Classification of Multisensor and Multiresolution Remote Sensing Images through Hierarchical Markov Random Fields - Archive ouverte HAL
Article Dans Une Revue IEEE Geoscience and Remote Sensing Letters Année : 2017

Classification of Multisensor and Multiresolution Remote Sensing Images through Hierarchical Markov Random Fields

Résumé

This letter proposes two methods for the supervised classification of multisensor optical and SAR images with possibly different spatial resolutions. Both methods are formulated within a unique framework based on hierarchical Markov random fields. Distinct quad-trees associated with the individual information sources are defined to jointly address multisensor, multiresolu-tion, and possibly multifrequency fusion, and are integrated with finite mixture models and the marginal posterior mode criterion. Experimental validation is conducted with Pléiades, COSMO-SkyMed, RADARSAT-2, and GeoEye-1 data.
Fichier principal
Vignette du fichier
HedhliMoserSerpicoZerubia.pdf (1.8 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01632907 , version 1 (14-11-2017)

Identifiants

Citer

Ihsen Hedhli, Gabriele Moser, Sebastiano Serpico, Josiane Zerubia. Classification of Multisensor and Multiresolution Remote Sensing Images through Hierarchical Markov Random Fields. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (2), pp.2448-2452. ⟨10.1109/LGRS.2017.2768398⟩. ⟨hal-01632907⟩

Collections

INRIA INRIA2
217 Consultations
348 Téléchargements

Altmetric

Partager

More