x, t) and η ≤ d. If the common value of η, d at (x, t) is zero then it is also a contact point of 1χ E and η, so that

(2.7) ∂ t η(x, t) ≥ ψ(∇η(x, t)) D 2 φ(∇η(x, t)) : D 2 η(x, t) + g(x, t) -Lη(x, t)
obviously holds, by definition (recalling (2.4) and that η(x, t) = 0). Hence we consider the case where

R = d(x, t) > 0. Let ȳ ∈ ∂E( t) such that R = ψ • (x -ȳ).
We let

η ′ (y, t) := η(y + x -ȳ, t) -R ≤ d(y + x -ȳ, t) -R ≤ d(y, t) since d is 1-Lipschitz in the ψ • norm. In particular, in a neighborhood of (ȳ, t), η ′ (y, t) ≤ 1 -χ E(t) (y). On the other hand, η ′ (ȳ, t) = 0 = d(ȳ, t) = 1 -χ E( t) (ȳ).
Hence, by (2.4)

∂ t η(x, t) = ∂ t η ′ (ȳ, t) ≥ ψ(∇η ′ (ȳ, t)) D 2 φ(∇η ′ (ȳ, t)) : D 2 η ′ (ȳ, t) + g(ȳ, t) .
Since g(ȳ, t) ≥ g(x, t) -Lη(x, t), (2.7) follows.

Step 3: Differential inequality. A classical remark is that d 2 , as an infimum of the uniformly semiconcave functions ψ In what follows we will say that a given norm η is smooth and elliptic if both η and η • belong to C 2 (R N \ {0}).

• (• -y) 2 , y ∈ E(t), is semiconcave, hence in A δ one has D 2 d ≤ C/
d n (x + h, t) ≤ d(x + h, t -s n ) + ns 2 n ≤ d(x, t -s n ) + p • h + C δ |h| 2 + ns 2 n = d n (x, t) + p • h + C δ |h| 2 showing that p ∈ ∂ + d n (x, t) = {∇d n (x, t)}. We deduce that d(•, t -s n ) is differen- tiable at x,
We now consider sequences φ n , ψ n of smooth and elliptic anisotropies/mobilities converging to φ, ψ. We also consider g n (x, t) a smooth forcing term, which converges to g(x, t) weakly- * in L ∞ (R N × [0, +∞)). We assume also that g n is uniformly spatially Lipschitz continuous and we denote by L, M the (uniform) Lispchitz constants of g n with respect to ψ • n and φ • n , respectively. Given u n the corresponding unique viscosity solution of (2.4) (with ψ n , φ n , g n instead of ψ, φ, g) with initial datum u 0 , we want to study the possible limits of u n . If the limiting anisotropies and forcing term are still smooth enough, it is well known that the limiting u is the unique viscosity solution of the corresponding limit problem. If not, we will show that the limit is still unique. We recall (see [START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF]) the following Definition 2.7. We will say that a norm ψ is φ-regular if the associated Wulff shape W ψ (0, 1) satisfies a uniform interior φ-Wulff shape condition, that is, if there exists ε 0 > 0 with the following property: for every x ∈ ∂W ψ (0, 1) there exists y ∈ W ψ (0, 1) such that W φ (y, ε 0 ) ⊆ W ψ (0, 1) and x ∈ ∂W φ (y, ε 0 ).

Notice that it is equivalent to saying that W ψ (0, 1) is the sum of a convex set and W φ (0, ε 0 ), or equivalently that ψ(ν) = ψ 0 (ν)+ε 0 φ(ν) for some convex function ψ 0 .

We now show the following result.

Theorem 2.8. Let (ψ n ) n , (φ n ) n and (g n ) n as above, and, in addition, assume that the mobilities (ψ n ) n are uniformly φ n -regular, meaning that ε 0 > 0 in the Defintion 2.7 does not depend on n. Let u n be the level set solutions to (1.1) in the sense of Definition 2.4, with initial datum u 0 , anisotropy (ψ n ) n , mobility (φ n ) n and forcing term (g n ) n . Then, u n converge locally uniformly to the unique level set solution u to (1.1) in the sense of Definition 2.4, with initial datum u 0 , anisotropy ψ, mobility φ and forcing term g.

Proof.

A first observation is that the functions u n remain uniformly continuous in space and time on R N × [0, T ] for all T > 0, with a modulus depending only on the modulus of continuity ω of u 0 and the Lipschitz constant M . Indeed, by Proposition 3.4 below it follows that for any λ < λ

′ dist φ • n ({u n (•, t) ≤ λ}, {u n (•, t) ≥ λ ′ }) ≥ ∆e -βMt , where ∆ := ω -1 (λ ′ -λ) ≥ dist φ • ({u 0 ≤ λ}, {u 0 ≥ λ ′ }) > 0,
and β > 0 depends (for large n) only on φ and ψ (see (3.16)). Therefore, u n (•, t) is uniformly continuous with modulus of continuity with respect to the norm φ • n given by ω(e βMt •). As for the equicontinuity in time, we set ω T (s) := ω(e βMT s) and we start by observing that for any x ∈ R N , ε > 0, t ∈ (0, T ], and n ∈ N we have

W φn (x, ω -1
T (ε)) ⊆ {y : u n (y, t) > u n (x, t) -ε}. Therefore, by standard comparison results we have that u n (x, t ′ ) > u n (x, t)ε provided that 0 < t ′t < τ , where τ is the extintion time for W φn (x, ω -1 T (ε)) under the evolution (1.1). Analogously, one shows that u n (x, t ′ ) < u n (x, t) + ε if 0 < t ′t < τ . Since τ is bounded away from zero by a quantity independent of n (depending only on ε, sup n g n ∞ and, for n large, on φ and ψ), see for instance [START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF]Remark 4.6]. This establishes the equicontinuity in time.

Hence, up to a subsequence (not relabelled), we may assume that u n converges locally uniformly to some u. In view of Theorem 2.5, it is enough to show that u is a solution in the sense of Definition 2.4, that is, that for a.e. λ ∈ R the set E λ := {u ≤ λ} is a superflow in the sense of Definition 2.2 and A λ := {u < λ} a subflow.

