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Abstract

The conditional quadrature method of moments (CQMOM) was introduced by Yuan and Fox [J. Comput.
Phys. 230 (22), 8216–8246 (2011)] to reconstruct a velocity distribution function (VDF) from a finite set of
its integer moments. The reconstructed VDF takes the form of a sum of weighted Dirac delta functions in
velocity phase space, and provides a closure for the spatial flux term in the corresponding kinetic equation.
The CQMOM closure for the flux leads to a weakly hyperbolic system of moment equations. In subsequent
work [Chalons et al., Proceed. CTR Sum. Prog. 2010, 347–358 (2010)], the Dirac delta functions were
replaced by Gaussian distributions, which make the moment system hyperbolic but at the added cost of
dealing with continuous distributions. Here, a hyperbolic version of CQMOM is proposed that uses weighted
Dirac delta functions. While the moment set employed for multi-Gaussian and conditional HyQMOM
(CHyQMOM) are equivalent, the latter is able to access all of moment space whereas the former cannot
(e.g. arbitrary values of the fourth-order velocity moment in 1-D phase space with two nodes). By making
use of the properties of CHyQMOM in 2-D phase space, it is possible to control a symmetrical subset of the
optimal moments [Fox, Indust. & Engng. Chem. Res. 48 (21), 9686–9696 (2009)]. Furthermore, the moment
sets for 2-D problems are smaller for CHyQMOM than in the original CQMOM thanks to a judicious choice
of the velocity abscissas in phase space.

Keywords: kinetic equation, quadrature-based moment methods, conditional quadrature method of
moments, hyperbolic moment closures

1. Introduction

The physics of inertial particles can be described by a velocity density function (VDF) satisfying a
kinetic equation. Solving such a kinetic equation relies on either a sample of discrete numerical parcels
through a Lagrangian Monte-Carlo method or on a moment approach resulting in a Eulerian system of
conservation laws on velocity moments. For the latter, the main difficulty for particles with high Knudsen
numbers where the VDF can be very far from equilibrium, is the closure of the free-transport term in the
kinetic equation. One way to proceed is to use quadrature-based moment methods (QBMM) where the
higher-order moments required for closure are evaluated from the lower-order transported moments using
multi-dimensional quadrature [1, 2, 3]. In our previous work, we have developed the conditional quadrature
method of moments (CQMOM) [4], leading to a well-behaved kinetic numerical scheme [5]. CQMOM has
been shown to capture particle trajectory crossing (PTC) where the distribution in the exact kinetic equation
remains at all times in the form of a sum of Dirac delta functions [4, 6, 7]. The moment system found with
the CQMOM flux closure is weakly hyperbolic, leading to delta shocks when multiple PTC occur at the
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same location. To achieve hyperbolicity, a multi-Gaussian QBMM closure was proposed [8, 9]. However, this
closure cannot access all of moment space [10, 11, 12] due to the form of Gaussian distribution (e.g. the 2-
node closure cannot represent fourth-order velocity moments larger than a Gaussian distribution). Moreover,
working with a continuous VDF reconstruction loses the discrete velocity representation of CQMOM [13].

The purpose of this work is to introduce a hyperbolic QMOM reconstruction of the VDF (HyQMOM in
one-dimensional (1-D) and CHyQMOM is two-dimensional (2-D) phase space) that circumvents the known
shortcomings of the multi-Gaussian closure while retaining a hyperbolic moment system. In 1-D phase
space, the moment set controlled by HyQMOM is exactly the same as with the multi-Gaussian closure,
namely integer moments up to order 2N where N is the number of nodes. Here we analyze the HyQMOM
for N = 2 and 3, extend it to 2-D phase space using a modified version of CQMOM, and apply it to the
solution of a kinetic equation. The remainder of the work is organized as follows. In §2 the HyQMOM is
described. In §3, we provide an in-depth description of the application to 1-D kinetic equations and the
mathematical properties of 2- and 3-node HyQMOM. In §4, we extend HyQMOM to a 2-D phase space
using CHyQMOM. In §5 we describe the application of CHyQMOM to 2-D kinetic equations. Example
applications are provided in §6. Finally, conclusions are drawn in §7. Mathematical details on moment
methods and extension of CHyQMOM to higher-order moments are provided in the appendices.

