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aDepartment of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011-2230, USA
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Abstract

The conditional quadrature method of moments (CQMOM) was introduced by Yuan and Fox [J. Comput.
Phys. 230 (22), 8216–8246 (2011)] to reconstruct a velocity distribution function (VDF) from a finite set of
its integer moments. The reconstructed VDF takes the form of a sum of weighted Dirac delta functions in
velocity phase space, and provides a closure for the spatial flux term in the corresponding kinetic equation.
The CQMOM closure for the flux leads to a weakly hyperbolic system of moment equations. In subsequent
work [Chalons et al., Proceed. CTR Sum. Prog. 2010, 347–358 (2010)], the Dirac delta functions were
replaced by Gaussian distributions, which make the moment system hyperbolic but at the added cost of
dealing with continuous distributions. Here, a hyperbolic version of CQMOM is proposed that uses weighted
Dirac delta functions. While the moment set employed for multi-Gaussian and conditional HyQMOM
(CHyQMOM) are equivalent, the latter is able to access all of moment space whereas the former cannot
(e.g. arbitrary values of the fourth-order velocity moment in 1-D phase space with two nodes). By making
use of the properties of CHyQMOM in 2-D phase space, it is possible to control a symmetrical subset of the
optimal moments [Fox, Indust. & Engng. Chem. Res. 48 (21), 9686–9696 (2009)]. Furthermore, the moment
sets for 2-D problems are smaller for CHyQMOM than in the original CQMOM thanks to a judicious choice
of the velocity abscissas in phase space.

Keywords: kinetic equation, quadrature-based moment methods, conditional quadrature method of
moments, hyperbolic moment closures

1. Introduction

The physics of inertial particles can be described by a velocity density function (VDF) satisfying a
kinetic equation. Solving such a kinetic equation relies on either a sample of discrete numerical parcels
through a Lagrangian Monte-Carlo approach or on a moment approach resulting in a Eulerian system of
conservation laws on velocity moments. For the latter, the main difficulty for particles with high Knudsen
numbers where the VDF can be very far from equilibrium, is the closure of the free-transport term in the
kinetic equation. One way to proceed is to use quadrature-based moment methods (QBMM) where the
higher-order moments required for closure are evaluated from the lower-order transported moments using
multi-dimensional quadratures [1, 2, 3]. In our previous work, we have developed the conditional quadrature
method of moments (CQMOM) [4], leading to a well-behaved kinetic numerical scheme [5]. CQMOM has
been shown to capture particle trajectory crossing (PTC) where the distribution in the exact kinetic equation
remains at all times in the form of a sum of Dirac delta functions [4, 6, 7]. The moment system found with
the CQMOM flux closure is weakly hyperbolic, leading to delta shocks when multiple PTC occur at the same
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location. To achieve hyperbolicity, a multi-Gaussian QBMM closure was proposed [8]. However, this closure
cannot access all of moment space [9, 10, 11] due to the form of Gaussian distribution (e.g. the two-node
closure cannot represent fourth-order velocity moments larger than a Gaussian distribution). Moreover,
working with a continuous representation of the VDF loses the discrete velocity representation of CQMOM
[12].

The purpose of this work is to introduce a hyperbolic QMOM reconstruction of the VDF (HyQMOM
in 1-D and CHyQMOM is 2 phase space) that circumvents the known shortcomings of the multi-Gaussian
closure while retaining a hyperbolic moment system. In one-dimensional (1-D) phase space, the moment set
controlled by HyQMOM is exactly the same as with the multi-Gaussian closure, namely integer moments
up to order 2N where N is the number of nodes. Here we analyze the HyQMOM for N = 2 and 3, extend it
to 2-D phase space using CQMOM, and apply it to the solution of a kinetic equation. The remainder of the
work is organized as follows. In §2 the HyQMOM is described. In §3, we provide an in-depth description of
the application to 1-D kinetic equations and the mathematical properties of two- and three-node HyQMOM.
In §4, we extend HyQMOM to a 2-D phase space using a modified version of CQMOM. In §5 we describe
the application of CHyQMOM to 2-D kinetic equations. Example applications are provided in §6. Finally,
conclusions are drawn in §7. Mathematical details on moment methods and extension of CHyQMOM to
higher-order moments are provided in the appendices.

2. HyQMOM

Consider a VDF f(u) defined for u ∈ R. Let us assume that the moments of f defined by

Mk :=

∫
R
f(u)uk du for k ∈ {0, 1, . . . ,max(1, 2N − 2)} (1)

are finite and known. Let us define the central moments by

Ck :=
1

M0

∫
R
f(u)(u− ū)k dv for k ∈ {0, 1, . . . ,max(1, 2N − 2)} (2)

where ū = M1/M0. By definition, C0 = 1 and C1 = 0. The next central moment C2 ≥ 0 is the velocity
variance. For any k ≥ 0, the central moment Ck depends uniquely on the moments {M0,M1, . . . ,Mk}. For
nonnegative f(u), the moments are said to be realizable. The realizability of a finite set of moments can be
checked using Hankel matrix determinants as described in Appendix A. In particular, up to fourth order
the central moments reside in the interior of moment space if C2 > 0 and C4 > C2

2 + C2
3/C2. Hereinafter

we will assume that the moment set under consideration is realizable.

2.1. Definition of HyQMOM

HyQMOM provides a discrete approximation fa defined such that

Ck = Cak :=
1

M0

∫
R
fa(u)(u− ū)k du for k ∈ {0, 1, . . . ,max(1, 2N − 2)}, (3)

and the central moment C2N−1 is a function of (C2, C3, . . . , C2N−2). More precisely, fa has the form:

fa(u) = M0

N∑
α=1

ραδuα+ū(u) (4)

where δuα+ū(u) is the Dirac delta function centered at uα + ū, and the N weights ρα and the N velocity
abscissas uα are determined from the first 2N − 1 integer moments of fa by (3), which is equivalent to

Ck =

N∑
α=1

ραu
k
α for k ∈ {0, 1, . . . , 2N − 1}. (5)
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In comparison to QMOM, HyQMOM fixes the central moment C2N−1, instead of computing it from moments
up to M2N−1, such that the 1-D moment system in §3.1 is hyperbolic. The algorithm for computing fa

from the moment set {C0, . . . , C2N−1} using (5) is exactly the same as with QMOM [4, 13]. The solution
to (5) with N = 1 is trivial. As shown below, for N = 2 and 3 the weights ρα and velocity abscissas uα
can be found analytically. Note that due to the form of (4), the Hankel matrix HN = 0, which effectively
constraints the even-order moment C2N . The odd-order central moments have no such constraints.

2.2. Two-node HyQMOM

The function fa has exact moments Ma
i of orders i = 0, 1, 2 given by (5) with N = 2. The four unknowns

ρ1, ρ2, u1, u2 are found by solving the nonlinear system Ci = Cai , i = 0, . . . , 3:

1 = ρ1 + ρ2,

0 = ρ1u1 + ρ2u2,

C2 = ρ1u
2
1 + ρ2u

2
2,

C3 = ρ1u
3
1 + ρ2u

3
2,

(6)

where C3 = 0. Note that the abscissas can be rescaled by
√
C2 and thus (6) has no independent parameters.

It remains to prove that this system is well posed in the following proposition.

Proposition 1 (Two-node HyQMOM). For moment set M = (M0,M1,M2)t such that M0 > 0, define the
central moment

C2 =
M0M2 −M2

1

M2
0

and set C3 = 0. System (6) is well defined on the phase space Ω given by

Ω = {M, M0 > 0 and C2 > 0} .

Setting U = (ρ1, ρ2, u1, u2)t, the function U = U(M) is one-to-one and onto.

Proof. In the case C2 > 0, using the second equation, the last two equations in (6) yield

ρ1u1(u1 − u2) = C2,

u1 + u2 = 0.
(7)

Using the first equation in (6), these equations then yield

ρ1 = ρ2 =
1

2
,

u1 = −u2 =
√
C2.