We prove the assertion for E λ . We first notice that since u n → u locally uniformly, the Kuratowski limit superior of the sets

E n := {u n ≤ λ} as n → ∞ is contained in E λ .
By Lemma 2.6, the sets E n are superflows in the sense of Definition 2.2. We consider

d n (x, t) := dist ψ • n (x, E n (t)), d(x, t) := dist ψ • (x, E λ (t)
), the corresponding distance functions, which are finite up to some time T * n , T * ∈ (0, +∞] respectively, where T * is defined according with Definition 2.2. Notice that T * is increasing with respect to λ, and that if λ is a continuity point, then we have T * n → T * , as n → ∞. Reasoning as in the proof of Lemma 2.6-Step 1 we can show that d n (x, t + s) 2 ≥ d n (x, t) 2 -2Cs for some constant C which does not depend on n. Indeed, C is essentially the maximal speed of the Wulff shape W ψn , which is bounded by max ξ ψ n (max ∂W ψn κ φn + g n ∞ ). The curvature κ φn of ∂W ψn is in [0, (N -1)/ε], thanks to the assumption that ψ ′ n := ψ n -εφ n is convex, which yields that W ψn = W ψ ′ n + εW φn . This implies (see for instance details in the proof of [START_REF] Chambolle | Existence and uniqueness for a crystalline mean curvature flow[END_REF]Prop. 4.4]) that one can find a set at most countable N ⊂ (0, T * ), such that for all t ∈ N ,

d n (•, t) → d(•, t) locally uniformly. If B ⊂⊂ (R N × (0, T * )) \ E λ , one has B ∩ E n = ∅ for n large enough and ∂ t d n ≥ divz n + g n -Ld n
in the distributional sense in B, thanks to (2.3) and Lemma 2.6. Here, z n = ∇φ n (∇d n ). Notice that z n are (for n large) well defined and bounded in L ∞ (R N × (0, T )) for any T < T * . In the limit, we find that (2.3) holds for d, with z the weak- * (local in time) limit of (z n ) n (or rather, in fact, a subsequence). It remains to show that z ∈ ∂φ(∇d) a.e. in B. An important observation is that, using again the φ n -regularity of ψ n , one can show that div∇φ n (∇d n ) ≤ (N -1)/(ε 0 d n ), hence it is bounded in {d n > δ}. In particular, in the limit, (divz

) + χ {d>δ} ∈ L ∞ (R N ×(0, T ) * ).
To show z ∈ ∂φ(∇d) a.e. in B, we establish that z • ∇d ≥ φ(∇d) a.e. in B. The proof here is as in [START_REF] Chambolle | Existence and uniqueness for a crystalline mean curvature flow[END_REF]. There exists δ such that for all n large enough,

d n ≥ δ in B, hence divz n ≤ (N -1)/(ε 0 δ). Let η ∈ C ∞ c (B; R + ), then ˆB φ(∇d)ηdxdt ≤ lim inf n ˆB φ n (∇d n )ηdxdt = lim inf n ˆB(z n • ∇d n )η dxdt.
On the other hand, (2.9)

ˆB(z n • ∇d n )ηdxdt = ˆB(z n • ∇d)ηdxdt + ˆB(z n • ∇(d n -d))η dxdt,
and lim n ´B(z n • ∇d)ηdxdt = ´B(z • ∇d)η dxdt since z n * ⇀ z. It remains to prove that the second addend in the right hand side of (2.9) tends to zero as n → +∞. Set

m n (t) = min x:(x,t)∈B (d n (x, t) -d(x, t)), M n (t) = max x:(x,t)∈B (d n (x, t) -d(x, t)).
Then for all t ∈ N , M n (t)m n (t) → 0. One has

ˆB(z n • ∇(d n -d))ηdxdt = ˆB(z n • ∇(d n -d -m n (t)))η dxdt = -ˆB(d n -d -m n )η divz n dxdt -ˆB(d n -d -m n )z n • ∇η dxdt.
The last integral goes to zero as n → ∞. Since (d ndm n (t))η ≥ 0 we have

-ˆB(d n -d -m n )η divz n dxdt ≥ - N -1 ε 0 δ ˆB(d n -d -m n )ηdxdt n→∞ -→ 0.
Using instead d nd -M n , we show the reverse inequality, and we deduce ˆB φ(∇d)ηdxdt ≤ ˆB(z • ∇d)η dxdt which concludes the proof.

Existence by approximation

3.1.

A useful estimate: comparison with different forcing terms. We prove in this section and the following a series of comparison results, which will then be combined together to deduce a global comparison result for flows with possibly different mobilities. In this section, we shall assume that the surface tensions φ, ψ are smooth and elliptic, so that we can work in the classical viscosity setting. In the limit, our main estimate will also hold for crystalline flows in the sense of Definition 2.2. We start by recalling standard comparison results for flows with constant velocities, however we pay a special attention to the particular metrics in which our velocities are expressed. We first consider the equation

(3.1) u t = ψ(∇u)g(x, t).
The following result is a slight variant of the well known result [9, Theorem 8.1]:

Lemma 3.1. Consider u 0 : R N → R, bounded and Λ-Lipschitz continuous with respect to a norm η, smooth and elliptic, such that

(3.2) ψ ≤ βη • .
Assume g is bounded, continuous and M -Lipschitz in space in the norm η. Let u(x, t) be a viscosity solution of (3.1) with initial datum u 0 . Then for all t ≥ 0, the function u(•, t) is Λe βMt -Lipschitz continuous in the norm η.

Proof. We start by observing that by classical results the solution u is uniformly continuous, see for instance [START_REF] Giga | Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains[END_REF]. The rest of the proof is an adaptation of the argument in [9, proof of Theorem 8.1]. Let δ > 0 be given, and let C be a smooth function such that

(3.3) C ′ -βM C ≥ βM δ > 0, with C(0) = Λ. Set σ := sup x,y∈R N t∈[0,T ] u(x, t) -u(y, t) -C(t)η(x -y).
We claim that σ = 0. Using this claim, we have that u(x, t)u(y, t) ≤ (Λe βMt + δ(e βMt -1))η(xy) for all x, y, t ≤ T , and sending δ → 0 we conclude the proof of the lemma. We are left to prove the claim that σ = 0. Arguing by contradiction, assume that σ > 0. Consider a maximum point (x, ȳ, t, s) in R 2N × [0, T ] 2 for the function