2. HyQMOM

First, the moments and the central moments are defined, and the realizability conditions for the moments
are given. Then, HyQMOM is defined and the particular cases with three and five moments are described
in detail.

2.1. Moments, central moments, and realizability

Consider a VDF f(u) defined for u ∈ R. Let us assume that the moments of f defined by

Mk :=

∫
R
f(u)uk du for k ∈ {0, 1, . . . , p} (1)

are finite. Let us also denote by Mp = (M0,M1, . . . ,Mp)
t the corresponding moment vector.

In what follows, the use of central moments will allow to simplify the computations. For M0 > 0, they
are defined by

Ck :=
1

M0

∫
R
f(u)(u− ū)k dv for k ∈ {0, 1, . . . , p} (2)

where ū = M1/M0. By definition, C0 = 1 and C1 = 0. The next central moment C2 ≥ 0 is the velocity
variance. For any k ≥ 2, the central moment Ck depends uniquely on the moment set Mk through the
relation

Ck =

k∑
i=0

(
k

i

)(
−M1

M0

)k−i
Mi

M0
. (3)

And inversely, for k ≥ 2, Mk depends uniquely on the vector Ck = (M0, ū, C2, . . . , Ck)t through the relation

Mk = M0

[
k∑
i=2

(
k

i

)
ūk−iCi + ūk

]
. (4)

For a positive measure dµ(u) = f(u)du, the moment vector M2N−2 is said to be realizable (M2N−2 is
in the moment space). Moreover, if the support of dµ(u) contains more than N points, then M2N−2 is said
to be strictly realizable (M2N−2 is in the interior of the moment space). The realizability of a finite set of
moments can be checked using Hankel matrix determinants as described in Appendix A. The corresponding
constraints can be more easily written on the central moments. In particular, up to fourth order the central
moments are strictly realizable if and only if C2 > 0 and C4 > C2

2 +C2
3/C2. Hereinafter we will assume that

the moment set under consideration is realizable.
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2.2. Definition of HyQMOM

From a moment vector M2N−2, with N ≥ 2, HyQMOM provides a discrete approximation fa defined
such that

Mk = Ma
k :=

∫
R
fa(u)uk du for k ∈ {0, 1, . . . , 2N − 1}, (5)

where the additional moment M2N−1 is a function of M2N−2. It can be equivalently written with the
corresponding central moments, and then using the vector C2N−2 = (M0, ū, C2, . . . , C2N−2)t. Thus the
discrete approximation fa is defined such that

Ck = Cak :=
1

M0

∫
R
fa(u)(u− ū)k du for k ∈ {0, 1, . . . ,max(1, 2N − 2)}, (6)

with C0 = 1 and C1 = 0 and the additional central moment C2N−1 is a function of (C2, C3, . . . , C2N−2).
The discrete approximation fa has the form

fa(u) =

N∑
α=1

wαδvα(u) (7)

where δvα(u) is the Dirac delta function centered at vα, and the N non-negative weights wα and the N
velocity abscissas vα are determined from the first 2N − 1 integer moments of fa by (5). Using the central
moments and denoting wα = M0ρα and vα = uα + ū, it is equivalent to

Ck =

N∑
α=1

ραu
k
α for k ∈ {0, 1, . . . , 2N − 1}. (8)

In comparison to QMOM, HyQMOM fixes the central moment C2N−1, instead of computing it from moments
up to M2N−1, such that the 1-D moment system in §3.1 is hyperbolic. The algorithm for computing fa from
the moment set {C0, . . . , C2N−1} using (8) is exactly the same as with QMOM [4, 14]. As shown below, for
N = 2 and 3 the weights ρα and velocity abscissas uα can be found analytically. Note that due to the form
of (7), we effectively constraint the even-order moment C2N . (See Appendix A for details.)