(8)

The weights are non-negative and the abscissas are always real-valued. This concludes the proof.
If M0 = 0, then M is realizable only if M1 = M2 = 0. When C2 = 0, two-node HyQMOM reduces to

one-node QMOM.

2.3. Three-node HyQMOM

The function fa has exact central moments Cai of orders i = 0, ..., 4 given by (5) with N = 3. The six
unknowns ρ1, ρ2, ρ3, u1, u2, u3 are found by solving the nonlinear system

1 = ρ1 + ρ2 + ρ3,

0 = ρ1u1 + ρ2u2 + ρ3u3,

C2 = ρ1u
2
1 + ρ2u

2
2 + ρ3u

2
3,

C3 = ρ1u
3
1 + ρ2u

3
2 + ρ3u

3
3,

C4 = ρ1u
4
1 + ρ2u

4
2 + ρ3u

4
3,

C5 = ρ1u
5
1 + ρ2u

5
2 + ρ3u

5
3,

(9)
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where C5 = C3

C2
2

(
2C2C4 − C2

3

)
so that u2 = 0. Note again that the abscissas can be rescaled by

√
C2 and

thus (9) depends only on the two dimensionless moments q = C3/C
3/2
2 and η = C4/C

2
2 . It remains to prove

that this system is well posed in the following proposition.

Proposition 2 (Three-node HyQMOM). For moment set M = (M0,M1,M2,M3,M4)t such that M0 > 0,
define the central moments

C2 =
M0M2 −M2

1

M2
0

, C3 =
M2

0M3 − 3M0M1M2 + 2M3
1

M3
0

,

C4 =
M3

0M4 − 4M2
0M1M3 + 6M0M

2
1M2 − 3M4

1

M4
0

and set C5 = C3

C2
2

(
2C2C4 − C2

3

)
. System (9) is well defined on the phase space Ω given by

Ω =

{
M, M0 > 0, C2 > 0 and C4 ≥ C2

2 +
C2

3

C2

}
.

Setting U = (ρ1, ρ2, ρ3, ρ1u1, ρ3u3)t, the function U = U(M) is one-to-one and onto.

Proof. Solving (9) with u2 = 0 is equivalent to solving the following nonlinear system in (ρ∗1, ρ2, ρ
∗
3, u1, u3):

ρ2 = 1− ρ∗1/u1 − ρ∗3/u3,

ρ∗1 + ρ∗3 = 0,

ρ∗1u1 + ρ∗3u3 = C2,

ρ∗1u
2
1 + ρ∗3u

2
3 = C3,

ρ∗1u
3
1 + ρ∗3u

3
3 = C4,

C5 = ρ∗1u
4
1 + ρ∗3u

4
3.

(10)

In the case C2 > 0, the last five equations yield

ρ∗3 = −ρ∗1,
ρ∗1(u1 − u3) = C2,

u1 + u3 = C3/C2 = C
1/2
2 q,

u2
1 + u1u3 + u2

3 = C4/C2 = C2η,

C5 = C3

(
u2

1 + u2
3

)
.

(11)

The last three equations then yield

u1 = C
1/2
2

1

2

(
q −

√
4η − 3q2

)
,

u3 = C
1/2
2

1

2

(
q +

√
4η − 3q2

)
,

(12)

and
C5 = C

5/2
2 q

(
2η − q2

)
, (13)

which give real-valued abscissas with u1 < 0 and u3 > 0 when 4η ≥ 3q2. The corresponding weights are

ρ1 =
−C1/2

2

u1

√
4η − 3q2

, ρ2 = 1 +
C2

u1u3
, ρ3 =

C
1/2
2

u3

√
4η − 3q2

. (14)

The weights are non-negative if η ≥ 1 + q2, which is the realizability condition for M and, hence, the
abscissas found from (12) are always real-valued. This concludes the proof.

If M0 = 0, then M is realizable only if M1 = M2 = M3 = M4 = 0. If C2 = 0, then M is realizable only
if C3 = C4 = 0, in which case ρ1 = ρ3 = 0. When C2C4 = C3

2 + C2
3 , the weight ρ2 = 0 and, hence, the

three-node HyQMOM reduces to two-node QMOM at the boundary of moment space.
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3. Application of HyQMOM to 1-D kinetic equations

We first introduce HyQMOM for the VDF f(t, x, u) in 1-D phase/real space for the kinetic equation:

∂tf + u∂xf + ∂u(Af) = 0, t > 0, x ∈ R, u ∈ R, (15)

with initial condition f(0, x, u) = f0(x, u). The acceleration A is a real-valued function of u. The exact
solution for free transport (when A = 0) is given by f(t, x, u) = f(0, x−ut, u) = f0(x−ut, u). In this work,
we seek an approximation of f(t, x, u) in the form of HyQMOM with weights ρα(t, x) > 0, velocity abscissas
uα(t, x) for α ∈ (1, . . . , N) and N = 3. These weights and abscissas are determined from the 1-D moment
transport equations.

3.1. 1-D moment transport equations

Defining the ith-order moment:

Mi(t, x) =

∫
R
f(t, x, u)ui du, i = 0, . . . ,K; K ∈ N;

the associated governing equations are easily obtained from (15) after multiplication by ui and integration
over u:

∂tMi + ∂xMi+1 = Ai, i ≥ 0,

where the (unclosed)1 moment acceleration term is

Ai = −
∫
R
iA(u)f(t, x, u)ui−1 du. (16)

For simplicity, we will focus our attention on the five-moment model and its abstract form:

∂tM0 + ∂xM1 = 0,

∂tM1 + ∂xM2 = A1,

∂tM2 + ∂xM3 = A2,

∂tM3 + ∂xM4 = A3,

∂tM4 + ∂xM5 = A4.

=⇒ ∂tM + ∂xF(M) = A, (17)

with M = (M0, . . . ,M4)t, F(M) = (M1, . . . ,M4,M5)t and A = (0,A1, . . . ,A4)t. This model is closed
provided that M5 and A are defined as functions of M. Here we propose to define these functions using
three-node HyQMOM. Note that unlike previous five-moment closures [9, 11], three-node HyQMOM in (17)
is well defined over the entire (realizable) moment space M.

3.2. Mathematical properties of moment system with HyQMOM

The following theorem addresses an important mathematical property of system (17).

Theorem 1 (Hyperbolicity). Assuming that the vector M = (M0,M1,M2,M3,M4)t lives in the space Ω
defined in Proposition 2, system (17) with the three-node HyQMOM closure is hyperbolic.

1The acceleration terms will be closed if A is affine: A(t, x, u) = −a(t, x)u+ b(t, x), in which case the moment acceleration
term can be written as Ak = k(aMk − bMk−1). In gas–particle flows, this limit corresponds to Stokes drag in a stationary
fluid.
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Proof. It is shown in Proposition 2 that one can define U = (ρ1, ρ2, ρ3, ρ1u1, ρ3u3)t, the vector of the
reconstruction variables, using the three-node HyQMOM closure.

The Jacobian matrix of system (17) is

J =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
α β γ δ ε


where (α, β, γ, δ, ε) =

DM5

DM
and M5 = M0

[
ρ1(ū+ u1)5 + ρ2ū

5 + ρ3(ū+ u3)5
]
. The corresponding charac-

teristic polynomial is
P (X) = −X5 + εX4 + δ X3 + γ X2 + β X + α.

After some tedious algebra, one obtains

C
−5/2
2 P

(
ū+

√
C2Y

)
= −Y 5 + 2qY 4 +

(
2η − 3q2

)
Y 3 − 2q

(
η − q2

)
Y 2 −

(
η − q2

)
Y

with q = C3/C
3/2
2 and η = C4/C

2
2 . This polynomial function P then admits five roots:

ū, ū+
√
C2

1

2

(
q ±

√
4η − 3q2 ± 4

√
(η − q2) (η − q2 − 1)

)
. (18)

Thanks to the realizability constraint η > 1+q2, it is easy to show that all roots are distinct and real-valued.
This concludes the proof.