ϕ(x, y, s, t) = u(x, t) -u(y, s) -C(t)η(x -y) - |t -s| 2 2a -b |x| 2 + |y| 2 2 ,
where a, b > 0 are small parameters (notice that ϕ(x, y, 0, 0) ≤ 0). For b small enough, then ϕ(x, ȳ, t, s) ≥ σ/2 > 0, and then by standard arguments (using in particular that |x|, |ȳ| ≤ c/ √ b, and that for fixed b, both t and s converge, up to a subsequence, to the same positive value as a → 0, see for instance [9, Lemma 5.2]) we may assume 0 < t, s ≤ T , so that:

C ′ ( t)η(x -ȳ) + t - s a ≤ ψ(C( t)∇η(x -ȳ) + bx)g(x, t) , t - s a ≥ ψ(C( t)∇η(x -ȳ) -bȳ)g(ȳ, s) .
Evaluating the difference and recalling (3.3) we obtain:

βM (C( t)+δ)η(x-ȳ) ≤ ψ(C( t)∇η(x-ȳ)+bx)g(x, t)-ψ(C( t)∇η(x-ȳ)-bȳ)g(ȳ, s).
For fixed b > 0, we can then let a → 0 and denote by t ∈ (0, T ] subsequence) the common limit of t and s as a → 0, and by x and ỹ the limit of x and ȳ respectively. Thus, using (3.2), we obtain

M (C( t) + δ)η(x -ỹ) ≤ 1 β ψ(C( t)∇η(x -ỹ) + bx)g(x, t) - 1 β ψ(C( t)∇η(x -ỹ) -bỹ)g(ỹ, t) ≤ 1 β (ψ(C( t)∇η(x -ỹ) + bx) -ψ(C( t)∇η(x -ỹ) -bỹ))g(ỹ, t) + η • (C( t)∇η(x -ỹ) + bx)M η(x -ỹ).
We deduce

C( t) + δ ≤ η • (C( t)∇η(x -ỹ) + bx) + ψ(C( t)∇η(x -ỹ) + bx) -ψ(C( t)∇η(x -ỹ) -bỹ) βM η(x -ỹ) g ∞ ,
and sending b → 0 (and observing that η(xỹ) → 0 as σ > 0 and u is uniformly continuous), we find that if t is a limit point of t, then C( t) + δ ≤ C( t), which gives a contradiction. Hence one must have σ = 0.

In the next lemma we show that if E 0 ⊂ F 0 are initial sets and 1χ E , 1χ F are viscosity solutions of (3.1), starting from 1χ E 0 and 1χ F 0 , respectively, then dist η (∂E(t), ∂F (t)) ≥ dist η (∂E 0 , ∂F 0 )e -βMt .

A splitting strategy will then extend this result to the solutions of (2.4).

Lemma 3.2. Let η be a smooth and elliptic norm satisfying (3.2). Let g 1 , g 2 be two admissible forcing terms satisfying assumptions H1), H2) of Section 2.1, and both M -Lipschitz in the η norm. Assume

(3.4) g 2 -g 1 ≤ c < +∞ in R N × [0, +∞). Let E 0 ⊂ F 0 be two closed sets with dist η (E 0 , R N \ F 0 ) := ∆ > 0. Assume that 1 -χ E(t) is a viscosity supersolution of u t = ψ(∇u)g 1 (x, t) starting from 1 -χ 0 E , and 1 -χ F (t) a subsolution of v t = ψ(∇v)g 2 (x, t) starting from 1 -χ 0 F . Then at all time t ≥ 0, (3.5) dist η (E(t), R N \ F (t)) ≥ ∆e -βMt + c 1 -e -βMt M .
Proof. Lemma 3.1 at hand, this is a straight application of standard comparison principles. We consider first u 0 (x

) := -∆ ∨ (2∆ ∧ d η E (x)) and v 0 (x) := -2∆ ∨ (∆ ∧ d η F (x)
), so that v 0 + ∆ ≤ u 0 . These functions are both 1-Lipschitz in the norm η. We then consider the viscosity solutions u of u t = ψ(∇u)g 1 (x, t) starting from u 0 , and v of v t = ψ(∇v)g 2 (x, t), starting from v 0 . By standard comparison results, E(t) ⊆ {u(t) ≤ 0} and F (t) ⊇ {v(t) ≤ 0}, for all t ≥ 0.

Thanks to Lemma 3.1, u(•, t), v(•, t) are e βMt -Lipschitz. Let now w(•, t) = v(•, t)+ ∆c(e βMt -1)/M , then at t = 0, w(•, 0) = v 0 + ∆ ≤ u 0 . We show that w is a subsolution of u t = ψ(∇u)g 1 (x, t), so that w ≤ u. Indeed, if ϕ is a smooth test function and (x, t) a point of maximum of wϕ, then it is a point of maximum of v -(ϕ -∆ + cβ(e βMt -1)/M ) so that, using (3.4) and the fact that v is a subsolution, we get ∂ t ϕ(x, t) + cβe βM t ≤ ψ(∇ϕ(x, t))g 2 (x, t) ≤ ψ(∇ϕ(x, t))g 1 (x, t) + cψ(∇ϕ(x, t)).

Since x is a contact point of the smooth function ϕ(•, t) and the e βM t-Lipschitz function w(•, t) (in the η norm), then η • (∇ϕ) ≤ e βM t at (x, t). By (3.2), cψ(∇ϕ(x, t)) ≤ cβe βM t, whence ∂ t ϕ ≤ ψ(∇ϕ)g 1 and this shows that w is a subsolution of this equation, hence that w ≤ u. Therefore, for all x, t, v(x, t) ≤ u(x, t) -∆ + c(e βMt -1)/M . Thus, for t ≥ 0 and x, y ∈ R N , recalling that v is e βM t-Lipschitz, v(y, t) ≤ u(x, t)e βMt ∆e -βMtc

1e -βMt M η(xy) .

It follows that if dist η (y, E(t)) ≤ ∆e -βMtc(1e -βMt )/M , then v(y, t) ≤ 1, and hence y ∈ F (t), which shows the lemma.

Comparison for different mobilities.

In this section we provide the crucial stability estimates with respect to varying mobilities, not necessarily smooth and elliptic.

3.2.1.