The odd-order central moments have no such constraints. We therefore choose C2N−1 such that two
conditions hold: (1) the moment system found from the 1-D kinetic equation is hyperbolic (i.e. the 2N − 1
eigenvalues λn are real and distinct) and (2) one eigenvalue corresponds to the mean velocity ū. In this
work, we focus on the moment systems with N ∈ {2, 3}. The open problem of choosing C2N−1 for 4 ≤ N
is briefly discussed in Appendix A. Finally, it is important to note that the choice of C2N−1 does not rely
on reconstructing the VDF (i.e., it does not use any properties of Gaussian quadrature). In this sense, it is
truly a nonlinear moment closure for C2N−1 given {C2, C3, ..., C2N−2}.

2.3. Two-node HyQMOM

The function fa has exact moments Ma
i of orders i = 0, 1, 2 given by (8) with N = 2. The four unknowns

ρ1, ρ2, u1, u2 are found by solving the nonlinear system Ci = Cai , i = 0, . . . , 3:

1 = ρ1 + ρ2,

0 = ρ1u1 + ρ2u2,

C2 = ρ1u
2
1 + ρ2u

2
2,

C3 = ρ1u
3
1 + ρ2u

3
2,

(9)

with the closure C3 = 0. Note that if 0 < C2, then the abscissas can be rescaled by
√
C2:

1 = ρ1 + ρ2,

0 = ρ1u
′
1 + ρ2u

′
2,

1 = ρ1(u′1)2 + ρ2(u′2)2,

0 = ρ1(u′1)3 + ρ2(u′2)3,

(10)
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where u′ = u/
√
C2. Thus, (9) has no free parameters. It remains to prove that this system is well posed in

the following proposition.

Proposition 1 (2-node HyQMOM). For moment set M = (M0,M1,M2)t such that M0 > 0, define the
central moment

C2 =
M0M2 −M2

1

M2
0

and set C3 = 0. System (9) has a unique solution for any M in the interior Ω of the moment space, which
is given by

Ω = {M, M0 > 0 and C2 > 0} .

Setting U = (w1, w2, w1v1, w2v2)t, where wα = M0ρα and vα = uα + ū, the function U = U(M) is a
bijection from Ω to ΩU = {U, w1 = w2 > 0 and w1v1 6= w2v2}.

Proof. In the case C2 > 0, using the second equation, the last two equations in (10) yield

ρ1u
′
1(u′1 − u′2) = 1,

u′1 + u′2 = 0.
(11)

Using the first equation in (10), these equations then yield

ρ1 = ρ2 =
1

2
,

u′1 = −u′2 = 1.
(12)

Moreover, this leads to w1 = w2 = M0

2 > 0 and v1 = ū+
√
C2 and v2 = ū−

√
C2, in such a way that v1 6= v2.

This concludes the proof.
If M0 = 0, then M is realizable only if M1 = M2 = 0. When C2 = 0, 2-node HyQMOM reduces to

1-node QMOM.

2.4. Three-node HyQMOM

The function fa has exact central moments Cai of orders i = 0, ..., 4 given by (8) with N = 3. The six
unknowns ρ1, ρ2, ρ3, u1, u2, u3 are found by solving the nonlinear system

1 = ρ1 + ρ2 + ρ3,

0 = ρ1u1 + ρ2u2 + ρ3u3,

C2 = ρ1u
2
1 + ρ2u

2
2 + ρ3u

2
3,

C3 = ρ1u
3
1 + ρ2u

3
2 + ρ3u

3
3,

C4 = ρ1u
4
1 + ρ2u

4
2 + ρ3u

4
3,

C5 = ρ1u
5
1 + ρ2u

5
2 + ρ3u

5
3,

(13)

with the closure C5 = C3

C2
2

(
2C2C4 − C2

3

)
so that u2 = 0. Note again that the abscissas can be rescaled by

√
C2 and thus (13) depends only on the two dimensionless moments q := C3/C

3/2
2 and η := C4/C

2
2 . It

remains to prove that this system is well posed in the following proposition.