If η = 1 + q2, the moments are on the boundary of moment space and system (17) is weakly hyperbolic.
Using the same procedure as in Theorem 1, it can be shown that the moment system resulting from two-node
HyQMOM is hyperbolic when C2 > 0.

3.3. Kinetic-based flux

In our numerical implementation to solve (17), the spatial fluxes F(M) are computed using a kinetic-
based definition:

Fi(t, x) =

∫ ∞
0

f(t, x, u)ui+1 du+

∫ 0

−∞
f(t, x, u)ui+1 du, i = 0, . . . , 4; (19)

where the decomposition into positive and negative directions is used to define the flux function as proposed
in [5, 14]. The numerical representation of the flux function is a critical point in moment transport methods
[1, 2, 3, 7, 15] because only realizable moment sets can be successfully inverted.

Formally, for non-degenerate cases we close (19) using

Fi(t, x) = M0

4∑
α=0

wα

[
max (0, λα)

i+1
+ min (0, λα)

i+1
]
, i = 0, . . . , 4, (20)

where λα are the eigenvalues in (18) with λ0 = ū. The weights wα are found by solving the moment problem:

M0


1 1 1 1 1
λ0 λ1 λ2 λ3 λ4

λ2
0 λ2

1 λ2
2 λ2

3 λ2
4

λ3
0 λ3

1 λ3
2 λ3

3 λ3
4

λ4
0 λ4

1 λ4
2 λ4

3 λ4
4



w0

w1

w2

w3

w4

 =


M0

M1

M2

M3

M4

 ,
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which is equivalent to w0 = 0 and 
ϕ1 ϕ2 ϕ3 ϕ4

ϕ2
1 ϕ2

2 ϕ2
3 ϕ2

4

ϕ3
1 ϕ3

2 ϕ3
3 ϕ3

4

ϕ4
1 ϕ4

2 ϕ4
3 ϕ4

4



w1

w2

w3

w4

 =


0
1
q
η

 (21)

where ϕα = (λα − ū)/
√
C2. Using the characteristic polynomial from Theorem 1, it is straightforward to

show that

C5 =

3∑
α=1

ραu
5
α = C

5/2
2

4∑
α=1

wαϕ
5
α = C

5/2
2 q(2η − q2),

and thus that both quadratures yield the same closure for M5 (as well as for M0 to M4). For the degenerate
case where η = 1 + q2, the three distinct eigenvalues are used in (20). Finally, for the degenerate case where
C2 = 0, the single eigenvalue ū is used.

To design a first-order scheme, this decomposition is sufficient as it corresponds to an upwind scheme at
the kinetic level. For a high-order scheme [7], the spatial fluxes can be found from (20) by employing a high-
order spatial reconstruction for M0wα and a first-order reconstruction for the abscissas λα. In summary,
the numerical fluxes are computed as follows:

1. Given moments M, compute ū, C2, q, η, λα, and wα.

2. Compute kinetic-based fluxes from (20).

3. Compute finite-volume numerical moment fluxes as described in [7].

4. Extension of HyQMOM to 2-D phase space

Consider a 2-D phase space with VDF f(v) for v = (u, v)t and define the bivariate moments

Mi,j :=

∫
R2

f(v)uivj dv, i, j = 0, . . . ,K; K ∈ N. (22)

If M0,0 > 0, the bivariate central moments are defined by

Ci,j :=
1

M0,0

∫
R2

f(v)(u− ū)i(v − v̄)j dv, i, j = 0, . . . ,K; K ∈ N; (23)

where ū = M1,0/M0,0 and v̄ = M0,1/M0,0. Assuming that these moments are realizable, which can be
checked using moment matrices [16], in the following we propose a bivariate extension of HyQMOM using
ideas from CQMOM [4].

4.1. Definition of 2-D CHyQMOM

For clarity, we limit our discussion here to nine-node quadrature in 2-D phase space. Nevertheless, the
same methodology can be used to develop the formulas for more nodes. For the nine-node quadrature, we
define an approximate bivariate VDF by

fa(v) := M0,0

N∑
α=1

ραδū+uα(u)

N∑
β=1

ραβδv̄+v̄α+vαβ (v) (24)

where N = 3, and the parameters {ρ1, ρ2, ρ3, u1, u3} (u2 = 0) are determined using the three-node HyQMOM
algorithm in §2.3 from the moments {M0,0,M1,0,M2,0,M3,0,M4,0}. In (24), v̄α and vαβ are found from the
moments {M1,1,M0,1,M0,2,M0,3,M0,4} as described next. The total number of nodes in 2-D phase space
is thus nine for nondegenerate cases.
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As shown in §3.3, for the spatial fluxes a quadrature based on the eigenvalues is needed. Using the
flux-based quadrature, the VDF reconstruction is

fa(v) := M0,0

Nλ−1∑
α=0

wαδλα(u)

N∑
β=1

ραβδv̄+v̄α+vαβ (v) (25)

where Nλ = 2N − 1 is the number of eigenvalues λα = ū +
√
C2,0ϕα. The formulas in this section and in

§4.2 are derived using the notation in (24), but equivalent formulas can be found for (25) by substituting

wα for ρα and ϕα for uα/C
1/2
2,0 . The latter are needed for computing the kinetic-based fluxes in §5.3.

The correlation parameters v̄α = a0 + a1uα in (24) are defined to have the following properties:

N∑
α=1

ραv̄α = C0,1 = 0,

N∑
α=1

ραuαv̄α = C1,1. (26)

This yields a0 = 0 and a1 = C1,1/C2,0, and thus

v̄α =
C1,1

C2,0
uα. (27)

Note that v̄2 = 0 because u2 = 0.
The central moments found from (24) are

Ci,j =

N∑
α=1

ραu
i
α

N∑
β=1

ραβ (v̄α + vαβ)
j
. (28)

A binomial expansion then leads to

Ci,j =

j∑
j1=0

(
j

j1

) N∑
α=1

ραu
i
αv̄

j−j1
α Cj1|α (29)

where the conditional central moments are

Cj|α :=

N∑
β=1

ραβv
j
αβ . (30)

It follows immediately from (29) that C0|α = 1. By choosing C2,1 = C1,1C3,0/C2,0, we find C1|α = 0. The
form of (29) leads to the following moment-inversion algorithm based on CQMOM.

4.2. Moment-inversion algorithm for 2-D, nine-node CHyQMOM

The first step uses the univariate moments Mi,0 with the algorithm in §2.3 for 1-D, three-node HyQMOM
to find {ρ1, ρ2, ρ3, u1, u3}. There are three possible cases: (1) a nondegenerate case with u1 6= u3 and ρ2 > 0,
(2) a degenerate case with ρ2 = 1, (3) a degenerate case with ρ2 = 0. Case (2) occurs when the univariate
moments Mi,0 have zero variance (C2,0 = 0). Case (3) occurs when the univariate moments Mi,0 are on the
boundary of moment space (C2,0 > 0 and C2,0C4,0 = C3

2,0 + C2
3,0).