A comparison result with a constant forcing term. In this subsection we shall assume that φ, ψ 1 , ψ 2 are smooth and elliptic, and that

(3.6) (1 -δ)ψ 2 (ξ) ≤ ψ 1 (ξ) ≤ (1 + δ)ψ 2 (ξ) for all ξ ∈ R N ,
for some (small) δ > 0. We first show the following:

Lemma 3.3. There exists a constant c 0 > 0 depending only on N such that the following holds: let ∆ > 0, and let E be superflow for the equation V = -ψ 1 (ν)κ φ and F be a subflow for the equation

V = -ψ 2 (ν)(κ φ -c 0 δ/∆), with dist φ • (E(0), R N \ F (0)) = ∆.
Then for all t until extinction of E or F c , there holds

dist φ • (E(t), R N \ F (t)) ≥ ∆.
Proof. We first assume that ∂E(t), ∂F (t) are bounded for all t.

We shall use the fact that u(x, t) = -χ E (x, t) is a viscosity supersolution of (3.7)

∂ t u = ψ 1 (∇u)div∇φ(∇u), while v(x, t) = -χ F (x, t) is a viscosity subsolution of (see Lemma 2.6) (3.8) ∂ t v = ψ 2 (∇v) div∇φ(∇v) -c 0 δ ∆ .
A first remark is that since the equations are translationally invariant, then also

u ′ (x, t) = inf φ • (z)≤∆/4 u(x + z, t)
is a supersolution of (3.7), and similarly,

v ′ (x, t) = sup φ • (z)≤∆/4 v(x + z, t)
is a subsolution of (3.8). Remark that u ′ = -χ E ′ and v ′ = -χ F ′ , with the tubes E ′ , F ′ defined by

E ′ (t) = E(t) + W φ (0, ∆ 4 ) , R N \ F ′ (t) = (R N \ F (t)) + W φ (0, ∆ 4 )
until their respective extinction time. We denote t * the minimum extinction time of these sets. In particular,

dist φ • E ′ (0), R N \ F ′ (0) = ∆ 2 .
Using [16, Lemma 2.6], there is a time t 0 such that for t ≤ t 0 ,

dist φ • E ′ (t), R N \ F ′ (t) ≥ ∆ 4 .
Let ε > 0, and consider a point (x, t, ȳ, s) (depending on ε) which reaches (3.9)

M ε = min x, y∈R N 0≤s, t<t0 1 ε (1 + u ′ (x, t) -v ′ (y, s)) + φ • (x -y) 2 2 + (t -s) 2 2ε + ε t 0 -t + ε t 0 -s .
Observe that for every fixed x ∈ E ′ (0), y ∈ F ′ (0) and s = t = 0, this quantity is less than

φ • (x -y) 2 2 + 2 ε t 0 and in particular, M ε ≤ ∆ 2 /8 + 2ε/t 0 . If ε is small enough, one must have 1 + u ′ (x, t) -v ′ (ȳ, s) = 0, that is, x ∈ E ′ ( t) and ȳ ∈ F ′ (s), hence φ • (x -ȳ) = dist φ • (E ′ ( t), R N \ F ′ (s)).
If both t, s > 0, then from [20, Thm. 3.2] (with ε = 1, in their notation), there exist (N + 1) × (N + 1) symmetric matrices

(3.10) X = X ζ ζ T ζ 0 , Ỹ = Y η η T η 0 such that (3.11)    (∇φ • (ȳ -x), s- t ε -ε (t0-t) 2 , X) ∈ J 2,-u ′ ε (x, t) , (∇φ • (ȳ -x), s- t ε + ε (t0-s) 2 , Ỹ ) ∈ J 2,+ v ′ ε (ȳ, s
) , and such that (3.12)

-(1 + A ) Id ≤ -X 0 0 Ỹ ≤ A + A 2 where A =      D 2 φ • (x -ȳ) 0 -D 2 φ • (x -ȳ) 0 0 1 ε -2 ε (t0-t) 3 0 -1 ε -D 2 φ • (x -ȳ) 0 D 2 φ • (x -ȳ) 0 0 -1 ε 0 1 ε -2 ε (t0-s) 3      .
In particular, for all ξ ∈ R N , letting ξ = (ξ, 0, ξ, 0) ∈ R 2N +2 , from (3.12) and (3.10) we get

-ξ T Xξ + ξ T Y ξ ≤ ξT A ξ + ξT A 2 ξ = 0, which gives the inequality (3.13) X ≥ Y.
Recall that u ′ /ε is a supersolution and v ′ /ε is a subsolution. Thanks to (3.11),

letting p = ∇φ • (ȳ -x) and a = s- t ε , one has    a -ε (t0-t) 2 ≥ ψ 1 (p)D 2 φ(p) : X , a + ε (t0-s) 2 ≤ ψ 2 (p)(D 2 φ(p) : Y -c 0 δ ∆ ) , yielding (3.14) 0 < ε (t 0 -t) 2 + ε (t 0 -s) 2 ≤ ψ 2 (p)(D 2 φ(p) : Y -c 0 δ ∆ ) -ψ 1 (p)D 2 φ(p) : X .
Now, we observe that as E ′ ( t) = E( t)+W φ (0, ∆/4) and (necessarily) x ∈ ∂E ′ ( t), we find that (p, X) is also a subjet of -χ W φ (x ′ ,∆/4) for some x ′ ∈ E( t) with φ • (x-x ′ ) = ∆/4. In particular, it follows that D 2 φ(p) : X ≤ 4(N -1)/∆. In the same way, D 2 φ(p) : Y ≥ -4(N -1)/∆ and using (3.13), we obtain

(3.15) -4 N -1 ∆ ≤ D 2 φ(p) : Y ≤ D 2 φ(p) : X ≤ 4 N -1 ∆ .
Thanks to (3.6) and (3.15),

-ψ 1 (p)D 2 φ(p) : X ≤ -ψ 2 (p)D 2 φ(p) : X + δψ 2 (p)|D 2 φ(p) : X| ≤ -ψ 2 (p)D 2 φ(p) : X + 4(N -1) δ ∆ ψ 2 (p),
So that (3.14) and (3.13) yield

0 < ψ 2 (p)(D 2 φ(p) : Y -c 0 δ ∆ ) -ψ 1 (p)D 2 φ(p) : X = ψ 2 (p)(D 2 φ(p) : (Y -X) -c 0 δ ∆ ) + (ψ 1 (p) -ψ 2 (p))D 2 φ(p) : X ≤ ψ 2 (p) D 2 φ(p) : (Y -X) -(c 0 -4(N -1)) δ
∆ ≤ 0 as soon as c 0 ≥ 4(N -1), yielding a contradiction.