Proposition 2 (3-node HyQMOM). For moment set M = (M0,M1,M2,M3,M4)t such that M0 > 0, define
the central moments

C2 =
M0M2 −M2

1

M2
0

, C3 =
M2

0M3 − 3M0M1M2 + 2M3
1

M3
0

,
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C4 =
M3

0M4 − 4M2
0M1M3 + 6M0M

2
1M2 − 3M4

1

M4
0

and set C5 = C3

C2
2

(
2C2C4 − C2

3

)
. System (13) has a unique solution for any M in the space Ω defined by

Ω =

{
M, M0 > 0, C2 > 0 and C4 ≥ C2

2 +
C2

3

C2

}
.

Setting U = (w1, w2, w3, w1v1, w2v2, w3v3)t, where wα = M0ρα and vα = uα + ū, the function U = U(M)

is a bijection from Ω to ΩU =

{
U, w1 > 0, w2 ≥ 0, w3 > 0 and

w2v2

w2
=
w1v1 + w3v3

w1 + w3

}
.

Proof. Solving (13) with u2 = 0 is equivalent to solving the following nonlinear system in (ρ∗1, ρ2, ρ
∗
3, u1, u3):

ρ2 = 1− ρ∗1/u1 − ρ∗3/u3,

ρ∗1 + ρ∗3 = 0,

ρ∗1u1 + ρ∗3u3 = C2,

ρ∗1u
2
1 + ρ∗3u

2
3 = C3,

ρ∗1u
3
1 + ρ∗3u

3
3 = C4,

C5 = ρ∗1u
4
1 + ρ∗3u

4
3.

(14)

In the case C2 > 0, the last five equations yield

ρ∗3 = −ρ∗1,
ρ∗1(u1 − u3) = C2,

u1 + u3 = C3/C2 = C
1/2
2 q,

u2
1 + u1u3 + u2

3 = C4/C2 = C2η,

C5 = C3

(
u2

1 + u2
3

)
.

(15)

The last three equations then yield

u1 = C
1/2
2

1

2

(
q −

√
4η − 3q2

)
,

u3 = C
1/2
2

1

2

(
q +

√
4η − 3q2

)
,

(16)

and
C5 = C

5/2
2 q

(
2η − q2

)
, (17)

which give real-valued abscissas with u1 < 0 and u3 > 0 when 4η ≥ 3q2. The corresponding weights are

ρ1 =
−C1/2

2

u1

√
4η − 3q2

, ρ2 = 1 +
C2

u1u3
, ρ3 =

C
1/2
2

u3

√
4η − 3q2

. (18)

Using only the moments, the latter can be written as

ρ1 =
1

2(η − q2)

(
1 +

q√
4η − 3q2

)
, ρ2 = 1− 1

η − q2
, ρ3 =

1

2(η − q2)

(
1− q√

4η − 3q2

)
. (19)

The weights are non-negative if η ≥ 1 + q2, which is the realizability condition for M. Moreover, with this
condition, the abscissas found from (16) are always real-valued. Finally, ρ1u1 + ρ3u3 = 0 is equivalent to

ū =
w1v1 + w3v3

w1 + w3
. This concludes the proof.
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If M0 = 0, then M is realizable only if M1 = M2 = M3 = M4 = 0. If C2 = 0, then M is realizable only if
C3 = C4 = 0, in which case ρ1 = ρ3 = 0. When C2C4 = C3

2 +C2
3 , the weight ρ2 = 0 and, hence, the 3-node

HyQMOM reduces to 2-node QMOM at the boundary of moment space. Finally, let us remark that for the
3-node HyQMOM, thanks to (4), the fifth-order moment is given in terms of the central moments by

M5 = M0

[
C3

C2
2

(
2C2C4 − C2

3

)
+ 5ūC4 + 10ū2C3 + 10ū3C2 + ū5

]
. (20)

3. Application of HyQMOM to 1-D kinetic equations

We first introduce HyQMOM for the VDF f(t, x, u) in 1-D phase/real space for the kinetic equation:

∂tf + u∂xf + ∂u(Af) = 0, t > 0, x ∈ R, u ∈ R, (21)

with initial condition f(0, x, u) = f0(x, u). The acceleration A is a real-valued function of u. The exact
solution for free transport (when A = 0) is given by f(t, x, u) = f(0, x−ut, u) = f0(x−ut, u). In this work,
we seek an approximation of f(t, x, u) in the form of HyQMOM with weights ρα(t, x) > 0, velocity abscissas
uα(t, x) for α ∈ (1, . . . , N) and N = 3. These weights and abscissas are determined from the 1-D moment
transport equations.