4.2.1. Case (2)

For this case, we define a 2-D, three-node CHyQMOM by

fa(v) := M0,0δū(u)

3∑
β=1

ρβδv̄+vβ (v). (31)

The algorithm in §2.3 for three-node HyQMOM is employed with the moment set {1, 0, C0,2, C0,3, C0,4} to
find the parameters {ρ1, ρ2, ρ3, v1, v3} (v2 = 0).
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4.2.2. Cases (1) and (3)

The parameters {ρα 1, ρα 2, ρα 3, vα 1, vα 2, } are determined from the conditional moments {C0|α, C1|α, C2|α, C3|α, C4|α}
using the three-node HyQMOM in §2.3. As shown above, C0|α = 1, and C1|α = 0 when C2,1 = C1,1C3,0/C2,0.
Thus we compute

C2|α = C0,2

(
b0 + b1

uα

C
1/2
2,0

)
(32)

from (29) using {C0,2, C1,2} by choosing C1,2 = C1,1C0,3/C0,2. This yields

3∑
α=1

ραC2|α = C0,2b0 = C0,2 −
C2

1,1

C2,0
or b0 = 1− %2,

3∑
α=1

ραuαC2|α = b1C
1/2
2,0 C0,2 = C1,1

C0,3

C0,2
−
C2

1,1

C2
2,0

C3,0 or b1 = %(q2 − %q1)

(33)

where % = C1,1/
√
C2,0C0,2, q1 = C3,0/C

3/2
2,0 , and q2 = C0,3/C

3/2
0,2 . If one of the conditional variances is null,

then b1 is limited such that all conditional variances are non-negative.
The conditional moments C3|α and C4|α are found from {C0,3, C0,4} by assuming that they depend on

α through C2|α: C3|α = q?C
3/2
2|α and C4|α = η?C2

2|α. This yields the following relations for q? and η?:

q? =

[
3∑

α=1

ρα

(
C†2|α

)3/2
]−1 [

2%3q1 + (1− 3%2)q2

]
, (34)

where C†2|α = C2|α/C0,2, and

η? =

[
3∑

α=1

ρα

(
C†2|α

)2
]−1 [

η2 − %4η1 − 6%[%(1− %2) + (q2 − %q1)q1]− 4%q?
3∑

α=1

ραu
†
α

(
C†2|α

)3/2
]

(35)

where u†α = uα/C
1/2
2,0 , η1 = C4,0/C

2
2,0 and η2 = C0,4/C

2
0,2.

In the limit of perfect correlation, |%| = 1, q2 = %q1 and η2 = %2η1, and thus q? = 0 and η? = 0.
For uncorrelated variables, % = 0, q? = q2 and η? = η2. Otherwise, the realizability of C4|α requires
that η? ≥ 1 + (q?)2. If this condition is not met, then q? and η? are projected to the realizability curve
η? = 1+(q?)2 along the direction of the Gaussian moments (i.e., q? = 0 and η? = 3). Three-node HyQMOM
can then be applied for each α to find the remaining parameters.

4.3. Other remarks

The moment-inversion algorithm described above is able to recover ten velocity moments:

M =


M0,0 M0,1 M0,2 M0,3 M0,4

M1,0 M1,1

M2,0

M3,0

M4,0

 , (36)

which is a symmetrical subset of the optimal moments [17]. However, the reconstruction in (24) in not
unique for this moment set, which is not surprising since a general 2-D, nine-node quadrature has 27 degrees
of freedom [17]. For example, transposing the moments Mi,j ⇒Mj,i will generally lead to a different set of
reconstruction parameters. The difference between the two reconstructions will lead to different closures for
the moments not incluced in M. The advantage of using CHyQMOM over CQMOM [4] and second-order
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closures [8] for approximating solutions to kinetic equations is that the system will be hyperbolic, while at
the same time allowing for particle-trajectory crossing [1, 2].

The reader can note that the formulas developed in this section for 2-D, nine-node CHyQMOM can be
extended to third-order moments by including M1,2 and M2,1 in M in a relatively straightforward manner
(see Appendix B).

5. Application of nine-node CHyQMOM to kinetic equations

Consider a 2-D velocity phase space with VDF f(t, x, v) for x = (x, y)t and v = (u, v)t that satisfies the
kinetic equation

∂tf + v · ∂xf + ∂v · (Af) = 0, t > 0, x ∈ R2, v ∈ R2, (37)

with initial condition f(0, x, v) = f0(x, v). The acceleration A = (Ax,Ay)t is a real-valued function of v.
With a 2-D velocity phase space, we approximate the solution to f using CHyQMOM for the bivariate
moments. In this work, we will consider only the minimal CHyQMOM in §4 that uses nine nodes in the
2-D velocity phase space. Nonetheless, the extension to more than nine nodes would be analogous to the
algorithm presented here.

5.1. 2-D moment transport equations

Defining the bivariate moments

Mi,j(t, x) =

∫
R2

f(t, x, v)uivj dv, i, j = 0, . . . ,K; K ∈ N;

the associated governing equations are easily obtained from (37):

∂tMi,j + ∂xMi+1,j + ∂yMi,j+1 = Ai,j , i, j ≥ 0;

where the (unclosed)2 moment acceleration term is defined by

Ai,j = −
∫
R2

iAx(v)f(t, x, v)ui−1vj dv −
∫
R2

jAy(v)f(t, x, v)uivj−1 dv. (38)

We will consider in this work the ten moments in (36):

∂tM0,0 + ∂xM1,0 + ∂yM0,1 = 0,

∂tM1,0 + ∂xM2,0 + ∂yM1,1 = A1,0,

∂tM0,1 + ∂xM1,1 + ∂yM0,2 = A0,1,

∂tM2,0 + ∂xM3,0 + ∂yM2,1 = A2,0,

∂tM1,1 + ∂xM2,1 + ∂yM1,2 = A1,1,

∂tM0,2 + ∂xM1,2 + ∂yM0,3 = A0,2,

∂tM3,0 + ∂xM4,0 + ∂yM3,1 = A3,0,

∂tM0,3 + ∂xM1,3 + ∂yM0,4 = A0,3,

∂tM4,0 + ∂xM5,0 + ∂yM4,1 = A4,0,

∂tM0,4 + ∂xM1,4 + ∂yM0,5 = A0,4,

(39)

which requires a closure for the two third-order moments M2,1, M1,2, the two fourth-order moments M3,1,
M1,3, the four fifth-order moments M5,0,M4,1,M1,4,M0,5, and the acceleration terms. We propose to define
these closures by reconstructing f with nine-node CHyQMOM in (24) and (25). If unclosed, the acceleration
term A can be evaluated using fa. In our numerical examples, Stokes drag is used so that A is closed in
terms of the transported moments, and operator splitting is used for the fluxes and the acceleration.

2The acceleration terms will be closed if A is a linear function of the form (au, av)t, in which case the moment acceleration
term can be written as Ai,j = −a(i+ j)Mi,j . In gas-particle flows, this limit corresponds to Stokes drag in a stationary fluid.
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5.2. Mathematical properties of 2-D moment system with nine-node CHyQMOM

Because we employ a dimensional splitting to solve (39), let us consider the transport part of the system
in the x-direction for the moments used in the CHyQMOM reconstruction in (24):

∂tM + ∂xFx(M) = 0 (40)

with M = (M0,0,M1,0,M2,0,M3,0,M4,0,M0,1,M1,1,M0,2,M0,3,M0,4)t and

Fx(M) = (M1,0,M2,0,M3,0,M4,0,M5,0,M1,1,M2,1,M1,2,M1,3,M1,4)t

where, using the flux-based quadrature in (25),

M5,0 = M0,0

4∑
α=1

wαλ
5
α,

M2,1 = M0,0

4∑
α=1

wαλ
2
α(v̄ + v̄α),

M1,2 = M0,0

4∑
α=1

wαλα
[
(v̄ + v̄α)2 + C2|α

]
,

M1,3 = M0,0

4∑
α=1

wαλα
[
(v̄ + v̄α)3 + 3(v̄ + v̄α)C2|α + C3|α

]
,

M1,4 = M0,0

4∑
α=1

wαλα
[
(v̄ + v̄α)4 + 6(v̄ + v̄α)2C2|α + 4(v̄ + v̄α)C3|α + C4|α

]
.

(41)

Here v̄α = (C1,1/C
1/2
2,0 )ϕα, and the conditional moments Cj|α are defined using ϕα. The right-hand side of

(41) can therefore be expressed in terms of the known central moments, ū, v̄ and M0,0. This observation
leads to the following theorem.

Theorem 2 (Hyperbolicity). Assuming that the moment-inversion algorithm for 2-D, nine-node CHyQ-
MOM for the vector M is non-degenerate, system (40) with this closure is hyperbolic for small |%|.