We deduce that at least one of t or s is zero; without loss of generality let us assume s = 0. For any t < t 0 , thanks to (3.9) (choosing

s = t), if ε is small enough one has 1 2 dist φ • (E ′ (t), R N \F ′ (t)) 2 +2 ε t 0 -t ≥ 1 2 dist φ • (E ′ ( t), R N \F ′ (0)) 2 + t2 2ε + ε t 0 - t + ε t 0
from which we see, in particular, that t → 0 as ε → 0. Hence, in the limit ε → 0, using also that E is closed (see [START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF]Remark 2.3] for more details), we deduce

1 2 dist φ • (E ′ (t), R N \ F ′ (t)) 2 ≥ lim inf t→0 1 2 dist φ • (E ′ ( t), R N \ F ′ (0)) 2 ≥ 1 2 dist φ • (E ′ (0), R N \ F ′ (0)) 2 = ∆ 2
8 which shows the thesis of the Lemma, until t = t 0 (thanks to the continuity property (b)). Starting again from t 0 , we have proven the Lemma for bounded sets (or sets with bounded boundary).

If ∂E(0) or ∂F (0) is unbounded, we proceed as follows: we first consider, for ε > 0, the sets

E ε 0 := E(0) + W φ (0, ε), F ε 0 =: R N \ (R N \ F (0)) + W φ (0, ε) , which satisfy dist φ • (E ε 0 , R N \ F ε 0 ) ≥ ∆ -2ε. Then, for R > 0, we consider the initial sets E ε,R 0 = E ε 0 ∩ B R and and F ε,R 0 = F ε 0 ∩ (B R + W φ (0, ∆)).
The result holds for the evolutions starting from these two sets, with the distance ∆ -2ε. Hence in the limit R → ∞, it must hold for the (viscosity) evolutions starting from E ε 0 and F ε 0 (which are unique for almost all choice of ε).

By standard comparison results for discontinuous viscosity solutions [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF][START_REF] Barles | A new approach to front propagation problems: theory and applications[END_REF][START_REF] Barles | Front propagation and phase field theory[END_REF], it then follows that the superflow E (which is also a viscosity superflow) is contained in the evolution starting from E ε 0 , while F contains the evolution starting from F ε 0 (the ε-regularization has been introduced to avoid issues due to the possible non-uniqueness of viscosity solutions).

We deduce that dist φ • (E(t), R N \ F (t)) ≥ ∆ -2ε for all t, until extinction. Since this is true for any ε > 0, the lemma is proven.

3.2.2.

Comparison with a non-constant forcing term. In this section we prove the crucial stability estimate for motions corresponding to different but close mobilities. We start with the following: Proposition 3.4. Assume that φ, ψ 1 , ψ 2 are smooth and elliptic, that ψ 1 , ψ 2 satisfy (3.6), and that

(3.16) ψ 2 (ξ) ≤ βφ(ξ) for all ξ ∈ R N .
Let E 0 ⊂ F 0 be a closed and an open set, respectively, such that dist φ • (E 0 , R N \ F 0 ) =: ∆ > 0, and let E, F be a closed and open "tube" in

R N ×[0, ∞), respectively, with E(0) = E 0 , F (0) = F 0 , such that -χ E is a supersolution of (3.17) u t = ψ 1 (∇u)(div∇φ(∇u) + g) ,
and -χ F is a subsolution of

(3.18) u t = ψ 2 (∇u)(div∇φ(∇u) + g) .
Then, there holds

(3.19) dist φ • (E(t), R N \ F (t)) ≥ ∆e -βMt -δ 2c 0 /∆ + g ∞ M (1 -e -βMt )
as long as this quantity is larger than ∆/2, where c 0 is as in Lemma 3.3 and M is the Lipschitz constant of g with respect to φ • .

Proof. In order to obtain the estimate, we combine the results of Lemmas 3.3 and 3.2 (with η = φ • ), together with a splitting result which follows from [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF] (cf Example 1, see also [START_REF] Barles | A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time[END_REF]).

As before, we may need to slightly perturb the initial sets, considering rather

E s 0 = E 0 + W φ (0, s) and F s 0 = R N \ (R N \ F 0 + W φ (0, s))
, for a small s (which eventually will go to 0).

Given s > 0 small, we start with building, for ε > 0 given, the motions u ε (x, t), v ε (x, t) defined as follows: we let u ε (x, 0) = -χ E s 0 and define recursively u ε for j ≥ 0 as a viscosity solution of:

       u ε t = 2ψ 1 (∇u ε )div∇φ(∇v ε ) 2jε < t ≤ 2jε + ε, u ε t = 2ψ 1 (∇u ε ) 2(j+1)ε 2jε g(x, s)ds 2jε + ε < t ≤ 2(j + 1)ε.
(In case of nonuniqueness, we select for instance the smallest (super)solution, corresponding to the largest set E ε (t) = {u ε = -1}.) Similarly, we let v ε (x, 0) = -χ F s 0 and let v ε (x, t) be the largest (sub)solution of:

       v ε t = 2ψ 2 (∇v ε ) div∇φ(∇v ε ) -2c 0 δ ∆ 2jε < t ≤ 2jε + ε, v ε t = 2ψ 2 (∇v ε ) 2(j+1)ε 2jε g(x, s)ds + 2c 0 δ ∆ 2jε + ε < t ≤ 2(j + 1)ε,
where c 0 is as in Lemma 3.3. Thanks to [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF][START_REF] Barles | A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time[END_REF], as ε → 0 each of these functions converges to the viscosity solution of (3.17) and (3.18), respectively, starting from -χ E ε 0 and -χ F ε 0 , provided these solutions are uniquely defined, which is known to be true for almost all ε (in fact all but a countable set of values), in which case it is also known that they are (opposite of) characteristic functions.

We now show that we can estimate the distance between the corresponding geometric evolutions, using Lemmas 3.3 and 3.2.