3.1. 1-D moment transport equations

Defining the ith-order moment:

Mi(t, x) =

∫
R
f(t, x, u)ui du, i = 0, . . . ,K; K ∈ N;

the associated governing equations are easily obtained from (21) after multiplication by ui and integration
over u:

∂tMi + ∂xMi+1 = Ai, i ≥ 0,

where the (unclosed)1 moment acceleration term is

Ai = −
∫
R
iA(u)f(t, x, u)ui−1 du. (22)

For simplicity, we will focus our attention on the 5-moment model and its abstract form:

∂tM0 + ∂xM1 = 0,

∂tM1 + ∂xM2 = A1,

∂tM2 + ∂xM3 = A2,

∂tM3 + ∂xM4 = A3,

∂tM4 + ∂xM5 = A4.

=⇒ ∂tM + ∂xF(M) = A, (23)

with M = (M0, . . . ,M4)t, F(M) = (M1, . . . ,M4,M5)t and A = (0,A1, . . . ,A4)t. This model is closed
provided that M5 and A are defined as functions of M. Here we propose to define these functions using
3-node HyQMOM. Note that unlike the 5-moment closures in [9, 10, 12], 3-node HyQMOM in (23) is well
defined over the entire (realizable) moment space M. It is also noteworthy that M5 can be expressed as
an analytical function of M. Thus, the flux Jacobian matrix ∂F/∂M, whose eigenvalues determine the
hyperbolicity of (23), can be expressed in terms of M.

1The acceleration terms will be closed if A is affine: A(t, x, u) = −a(t, x)u+ b(t, x), in which case the moment acceleration
term can be written as Ak = k(aMk − bMk−1). In gas–particle flows, this limit corresponds to Stokes drag in a stationary
fluid.
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3.2. Mathematical properties of moment system with HyQMOM

The following theorem addresses an important mathematical property of system (23).

Theorem 1 (Hyperbolicity). Assuming that the vector M = (M0,M1,M2,M3,M4)t lives in the space Ω
defined in Proposition 2, system (23) with the 3-node HyQMOM closure for M5 given by (20) is hyperbolic.

Proof. First, let us write a system of equations on the vector C = (M0, ū, C2, C3, C4)t equivalent to (23)
for regular solutions. It can be written

DM

DC
∂tC +

DF(M)

DC
∂xC = A, (24)

in such a way that

∂tC + J∂xC =

(
DM

DC

)−1

A, J =

(
DM

DC

)−1
DF(M)

DC
. (25)

The Jacobian matrix J of this system is given by

J =


ū M0 0 0 0
C2

M0
ū 1 0 0

C3

M0
2C2 ū 1 0

−3C2
2+C4

M0
3C3 −3C2 ū 1

− C3

M0C2
2

(4C3
2 − 2C4C2 + C2

3 ) 4C4 − 2C3

C3
2

(2C3
2 + C4C2 − C2

3 ) − 3C2
3−2C2C4

C2
2

ū+ 2C3

C2

 .

The corresponding characteristic polynomial P is then such that

C
−5/2
2 P

(
ū+

√
C2Y

)
= −Y 5 + 2qY 4 +

(
2η − 3q2

)
Y 3 − 2q

(
η − q2

)
Y 2 −

(
η − q2

)
Y

with q = C3/C
3/2
2 and η = C4/C

2
2 . This polynomial function P then admits five roots:

ū, ū+
√
C2

1

2

(
q ±

√
4η − 3q2 ± 4

√
(η − q2) (η − q2 − 1)

)
. (26)

Thanks to the realizability constraint η > 1+q2, it is easy to show that all roots are distinct and real-valued.
This concludes the proof.