Proof. The additional fluxes for the 2-D problem can be written as

M2,1 = v̄M2,0 +M0,0C1,1

(
2ū+

C3,0

C2,0

)
,

M1,2 = ūM0,2 +M0,0C1,1

(
2v̄ +

C0,3

C0,2

)
,

M1,3 = ūM0,3 + 3v̄M0,0C1,1

(
v̄ +

C0,3

C0,2

)
+M0,0C1,3,

M1,4 = ūM0,4 + 2v̄2M0,0C1,1

(
2v̄ + 3

C0,3

C0,2

)
+M0,0

(
4v̄C1,3 + C1,4

)
where, using the flux-based quadrature in (25),

C1,3 =
√
C2,0

4∑
α=1

wαϕα
(
v̄3
α + 3v̄αC2|α + C3|α

)
,

C1,4 =
√
C2,0

4∑
α=1

wαϕα
(
v̄4
α + 6v̄2

αC2|α + 4v̄αC3|α + C4|α
)
,
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and the eigenvalues ϕα are found from the eigenvalues λα of the 1-D system as shown below. These

eigenvalues have the property
∑4
α=1 wαϕ

k
α = Ck,0/C

k/2
2,0 for k = 0, 1, . . . , 5 where C0,0 := 1.

The Jacobian matrix J2D of the fluxes is block triangular:

J2D =


J 0 0 0
X1 A1 0 0
X2 B1 A2 0
X3 C B2 λ10


where J is the 5× 5 Jacobian matrix given in Theorem 1, corresponding to the 1-D system. X1 and X2 are
2× 5 matrices and X3 is a 1× 5 matrix. B1 is a 2× 2 matrix. C and B2 are 1× 2 matrices. A1 is a 2× 2
matrix given by

A1 =

[
0 1
ν ξ

]
with

(ν, ξ) =
DM2,1

D(M0,1,M1,1)
=

(
C2,0 − ū2 − ūC3,0

C2,0
, 2ū+

C3,0

C2,0

)
.

A2 is a 2× 2 matrix given by

A2 =

[
a11 a12

a21 a22

]
with

(a11, a12) =
DM1,2

D(M0,2,M0,3)
=

(
ū− C1,2

C0,2
− 3v̄

C1,1

C0,2
,
C1,1

C0,2

)
,

a21 =
∂M1,3

∂M0,2
= −3v̄

C1,2

C0,2
− 9v̄2C1,1

C0,2
+M0,0

∂C1,3

∂M0,2
,

a22 =
∂M1,3

∂M0,3
= ū+ 3v̄

C1,1

C0,2
+M0,0

∂C1,3

∂M0,3

where C1,2 = C1,1C0,3/C0,2.

Using the dimensionless variables ū† = ū/C
1/2
2,0 , v̄† = v̄/C

1/2
0,2 , % = C1,1/(C2,0C0,2)1/2, q1 = C3,0/C

3/2
2,0 ,

q2 = C0,3/C
3/2
0,2 , η1 = C4,0/C

2
2,0, and η2 = C0,4/C

2
0,2, the partial derivatives can be expressed in dimensionless

form as (
∂C1,3

∂M0,2

)†
=

4∑
α=1

wαϕα

[
3

(
%ϕα +

1

2
q?
(
C†2|α

)1/2
)(

∂C2|α

∂M0,2

)†
+
(
C†2|α

)3/2
(

∂q?

∂M0,2

)†]
,

(
∂C1,3

∂M0,3

)†
=

4∑
α=1

wαϕα

[
3

(
%ϕα +

1

2
q?
(
C†2|α

)1/2
)(

∂C2|α

∂M0,3

)†
+
(
C†2|α

)3/2
(

∂q?

∂M0,3

)†]
where C†2|α = C2|α/C0,2 = b0 + b1ϕα,(

∂C2|α

∂M0,2

)†
= 1− %

(
3v̄† + q2

)
ϕα,

(
∂C2|α

∂M0,3

)†
= %ϕα,

(
∂q?

∂M0,2

)†
= −3

[
4∑

α=1

wα

(
C†2|α

)3/2
]−1 [

v̄† − %2
(
3v̄† + q2

)
+

1

2
q?

4∑
α=1

wα

(
C†2|α

)1/2
(
∂C2|α

∂M0,2

)†]
,

and (
∂q?

∂M0,3

)†
=

[
4∑

α=1

wα

(
C†2|α

)3/2
]−1 [

1− 3%2 − 3

2
q?

4∑
α=1

wα

(
C†2|α

)1/2
(
∂C2|α

∂M0,3

)†]
.
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From Theorem 1, the matrix J is diagonalizable with five distinct eigenvalues λα = ū+
√
C2,0ϕα. Matrix

A1 is also diagonalizable with the following two eigenvalues:

λ± = ū+
√
C2,0

1

2

(
q1 ±

√
4 + q2

1

)
.

Neither of these eigenvalues is an eigenvalue of J . The eigenvalue

λ10 =
∂M1,4

∂M0,4
= ū+

√
C2,0

4∑
α=1

wαϕαC
2
2|α

∂η?

∂C0,4
= ū+

√
C2,0K2,

where

K2 =

∑4
α=1 wαϕα

(
C†2|α

)2

∑4
α=1 wα(C†2|α)2

=

∑4
α=1 wαϕα (b0 + b1ϕα)

2∑4
α=1 wα(b0 + b1ϕα)2

=
b1(2b0 + b1q1)

b20 + b21
,

is real and distinct.
It thus remains to show that the two eigenvalues of A2 are real and distinct. The two eigenvalues of A2

are

λ± = ū− 1

2

√
C2,0

[
%q2 −

(
∂C1,3

∂M0,3

)†
± %
√

∆

]
where ∆ = [(a11 + a22)2 − 4(a11a22 − a12a21)]/(%2C2,0). Thus, a sufficient condition is that ∆ > 0 where

∆ =

[
1

%

(
∂C1,3

∂M0,3

)†
+ q2

]2

+
4

%

[
3v̄†

(
∂C1,3

∂M0,3

)†
+

(
∂C1,3

∂M0,2

)†]
. (42)

It is straightforward to show that ∆ does not depend on v̄† so that it can be evaluated at v̄† = 0. Expanding
∆(%, q1, q2, η1) about % = 0 yields

∆ = 4(3 + q2
2) + 3q1q2(2 + q2

2)%+O(%2),

and thus ∆ > 12 for small |%|. This concludes the proof.

For larger |%|, the condition that C†2|α = b0 + b1ϕα > 0, where

ϕ1 =
1

2

(
q1 +

√
4η1 − 3q2

1 + 4
√

(η1 − q2
1)(η1 − q2

1 − 1)

)
> 0,

ϕ4 =
1

2

(
q1 −

√
4η1 − 3q2

1 + 4
√

(η1 − q2
1)(η1 − q2

1 − 1)

)
< 0,

leads to two functions that must be positive:

g1(%, q1, q2, η1) = 1 + %q2|ϕ1| − %2 (q1|ϕ1|+ 1) > 0,

g4(%, q1, q2, η1) = 1− %q2|ϕ4|+ %2 (q1|ϕ4| − 1) > 0.