Let δ be as in (3.6). A first observation is that for j ≥ 0, if we consider on the interval [2jε + ε, 2(j + 1)ε] the smallest solution ũε (x, t) of

ũε t = 2ψ 2 (∇ũ ε ) 2(j+1)ε 2jε g(x, s)ds -δ g ∞ , ũε (•, 2jε + ε) = u ε (•, 2jε + ε) then, since for any p ∈ R N , ψ 1 (p) 2(j+1)ε 2jε g(x, s)ds ≥ ψ 2 (p) 2(j+1)ε 2jε g(x, s)ds -δψ 2 (p) g ∞
one has ũε (x, t) ≤ u ε (x, t) for 2jε + ε ≤ t ≤ 2(j + 1)ε, and thus E ε (t) ⊆ {ũ ε (•, t) = -1}. Hence, Lemma 3.2 yields that for 2jε + ε ≤ t ≤ 2(j + 1)ε,

dist φ • (E ε (t), R N \ F ε (t)) ≥ dist φ • ({ũ ε (•, t) = -1}, R N \ F ε (t)}) ≥ dist φ • (E ε (2jε + ε), R N \ F ε (2jε + ε)) - c M e -2βM(t-2jε-ε) + c M , for c = -δ(2c 0 /∆ + g ∞ ).
Note that here we use the fact that the mobility 2ψ 2 satisfies 2ψ 2 ≤ 2βφ, cf (3.16).

On the other hand, Lemma 3.3 yields that for all j ≥ 0 and 2jε ≤ t ≤ 2jε + ε, then

dist φ • (E ε (t), R N \ F ε (t)) ≥ dist φ • (E ε (2jε), R N \ F ε (2jε)) as long as dist φ • (E ε (2jε), R N \ F ε (2jε)) ≥ ∆/2.
In particular, denoting

d j = dist φ • (E ε (2jε), R N \ F ε (2jε))
, one obtains by induction that

d j+1 ≥ (d j -c M )e -2βMε + c M ≥ (d 0 -c M )e -2βM ( 
j+1)ε + c M , as long as d j ≥ ∆/2. In the limit, we find that, letting E s (t) = {u(•, t) = -1} and F s (t) = {v(•, t) = -1} and recalling that dist φ

• (E s 0 , R N \ F s 0 ) ≥ ∆ -2s, dist φ • (E s (t), R N \ F s (t)) ≥ (∆ -2s)e -βMt -δ 2c 0 /∆ + g ∞ M (1 -e -βMt )
as long as this quantity is larger than ∆/2.

By comparison, it is clear that E ⊂ E s and F s ⊂ F , hence (letting eventually s → 0), we deduce that (3.19) holds as long as the right-hand side is larger than ∆/2.

We are now ready to state and prove the main result of the section. Theorem 3.5. Let ψ 1 , ψ 2 and φ satisfy (3.6) and (3.16). Assume also that ψ 1 , ψ 2 are φ-regular in the sense of Definition 2.7. Let the forcing term g(x, t) be continuous, bounded, and spatially M -Lipschitz continuous with respect to the distance φ • , and denote by E a superflow for V = -ψ 1 (ν)(κ φ + g) and by F be a subflow for V = -ψ 2 (ν)(κ φ + g), both in the sense of Definition 2.2. Finally, assume that

dist φ • (E(0), R N \ F (0)) ≥ ∆ > 0.
Then for all t,

(3.20) dist φ • (E(t), R N \ F (t)) ≥ ∆e -βMt -δ 2c 0 /∆ + g ∞ M (1 -e -Mβt )
as long as this quantity is larger than ∆/2.

Proof. Consider smooth, elliptic approximations of ψ i (i = 1, 2), φ, denoted ψ n i , φ n , such that (3.6)-(3.16) hold also for ψ n i , φ n (with slightly larger constants δ and β that, with a small abuse of notation, will not be relabeled) and with ψ n i -εφ n convex (i = 1, 2), that is, ψ n i are uniformly φ n -regular (see statement of cf Theorem 2.8). Consider as before, for s > 0 small, the initial sets E s 0 := E 0 + W φ n (0, s) and

F s 0 := R N \ [(R N \ F 0 ) + W φ n (0, s)].
As in Theorem 2.8 we can build subflows A s n and superflows B s n for the evolution V = -ψ n 1 (ν)(κ φ n + g) both starting from E s 0 , such that A s n ⊂ B s n , and a subflow A ′s n and superflow B ′s n for the evolution V = -ψ n 2 (ν)(κ φ n + g) both starting from F s 0 , such that A ′s n ⊂ B ′s n . Thanks to Lemma 2.6, -χ B s n is a viscosity supersolution and -χ A ′s n is a viscosity subsolution, so that we can apply Proposition 3.4 and estimate their (φ n ) • -distance according to (3.19).

Againg thanks to Theorem 2.8, R N \ A s n converges in the Kuratowski sense as n → ∞ to the complement of a subflow, which contains E thanks to Theorem 2.3, and analogously B ′s n converges to a superflow contained in F . We deduce (3.20) letting s → 0.

3.3.

Existence and uniqueness by approximation. We recall that the existence theory for level set flows (in the sense of Definition 2.4) that we have so far works only for φ-regular mobilities. The goal of this section is to extend the existence theory to general mobilities. To this aim, we consider the following notion of solution via approximation: Definition 3.6 (Level set flows via approximation). Let ψ, g, and u 0 be a mobility, an admissible forcing term, and a uniformly continuous function on R N , respectively.

We will say that a continuous function u ψ : R N × [0, +∞) → R is a solution via approximation to the level set flow corresponding to (1.1), with initial datum u 0 , if u ψ (•, 0) = u 0 and if there exists a sequence {ψ n } of φ-regular mobilities such that ψ n → ψ and, denoting by u ψn the unique solution to (1.1) (in the sense od Definition 2.4) with mobility ψ n and initial datum u 0 , we have u ψn → u ψ locally uniformly in R N × [0, +∞).

The next theorem is the main result of this section: it shows that for any mobility ψ, a solution-via-approximation u ψ in the sense of the previous definition always exists; such a solution is also unique in that it is independent of the choice of the approximating sequence of φ-regular mobilities {ψ n }. In particular, in the case of a φ-regular mobility, the notion of solution via approximation is consistent with that of Definition 2.4. Theorem 3.7. Let ψ, g, and u 0 be as in Definition 3.6. Then, there exists a unique solution u ψ in the sense of Definition 3.6 with initial datum u 0 .