If η = 1 + q2, the moments are on the boundary of moment space and system (23) is weakly hyperbolic
[6]. Using the same procedure as in Theorem 1, it can be shown that the moment system resulting from
2-node HyQMOM is hyperbolic when C2 > 0.

3.3. Kinetic-based flux

A finite-volume scheme corresponding to the transport part of (23) can be written [9]:

dtMj(t) = − 1

∆xj

[
Fj+1/2(t)− Fj−1/2(t)

]
(27)

where Mj = (M0, . . . ,M4)t is an approximation of the mean value of the moment vector on the jth cell
]xj−1/2, xj+1/2[ of size ∆xj . In our numerical implementation to solve (23), the spatial fluxes Fj+1/2 =
(F0,j+1/2, . . . , F4,j+1/2)t are computed using a kinetic-based definition [15]:

Fk,j+1/2(t) =

∫ ∞
0

vk+1fj(t, xj+1/2, v) dv +

∫ 0

−∞
vk+1fj+1(t, xj+1/2, v) dv, k = 0, . . . , 4, (28)

where fj is a reconstruction of the VDF in the jth cell. A decomposition into positive and negative directions
is then used to define the flux function as proposed in [5, 16]. The numerical representation of the flux
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function is a critical point in moment transport methods [1, 2, 3, 7, 9, 17] because only realizable moment
sets can be successfully inverted.

For the reconstruction of the VDF, we can choose either the 3-node HyQMOM reconstruction in (7), or
a reconstruction based on the eigenvalues of the moment system. For the former, we have

Fk,j+1/2(t) =

3∑
α=1

[
M0ρα max (0, uα + ū)

k+1
∣∣∣
j

+ M0ρα min (0, uα + ū)
k+1
∣∣∣
j+1

]
, k = 0, . . . , 4, (29)

where the subscript j indicates the reconstruction in cell j. Alternatively, we can close (28) using

Fk,j+1/2(t) =

4∑
α=0

[
M0wα max (0, λα)

k+1
∣∣∣
j

+ M0wα min (0, λα)
k+1
∣∣∣
j+1

]
, k = 0, . . . , 4, (30)

where λα are the five eigenvalues in (26) with λ0 = ū. This definition of the numerical flux will only be
realizable when the weights wα are non-negative [7].

The weights wα in (30) are found by solving the moment problem:

M0


1 1 1 1 1
λ0 λ1 λ2 λ3 λ4

λ2
0 λ2

1 λ2
2 λ2

3 λ2
4

λ3
0 λ3

1 λ3
2 λ3

3 λ3
4

λ4
0 λ4

1 λ4
2 λ4

3 λ4
4



w0

w1

w2

w3

w4

 =


M0

M1

M2

M3

M4

 . (31)

By replacing the moments Mk in (31) with their equivalent expressions written in terms of the central
moments, we find that w0 = 0 and 

ϕ1 ϕ2 ϕ3 ϕ4

ϕ2
1 ϕ2

2 ϕ2
3 ϕ2

4

ϕ3
1 ϕ3

2 ϕ3
3 ϕ3

4

ϕ4
1 ϕ4

2 ϕ4
3 ϕ4

4



w1

w2

w3

w4

 =


0
1
q
η

 (32)

where ϕα = (λα − ū)/
√
C2 are the normalized eigenvalues. Remarkably, the linear system in (32) yields

non-negative weights for all realizable values of η. For the degenerate case where η = 1 + q2, the three
distinct eigenvalues are used in (30), which is then equivalent to (29). Finally, for the degenerate case where
C2 = 0, the single eigenvalue ū is used.

To design a first-order scheme, the decomposition in (30) is sufficient as it corresponds to an upwind
scheme at the kinetic level. For a high-order scheme [7], the spatial fluxes can be found, for example, from
(30) by employing a high-order spatial reconstruction for M0wα and a first-order reconstruction for the
abscissas λα. In summary, with the numerical fluxes in (30), the moments are advanced in time as follows:

Step 1. Given moments Mn
j , compute ū, C2, q, η, λα, and wα in each grid cell.

Step 2. Compute kinetic-based fluxes from (30).