For given values of (q1, q2, η1), these functions provide bounds on %: %min < % < %max. From (42),
∆(%, q1, q2, η1) can be found explicitly using symbolic software. For %min < % < %max it can be shown
that ∆ > 12 when η1 ≥ 1 + q2

1 . When a conditional variance C2|1 = 0 or C2|4 = 0, it is likely that ∆ > 0 for
all realizable values of |%| ≤ 1 so the that the moment system in (40) remains at least weakly hyperbolic.
The numerical examples in §6.1 support this conjecture.
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5.3. Kinetic-based flux

The moment transport system (39) has the form

∂tM + ∂x · F(M) = A

with flux vector F = (Fx,Fy)t for the 10-moment vector M. In our numerical implementation, the compo-
nents of the fluxes for moment Mi,j are computed using a kinetic-based definition:

Fx;i,j =

∫
R

(∫ ∞
0

f(t, x, v)ui+1vj du

)
dv +

∫
R

(∫ 0

−∞
f(t, x, v)ui+1vj du

)
dv, (43)

Fy;i,j =

∫
R

(∫ ∞
0

f(t, x, v)uivj+1 dv

)
du+

∫
R

(∫ 0

−∞
f(t, x, v)uivj+1 dv

)
du. (44)

Thus, for the non-degenerate case, we follow the example in (20) and use the flux-based quadrature in (25):

Fx;i,j = M0,0

4∑
α=1

wα
[
max(0, λα)i+1 + min(0, λα)i+1

]
Θj
u,α (45)

where the u-conditioned jth-order moment of v is defined by

Θj
u,α :=

3∑
β=1

ραβ (v̄ + v̄α + vαβ)
j

=

4∑
β=1

w?β

(
v̄ + v̄α + C

1/2
2|αϕ

?
β

)j
(46)

with weights w?β and eigenvalues ϕ?β found from (0, 1, q?, η∗) as in (21). This yields

Θ0
u,α = 1,

Θ1
u,α = v̄ + v̄α,

Θ2
u,α = (v̄ + v̄α)2 + C2|α,

Θ3
u,α = (v̄ + v̄α)3 + 3(v̄ + v̄α)C2|α + q?C

3/2
2|α ,

Θ4
u,α = (v̄ + v̄α)4 + 6(v̄ + v̄α)2C2|α + 4(v̄ + v̄α)q?C

3/2
2|α + η?C2

2|α

(47)

where v̄α, µ2
α, q?, and η? are found with the flux-based quadrature and a limiter on b1 to ensure b0+b1ϕα ≥ 0

for α = 1, 4. The eigenvalues λα and weights wα in (45) are the same as in (20) (i.e., they are found using
q1 and η1).

Likewise, for the flux in the y direction,

Fy;i,j = M0,0

4∑
α=1

wα
[
max(0, λα)i+1 + min(0, λα)i+1

]
Θj
v,α (48)

where the v-conditioned jth-order moments of u is defined by

Θj
v,α :=

3∑
β=1

ραβ (ū+ ūα + uαβ)
j

=

4∑
β=1

w?β

(
ū+ ūα + C

1/2
2|αϕ

?
β

)j
. (49)

The eigenvalues λα and weights wα in (48) are defined as in (20), but found using q2 and η2. In other words,
the parameters in (45) and (46) are found by conditioning on u, while those in (48) and (49) by conditioning
on v.
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Figure 1: Solution to 1-D Riemann problem at t = 0.1. Five transported moments (M0,...,4) and reconstructed moment (M5).

6. Numerical examples

As example applications, we consider a Riemann problem with 1-D velocity phase space, crossing jets
in 2-D, and a Taylor–Green vortex problem with a 2-D velocity phase space. For each case, we solve the
moment transport equations in (17) and (39), respectively.

6.1. 1-D Riemann problem

The initial conditions are defined on the real line with a step in the mean velocity at x = 0:

ū =
M1

M0
=

{
1 if x < 0,

−1 otherwise.

For all x, the initial density is unity and the VDF is Maxwellian with energy C2 = 1/3. The velocity
distribution is assumed initially to be in equilibrium (C3 = 0, C4 = 3C2

2 ). However, the discontinuous nature
of the mean particle velocity quickly leads to particle trajectory crossing and a strongly non-equilibrium
VDF.

In order to solve the moment equations numerically, the 1-D computational domain −1 < x < 1 is
discretized into 2002 finite-volume cells. The spatial fluxes are treated using the first-order kinetic-based
approach. The time step is chosen based on the largest magnitude of the abscissas uα used to define the
spatial fluxes with a CFL number of 0.5. Note that the maximum CFL number is determined from the
largest eigenvalue of the spatial flux (e.g., (18) for three-node HyQMOM).

Simulation results for the 1-D Riemann problem are presented in Figs. 1–3 at time t = 0.1. We observe
from Fig. 3 that the equilibrium condition is still present on the left and right sides of the computational
domain. Note that unlike in a pure PTC problem where the velocity abscissas remain at their initial values,
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Figure 2: Solution to 1-D Riemann problem at t = 0.1. Top: quadrature weights M0ρα. Bottom: abscissas uα = ū+ uα.

-1 -0.5 0 0.5 1

x

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5 1

x

-1.5

-1

-0.5

0

0.5

1

1.5

U

-1 -0.5 0 0.5 1

x

0

0.5

1

1.5

2

C
2

-1 -0.5 0 0.5 1

x

-2

-1

0

1

2

C
3

-1 -0.5 0 0.5 1

x

0

1

2

3

4

5

6

7

C
4

-1 -0.5 0 0.5 1

x

-15

-10

-5

0

5

10

15

C
5

Figure 3: Solution to 1-D Riemann problem at t = 0.1. Top left: density M0. Top center: mean velocity ū. Top right: C2.
Bottom left: C3. Bottom center: C4. Bottom right: C5.
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Figure 4: Solution to 1-D Riemann problem at t = 0.1. Flux-based quadrature in (20). Left: eigenvalues λα. Right: weights
wα. λ0 = ū and w0 = 0 are not shown.

in Fig. 2 the abscissas have their largest magnitudes just behind the “shock” in density at the edge of the
equilibrium domain. This behavior is a direct result of the definition of the spatial fluxes in terms of the
underlying three-node HyQMOM distribution. Indeed, the outer tails of the Gaussian distribution have
higher velocity than the value at the peak density and thus penetrate faster into the equilibrium domain,
resulting in a higher local flux velocity. The strong deviations from equilibrium are also clearly observed in
the central moments in Fig. 3.

Except at the edges of the equilibrium domain, we see from Fig. 1 that the transported moments are
smoothly varying functions of x. More importantly, the singularities appearing in the solution do not
belong to the class of δ-shocks but to the less singular class of shocks encountered with hyperbolic systems
of conservation laws, thus revealing a potentially well-behaved system. Moreover, due to the eigenvalue-
based definition of the spatial fluxes shown in Fig. 4, the moments are always realizable, and the moment-
inversion algorithm always computes a well-defined quadrature from the updated moments. Overall, the
three-node HyQMOM reconstruction of the velocity distribution yields a robust numerical algorithm using
a minimum number of moments. In comparison to the high-order delta function reconstruction described in
[17], the three-node HyQMOM provides a higher fidelity flux representation for a fixed number of transported
moments. Moreover, because the moments of the HyQMOM distribution can be computed to any desired
order, the flux representation described in §3.3 has the potential to be systematically improved. This
advantage becomes even more significant for 2-D phase spaces where the number of transported moments
needed for the delta-function reconstruction increases rapidly with the order of the moments [17].

6.2. 2-D crossing jets with compressive gas field

As in [18], CHyQMOM is applied here to simulate the crossings of two jets of particles in a compressible
carrier phase by solving the ten-moment system in (39). The gaseous flow field is the following:

ug(x, y) = ug,0, vg(x, y) = ε(y − 1) (50)
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Figure 5: Number density in two-jet crossing with St = 20Stc at steady state for CHyQMOM. White dashed lines represent
the trajectories delineating the region where the particles lie in the analytical solution [18].
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Figure 6: Probability density function for the vertical velocity at the three first crossing locations (from left to right) in two-jet
crossing with St = 20Stc at steady state for CHyQMOM (continuous black lines) and analytical solution (dashed lines).

and the acceleration terms are

Ax =
1

τp
(u− ug), Ay =

1

τp
(v − vg)

where ug,0 = 0.2 m s−1 is the axial gas velocity and ε = 1 s−1 is the rate of strain in the vertical direction.
The dynamics of particles in this flow field are characterized by the Stokes number St = ετp, whose critical
value Stc = 1/4 delineates two regimes: for St < Stc, the particles are exponentially relaxing towards the
centerline y = 1 m, while for St > Stc the particles will in addition oscillate around the centerline.