Proof. We have to prove that for any sequence {ψ n } of φ-regular mobilities such that ψ n → ψ, the corresponding solutions u ψn to (1.1) with initial datum u 0 converge to some function u locally uniformly in R N × [0, +∞). We split the proof of the theorem into two steps.

Step 1. Let β be as in (3.16). Let T 0 > 0 be defined by e -2βMT0 = 3 4 , where as usual M is the spatial Lipschitz constant of the forcing term g with respect to the distance induced by φ • . We claim that for every ε > 0 there exists n ∈ N such that

(3.21) u ψn -u ψm L ∞ (R N ×[0,T0]) ≤ ε for all n, m ≥ n.
To this aim, we observe that since ψ n → ψ, for n large enough

(3.22) ψ n (ξ) ≤ 2βφ(ξ) for all ξ ∈ R N ,
and there exists δ j → 0 such that

(3.23) (1 -δ j )ψ n ≤ ψ m ≤ (1 + δ j )ψ n for all m, n ≥ j.
Set E ψn λ (t) := {u ψn (•, t) ≤ λ}, F ψn λ (t) := {u ψn (•, t) < λ} and recall that E ψn λ is a superflow, while F ψn λ is a subflow in the sense of Definition 2.2. Let ω be a modulus of continuity for u 0 with respect to φ • and recall that for any

λ ∈ R dist φ • (E ψm λ (0), R N \ F ψn λ+ε (0)) = dist φ • ({u 0 ≤ λ}, {u 0 ≥ λ + ε}) ≥ ω -1 (ε)
. By (3.22), (3.23) and Theorem 3.5, for all n, m ≥ j we have

dist φ • (E ψm λ (t), R N \F ψn λ+ε (t)) ≥ ω -1 (ε)e -2βMt -δ j 2c 0 /ω -1 (ε) + g ∞ M (1-e -2βMt ),
as long as the right-hand side is larger than ω -1 (ε)/2, that is, for all t ∈ [0, T 0 ], provided j is large enough. In particular, for n, m large enough E ψm λ (t) ⊂ F ψn λ+ε (t) for all t ∈ [0, T 0 ] which yields

u ψn (•, t) ≤ u ψm (•, t) + ε for all t ∈ [0, T 0 ].
By switching the role of n and m we deduce (3.21).

Step 2. First arguing as in the proof of Theorem 2.8 and using (3.22) we see that ω(e 2βMt •) is a spatial modulus of continuity for u ψn (•, t) for all n. Observe that from (3.21) it follows that for n, m large enough we have

E ψm λ (T 0 ) ⊆ E ψn λ+ε (T 0 ), which in turn implies dist φ • (E ψm λ (T 0 ), R N \ F ψn λ+2ε (T 0 )) ≥ dist φ • (E ψn λ+ε (T 0 ), R N \ F ψn λ+2ε (T 0 )) ≥ ω -1 (e 2βMT0 ε).
We can now argue as in the Step 1 to conclude that, for n, m large enough

u ψn -u ψm L ∞ (R N ×[T0, 2T0 
]) ≤ 2ε. Therefore, by an easy iteration argument we can shown that, for every given T > 0, the sequence {u ψn } is a Cauchy sequence in L ∞ (R N × [0, T ]). This concludes the proof of the theorem.

We conlcude by recalling the following remarks, referring to [START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF] for the details.

Remark 3.8 (Stability). As a byproduct of the previous theorem, and a standard diagonal argument, we have the following stability property for solutions to (1.1): let {ψ n } n∈N be a sequence of mobilities and φ n a sequence of anisotropies such that ψ n → ψ and φ n → φ as n → +∞, then u ψn converge to u ψ locally uniformly in R N × [0, +∞) as h → 0 (where u ψn is the solution to (1.1) with ψ replaced by ψ n and φ replaced by φ n ). Remark 3.9 (Comparison with the Giga-Pozar solution). When φ is purely crystalline and g ≡ c for some c ∈ R the unique level set solution in the sense of Definition 3.6 coincides with the viscosity solution constructed in [START_REF] Giga | A level set crystalline mean curvature flow of surfaces[END_REF][START_REF] Giga | Approximation of general facets by regular facets with respect to anisotropic total variation energies and its application to the crystalline mean curvature flow[END_REF].

We also recall that when g is constant, (1.1) admits a phase-field approximation by means of anisotropic Allen-Cahn equation, see [START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF]Remark 6.2] for the details.

In the next theorem we recall the main properties of the level set solutions introduced in Definition 3.6. In the statement of the theorem, we will say that a uniformly continuous initial function u 0 is well-prepared at λ ∈ R if the following two conditions hold: (a) If H ⊂ R N is a closed set such that dist(H, {u 0 ≥ λ}) > 0, then there exists λ ′ < λ such that H ⊆ {u 0 < λ ′ }; (b) If A ⊂ R N is an open set such that dist({u 0 ≤ λ}, R N \ A) > 0, then there exists λ ′ > λ such that {u 0 ≤ λ ′ } ⊂ A.

Here dist(•, •) denotes the distance function with respect to a given norm. Clearly, the properties stated in (a) and (b) above do not depend on the choice of such a norm.

Remark 3.10. Note that the above assumption of well-preparedness is automatically satisfied if the set {u 0 ≤ λ} is bounded.

Theorem 3.11 (Properties of the level set flow). Let u ψ be a solution in the sense Definition 3.6, with initial datum u 0 . The following properties hold true: (i) (Non-fattening of level sets) There exists a countable set N ⊂ R such that for all t ∈ [0, +∞), λ ∈ N (3.24)

{(x, t) : u ψ (x, t) < λ} = Int ({(x, t) : u ψ (x, t) ≤ λ}) , {(x, t) : u ψ (x, t) < λ} = {(x, t) : u ψ (x, t) ≤ λ}.

(ii) (Distributional formulation when ψ is φ-regular) If ψ is φ-regular, then u ψ coincides with the distributional solution in the sense of Definition 2.4.

(iii) (Comparison) Assume that u 0 ≤ v 0 and denote the corresponding level set flows by u ψ and v ψ , respectively. Then u ψ ≤ v ψ .

(iv) (Geometricity) Let f R → R be increasing and uniformly continuous. Then u ψ is a solution with initial datum u 0 if and only if f • u ψ is a solution with initial datum f • u 0 .