In Fig. 5, particles are injected with zero vertical velocity and the same axial velocity as the gas phase,
through two slots at x = 0 and y ∈ [0.4, 0.6] and y ∈ [1.4, 1.6], and with a Stokes number St = 20Stc. Because
of their high Stokes number and the symmetry of the injection around the centerline, the two jets cross each
other at the centerline. It can be seen that CHyQMOM properly handles the particle trajectories as well as
the crossing events. To further validate the ability of CHyQMOM to reproduce crossing events, the PDF of
the vertical velocity component is presented in Fig. 6 at the three crossing locations. For CHyQMOM, these
velocities correspond to the flux-based quadrature, i.e., to λα. It is worth mentioning that the analytical
solution of the proposed configuration does not lead to a bidisperse velocity but to a double-window solution.
Here we observe that the predicted velocities are close to the limits of the analytical solution.
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Figure 7: Number density in Taylor–Green vortices with St = 5Stc at time t = 2 for AG (left), CHyQMOM (center) and
Lagrangian (right) simulations.

6.3. 2-D Taylor–Green vortices

In this section, CHyQMOM is applied to simulate a 2-D Taylor–Green flow with Stokes drag [18] by
solving the ten-moment system in (39). The gas-phase velocity components are

ug(x, y) = sin(2πx) cos(2πy), vg(x, y) = − cos(2πx) sin(2πy);

and the acceleration terms are

Ax =
1

St
(u− ug), Ay =

1

St
(v − vg).

With these definitions, the moment acceleration terms from (38) are closed. The moment system is solved
on a unit-square domain with grid resolutions 2562, 5122 and 10242 to illustrate grid convergence. Unless
stated otherwise, all results are shown for the 5122 resolution. For comparison, a six-moment system (i.e.,
up to second order) with the anisotropic Gaussian (AG) closure [18] and a Lagrangian particle method are
solved on the same grids. Details concerning the latter can be found in [18] where similar comparisons
are made with a four-moment isotropic Gaussian (IG) closure. At time t = 0, the particles are uniformly
distributed in the computational domain with zero velocity.

For 2-D Taylor–Green flow, there exists a critical Stokes number Stc = 1
8π [18], below which the particle

velocity variance is null (i.e., the central moments are null) and above which particle trajectory crossings
(PTC) occur, making the particle velocity distribution multi-modal and the central moments non-null.
When St = Stc, all particles accumulate at the edges of the vortices (see Fig. 9 in [18]). By its nature, the
Lagrangian simulation can capture all PTC events and thus yields the highest fidelity solution. In contrast,
the AG closure does not allow for PTC (which requires knowledge of the third-order moments), while the
CHyQMOM closure can capture (locally) one PTC event. In any case, when the moment closures are unable
to reproduce the multi-modal velocity distribution, the number density field M0,0 is ‘smoothed out’ relative
to the Lagrangian field.

In Figs. 7–9, number density fields at t = 2 are shown for the three methods at three different Stokes
numbers: 5Stc, 10Stc and 20Stc, respectively. In comparison to AG, the CHyQMOM result in Fig. 7 captures
the primary PTC seen in the Lagrangian result for St = 5Stc. However, as expected, near the center of
the domain where multiple PTC occur, the moment closures cannot capture the fine details present in the
Lagrangian simulation. As the Stokes number increases, more and more PTC occur. For the largest Stokes
number shown in Fig. 9, CHyQMOM captures more fine details as compared to AG, but both moment
closures are significantly ‘smoother’ than the Lagrangian field.

As done in [18], the time-dependent behaviors of the three simulation methods are compared using the
following statistics:

gp =
{M2

0,0}
{M0,0}2

, δθ̃p =
{M0,0(C2,0 + C0,2)}

2{M0,0}
, Ẽp =

{M2,0 +M0,2}
2{M0,0}
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Figure 8: Number density in Taylor–Green vortices with St = 10Stc at time t = 2 for AG (left), CHyQMOM (center) and
Lagrangian (right) simulations.

Figure 9: Number density in Taylor–Green vortices with St = 20Stc at time t = 2 for AG (left), CHyQMOM (center) and
Lagrangian (right) simulations.

Figure 10: Time evolution of segregation, internal energy and total energy in Taylor–Green vortices with St = 5Stc for AG
(blue dashed line), CHyQMOM (red dot-dashed line) and Lagrangian (black line) simulations.
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Figure 11: Time evolution of segregation, internal energy and total energy in Taylor–Green vortices with St = 10Stc for AG
(blue dashed line), CHyQMOM (red dot-dashed line) and Lagrangian (black line) simulations.

Figure 12: Time evolution of segregation, internal energy and total energy in Taylor–Green vortices with St = 20Stc for AG
(blue dashed line), CHyQMOM (red dot-dashed line) and Lagrangian (black line) simulations.
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Figure 13: Time evolution of segregation, internal energy and total energy in Taylor–Green vortices with St = 20Stc for
Lagrangian (black line) and CHyQMOM with 2562 (blue), 5122 (red) and 10242(green) mesh cells.

where {·} denotes the spatial average over all grid cells. The segregation index gp measures the degree of

non-uniformity of the number density field. The internal energy δθ̃p is a measure of the level of velocity
fluctuations (i.e., the granular temperature or spatially uncorrelated kinetic energy [19, 20, 21]), while the
total energy Ẽp measure the total kinetic energy transferred from the fluid to the particle phase.

In Figs. 10–12, these statistics are plotted for each simulation method for the three Stokes numbers,
respectively. Qualitatively, the statistics for the AG and CHyQMOM closures are very similar (especially
when compared to IG statistics in [18]). This would imply that adding more moments by increasing N in
CHyQMOM will lead to only a small improvement in the energy statistics as compared to the Lagrangian
simulations. Overall, CHyQMOM does a better job than AG in capturing the time-dependence of the
statistics, particularly for t > 2. However, the most obvious advantage of CHyQMOM with N = 3 over AG
is its ability to capture PTC, and thus to provide a higher fidelity representation of the number density field
in particle-laden flows with strong vorticity.

In Fig. 13, the dependence of the CHyQMOM statistics on the computational grid is shown for St = 20Stc.
In general, for t < 2.5 the dependence on the grid is small. However, for larger times the segregation is
higher for the finer grid. In contrast, the energy statistics are only weakly dependent on the grid resolution.
We should emphasize that unlike with CQMOM [4], which is weakly hyperbolic [6], the hyperbolic nature
of CHyQMOM should allow for grid-independent solutions on sufficiently fine grids with minimal additional
computational cost. Indeed, with the modified CQMOM used in CHyQMOM, less moments are required
with CHyQMOM as compared to the original 2-D CQMOM formulation in [4].

7. Conclusions

The conditional hyperbolic quadrature method of moments and the related moment-inversion algorithms
introduced in this work appear to be a very promising approach for the direct-numerical simulation of the
kinetic equation describing particle-laden turbulent flows [22, 23]. The proposed approach combines stability
and a lower level of singularity compared to existing quadrature-based moment methods, see [6], and is able
to capture both particle trajectory crossing (PTC) caused by the free-transport term and the effects of
vortices. It is noteworthy that CHyQMOM naturally degenerates toward the correct velocity distribution
with the associated spatial fluxes in both the PTC and dispersion limits. Moreover, by relying on the recent
advances in CQMOM [4], the CHyQMOM naturally adapts to the required number of nodes in even highly
degenerate cases (e.g., in the absence of particles). As such, the Eulerian moment methods described in this
work should offer an attractive alternative to Lagrangian particle tracking methods for simulating particle-
laden flows. Here, we have focused on HyQMOM with N = 2 and 3 nodes, but future work is warranted
to determine the constraint on C2N−1 in HyQMOM needed to make the 1-D moment system hyperbolic for
N ≥ 4.
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Appendix A. Hankel matrices, moment space, and moment constraints

Let M be the vector of moments of a VDF f(u) defined for u ∈ R, and let Cj be the corresponding
central moment of order j. The Hankel matrix Hn [13, 24], defined by

Hn =


C0 C1 . . . Cn
C1 C2 . . . Cn+1

...
...