(v) (Independence of the initial level set function) Assume that u 0 and v 0 are well-prepared at λ. If {u 0 < λ} = {v 0 < λ}, then {u ψ (•, t) < λ} = {v ψ (•, t) < λ} for all t > 0. Analogously, if {u 0 ≤ λ} = {v 0 ≤ λ}, then {u ψ (•, t) ≤ λ} = {v ψ (•, t) ≤ λ} for all t > 0.

For the proof we refer to [START_REF] Chambolle | Existence and uniqueness for anisotropic and crystalline mean curvature flows[END_REF]Theorem 5.9].

We conclude with a remark about conditions that prevent the occurrence of fattening.

Remark 3.12 (Star-shaped sets, convex sets and graphs). It is well-known [START_REF] Soner | Motion of a set by the curvature of its boundary[END_REF]Sec. 9] that for the motion without forcing, strictly star-shaped sets do not develop fattening so that, in particular, their evolution is unique. The proof of this fact, given for instance in [START_REF] Soner | Motion of a set by the curvature of its boundary[END_REF] for the mean curvature flow, works also for solutions in the sense of Definition 2.2 when the mobility ψ is φ-regular, and in turn, by approximation, also for the generalized motion associated to level set solutions in the sense of Definition 3.6, when ψ is general. Uniqueness also holds for motions with a time-dependent forcing g(t) [START_REF] Bellettini | The volume preserving crystalline mean curvature flow of convex sets in R N[END_REF]Theorem 5] as long as the set remains strictly star-shaped. This remark obviously applies to initial convex sets, which, in addition, remain convex for all times, as was shown in [START_REF] Bellettini | Crystalline mean curvature flow of convex sets[END_REF][START_REF] Caselles | Anisotropic curvature-driven flow of convex sets[END_REF][START_REF] Bellettini | The volume preserving crystalline mean curvature flow of convex sets in R N[END_REF] with a spatially constant forcing term. 2 The case of unbounded initial convex sets was not considered in these references but can be easily addressed by approximation (and uniqueness still holds with the same proof).

In the same way, if the initial set E 0 = {x N ≤ v 0 (x 1 , . . . , x N -1 )} is the subgraph of a uniformly continuous functions v 0 , and the forcing term does not depend on x N , then one can show that fattening does not develop and E(t) is still the subgraph of a uniformly continuous function for all t > 0, as in the classical case [START_REF] Ecker | Mean curvature evolution of entire graphs[END_REF][START_REF] Evans | Motion of level sets by mean curvature[END_REF] (see also [START_REF] Giga | Evolving graphs by singular weighted curvature[END_REF] for the 2D crystalline case).

2 Convexity is preserved also with a spatially convex forcing term but uniqueness is not known in this case.

  R N \ ∂E. Finally we recall that a sequence of closed sets E n in R m converges to a closed set E in the Kuratowski sense if the following conditions are satisfied (i) if x n ∈ E n , any limit point of {x n } belongs to E; (ii) any x ∈ E is the limit of a sequence {x n }, with x n ∈ E n .

	and we write
	Since E n	E n -→ E if and only if (for any norm ηK -→ E . K

  + ns 2 ) which is semiconcave and converges to d as n → ∞. Moreover, one can easily check that d n (•, t) → d(•, t) locally uniformly if t is a continuity point of d. Let B ⊂ A δ be an open ball, (where in particular d is bounded from below by δ and from above), and observe that d n is still a supersolution of (2.6), provided g(x, t) is replaced with g(x, t)ω n ) for some ω n → 0 as n → +∞. Since d n , which is semi-concave, has a second-order jet almost everywhere in B, equation (2.6) holds for d n almost everywhere in B. Reasoning as in[START_REF] Chambolle | Existence and uniqueness for a crystalline mean curvature flow[END_REF] Appendix], we deduce that

δI in the sense of measures for some constant C depending only on ψ • . In particular, div∇φ(∇d) = D 2 φ(∇d) :

D 2 d ≤ C/δ in A δ in the sense of measures.

We proceed as in

[START_REF] Chambolle | Existence and uniqueness for a crystalline mean curvature flow[END_REF]

:

for n ≥ 1, let d n (x, t) := min s (d(x, ts) (2.8) ∂ t d n ≥ ψ(∇d n ) divz n + gω(C/n) -Ld n .

in the distributional sense (or as measures) in B, where z n := ∇φ(∇d n ). It remains to send n → ∞: clearly, ∂ t d n → ∂ t d in the distributional sense. Consider (x, t) a point where ∇d(x, t), and ∇d n (x, t) exist for all n. First, if d(x, ts) + ns 2 attains the minimum in s n , one has for any p ∈ ∂ + d(x, ts n ) (the spatial supergradient of the semiconcave function d(•, ts n )) that

  with gradient ∇d n (x, t), and in particular that ψ(∇d n (x, t)) = 1. Assume now that in addition d is continuous at t. Then d n (•, t) → d(•, t) uniformly in B ∩ (R N × {t}), and using the (uniform) semiconcavity of these functions one also deduces that ∇d n (x, t) → ∇d(x, t) a.e.: hence, z n (x, t) = ∇φ(∇d n (x, t)) converges to z(x, t) = ∇φ(∇d(x, t)) almost everywhere. Hence we may send n to ∞ in (2.8) to find that ∂

t d ≥ divz + g -Ld in the distributional sense in B, with z = ∇φ(∇d) a.e.

This shows the Lemma. 2.3. The level set formulation. Let u 0 ∈ BU C(R N ) (a Bounded, Uniformly Continuous function). Then, it is well known [19] that if φ ∈ C 2 (R N \ {0}), ψ, g are continuous, there exists a unique viscosity solution u of (2.4) with initial datum u 0 . Moreover, for all λ ∈ R, -χ {u<λ} is a viscosity supersolution and -χ {u≤λ} a viscosity subsolution of the same equation. If in addition ψ, ψ • ∈ C 2 (R N \ {0}), it follows from Lemma 2.6 that E λ (t) := {u(•, t) ≤ λ} is a superflow in the sense of Definition 2.2, while A λ (t) := {u(•, t) < λ} is a subflow 1 .

In case of "fattening", also {u < λ} is a superflow, and the interior of {u ≤ λ} a subflow.
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