. . .
...

Cn Cn+1 . . . C2n

 , (A.1)

is non-negative if |Hn| ≥ 0. The moments M up to order 2n are realizable if |Hm| is non-negative for all
m ∈ {0, 1, . . . , n}. The moments live in the interior of moment space if |Hm| > 0 for all m ∈ {0, 1, . . . , n},
and reside on the boundary if |Hm| = 0 for some m ∈ {0, 1, . . . , n}. Note that if |Hj | = 0 then |Hm| = 0 for
m > j. In the main text, we make use of the conditions |H1| = C2 ≥ 0 and |H2| = C2C4 − C3

2 − C2
3 ≥ 0 as

the realizability conditions for the even-order moments for 2-node and 3-node HyQMOM, respectively. For
infinite domains, the odd-order moments can take any value in R.

The method for fixing C2N−1 in HyQMOM is related to the moment fluxes. In order for the Jacobian
matrix of the 1-D moment fluxes for the moment system M = (M0, . . . ,M2N−2)t to have an eigenvalue at
ū, the following condition must hold for N ≥ 3:

∂M2N−1

∂M0

∣∣∣∣
M1=0

= 0 =⇒ 2N = 3 +

2N−4∑
n=1

n
∂ lnS2N−1

∂ lnSn+2
(A.2)

where Sn = Cn/C
n/2
2 (e.g., S3 = q and S4 = η) and S2N−1 depends only on (S3, . . . , S2N−2). We conjecture

that (A.2) is satisfied when |H̄∗N−1| = 0 where

H̄∗N−1 :=


0 1 S3 . . . SN
1 S3 S4 . . . SN+1

S3 S4 S5 . . . SN+2

...
...

...
. . .

...
SN SN+1 SN+2 . . . S2N−1

 . (A.3)

For N = 3, |H̄∗2| = 0 yields S5 = S3(2S4 − S2
3). For N = 4, |H̄∗3| = 0 yields

S7 =
2S2

3S4S6 + S2
3S

2
5 − 3S3S

2
4S5 − 2S3S5S6 + S4

4 − 2S2
4S6 + 2S4S

2
5 + S2

6

S5 − 2S4S3 + S3
3

. (A.4)

Both of these satisfy (A.2). Note, however, the S7 is infinite for S5 = S3(2S4 − S2
3), which is a realizable

moment.
Using symbolic software, the seven eigenvalues of the moment system Jacobian found using (A.4) can

be computed explicitly. Numerical tests reveal that the eigenvalues are real and distinct when the Hankel
matrix H3 is positive. The eigenvalues are finite if |H̄∗2| 6= 0, otherwise two eigenvalues are infinite and the
remaining five correspond to those in the case N = 2. When the Hankel matrix H3 has zero determinant,
but H2 is positive, two of the seven eigenvalues have multiplicity 2. Likewise when |H2| = 0, but H1 is
positive, three of the seven eigenvalues have multiplicity 2. At present, it is unknown whether (A.4) is the
unique choice, or, if not, whether a choice exists with finite eigenvalues for all realizable moment sets.
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For N = 5, |H̄∗4| = 0 yields a closure for S9 that satisfies (A.2) and is finite for symmetric distributions.
However, numerical tests show that some eigenvalues are complex for particular realizable moment sets. A
general method is thus needed to determine C2N−1 for N ≥ 4. As the N -node HyQMOM only requires that
the moment set be realizable, and odd-order moments are not constrained, any method to choose C2N−1

that (i) is valid for all realizable moment sets up to C2N and (ii) has 2N −1 real eigenvalues for the moment
system Jacobian could be used. An interesting observation from the cases with N = 2 and 3 is that the
flux eigenvalues ϕα correspond to the Gauss–Hermite quadrature abscissas with 3 and 4 nodes, respectively,
when the moments are Gaussian (i.e., S4 = 3, S3 = S5 = 0). Continuing this pattern to N = 4 would
require C7 to be chosen such that the flux eigenvalues correspond to a 5-node Gauss–Hermite quadrature
when S6 = 15 and S7 = 0. As there are seven ϕα for this case, the eigenvalue ϕ0 = 0 would have a non-zero
weight, and two others would have multiplicity two (e.g., ϕ1 = 2.85697, ϕ2 = ϕ3 = 1.35562). The choice in
(A.4) yields the 3-node, and not the 5-node, Gauss–Hermite quadrature with Gaussian moments.

Appendix B. 2-D, nine-node CHyQMOM with twelve moments

In this appendix, we briefly describe the extension of (24) using the symmetrical 12-moment set

M =


M0,0 M0,1 M0,2 M0,3 M0,4

M1,0 M1,1 M1,2

M2,0 M2,1

M3,0

M4,0

 (B.1)

for the non-degenerate case. This moment set is of interest because all third-order moments (which control
the energy flux) are included. At the same time, the degenerate cases with exactly one or two velocity
abscissas needed to handle particle-trajectory crossing at arbitrary angles are allowed.

For the moments in (B.1), the correlation parameters v̄α = a0 + a1uα + a2u
2
α in (24) are defined to have

the following properties:

3∑
α=1

ραv̄α = C0,1 = 0,

3∑
α=1

ραuαv̄α = C1,1,

3∑
α=1

ραu
2
αv̄α = C2,1, (B.2)

which yields a linear system for the coefficients (a0, a1, a2)t: 1 0 C2,0

0 C2,0 C3,0

C2,0 C3,0 C4,0

a0

a1

a2

 =

 0
C1,1

C2,1

 . (B.3)

This system has a unique solution if the central moments Ci,0 are in the interior of moment space (i.e., the
system is non-degenerate: C2,0 > 0 and C2,0C4,0 > C3

2,0 + C2
3,0). In the degenerate case C2,0 = 0, v̄α = 0;

and when C2,0 > 0 but C2,0C4,0 = C3
2,0 +C2

3,0, v̄α =
C1,1

C2,0
uα. Note that these two cases correspond to ρ2 = 1

and ρ2 = 0, respectively.
The additional parameters {ρα 1, ρα 2, ρα 3, vα 1, vα 2, } are determined from the conditional moments

{C0|α, C1|α, C2|α, C3|α, C4|α} using the three-node HyQMOM in §2.3. As shown in the main text, C0|α = 1
and C1|α = 0. Thus we compute C2|α = b0 + b1uα from (29) using {C0,2, C1,2}. This yields

3∑
α=1

ραC2|α = b0 = C0,2 −
3∑

α=1

ραv̄
2
α,

3∑
α=1

ραuαC2|α = b1C2,0 = C1,2 −
3∑

α=1

ραuαv̄
2
α.

(B.4)

24



If one of the conditional variances is null, then b1 is limited such that all conditional variances are non-
negative

The conditional moments C3|α and C4|α are found from {C0,3, C0,4} by assuming that they are depend

on α through C2|α: C3|α = q?C
3/2
2|α and C4|α = η?C2

2|α. This yields

q?
3∑

α=1

ραC
3/2
2|α = C0,3 −

3∑
α=1

ραv̄
3
α − 3

3∑
α=1

ραv̄αC2|α,

η?
3∑

α=1

ραC
2
2|α = C0,4 −

3∑
α=1

ραv̄
4
α − 6

3∑
α=1

ραv̄
2
αC2|α − 4q?

3∑
α=1

ραv̄αC
3/2
2|α ,

(B.5)

which are solved for q? and η?. The realizability of C4|α requires that η? ≥ 1 + (q?)2. If this condition
is not met, then q? and η? are projected to the realizability curve η? = 1 + (q?)2 in the direction of the
Gaussian moments (i.e., q? = 0 and η? = 3). Three-node HyQMOM can then be applied for each α to find
the remaining parameters.
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