Step 3. Advance the moments in time to find Mn+1
j using (27) with a CFL number based on the largest

|λα| in the computational domain.

The source terms on the right-hand side of (23) are treated using operator splitting [9].

4. Extension of HyQMOM to 2-D phase space

Consider a 2-D phase space with VDF f(v) for v = (u, v)t and define the bivariate moments

Mi,j :=

∫
R2

f(v)uivj dv, i, j = 0, . . . ,K; K ∈ N. (33)
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If M0,0 > 0, the bivariate central moments are defined by

Ci,j :=
1

M0,0

∫
R2

f(v)(u− ū)i(v − v̄)j dv, i, j = 0, . . . ,K; K ∈ N; (34)

where ū = M1,0/M0,0 and v̄ = M0,1/M0,0. Assuming that these moments are realizable, which in principle
can be checked employing methods developed for multivariate distributions [18, 19, 20, 21, 22, 23], in the
following we propose a bivariate extension of HyQMOM using ideas from CQMOM [4].

4.1. Moments needed for 2-D CHyQMOM

The moment-inversion algorithm described below uses the following ten velocity moments:

M =


M0,0 M0,1 M0,2 M0,3 M0,4

M1,0 M1,1

M2,0

M3,0

M4,0

 , (35)

which is a symmetrical subset of the optimal moments [24]. The formulas developed in this section for 2-D,
9-node CHyQMOM can be extended to third-order moments in a relatively straightforward manner (see
Appendix B) by including M1,2 and M2,1 in M. When 0 < M0,0, working with (35) is equivalent to working
with M0,0, ū, v̄ and the central moments

C =


1 0 C0,2 C0,3 C0,4

0 C1,1

C2,0

C3,0

C4,0

 . (36)

Thus, in the following, we will express the 2-D reconstruction algorithm in terms of (36).

4.2. Definition of 2-D CHyQMOM

For clarity, we limit our discussion here to 9-node quadrature in 2-D phase space. Nevertheless, the same
methodology can be used to develop the formulas for more nodes. For the 9-node quadrature, we define an
approximate bivariate VDF by

fa(v) := M0,0

3∑
α=1

ραδū+uα(u)

3∑
β=1

ραβδv̄+v̄α+vαβ (v), (37)

and the parameters {ρ1, ρ2, ρ3, u1, u3} (u2 = 0) are determined using the 3-node HyQMOM algorithm in
§2.4 from the central moments {1, 0, C2,0, C3,0, C4,0}. In (37), the three conditional velocities v̄α and the
nine abscissas vαβ are found from the central moments {C1,1, 0, C0,2, C0,3, C0,4} as described next. The total
number of nodes in 2-D phase space is thus nine for non-degenerate cases.

In the first step,2 the two coefficients a0 and a1 in the conditional velocity v̄α = a0 + a1uα appearing in
(37) are defined by forcing v̄α to satisfy the following two conditions:

3∑
α=1

ραv̄α = C0,1 = 0,

3∑
α=1

ραuαv̄α = C1,1. (38)

2Unlike in the original algorithm for CQMOM [4], the modified CQMOM used here fits the conditional moments to low-
order polynomials where the coefficients are the unknowns. Thus, the number of coefficients (and the order of the polynomial)
depends on the number of moments that can be matched in the reconstruction.
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This yields a0 = 0 and a1 = C1,1/C2,0, and thus the conditional velocities are defined by

v̄α =
C1,1

C2,0
uα. (39)

Note that v̄2 = 0 because u2 = 0.
Next, we can note that the central moments found from (37) are

Ci,j =

3∑
α=1

ραu
i
α

3∑
β=1

ραβ (v̄α + vαβ)
j
. (40)

A binomial expansion then leads to

Ci,j =

j∑
j1=0

(
j

j1

) 3∑
α=1

ραu
i
αv̄

j−j1
α Cj1|α (41)

where the conditional central moments are defined by

Cj|α :=

3∑
β=1

ραβv
j
αβ . (42)

It follows immediately from (41) that C0|α = 1 (i.e., this is the only solution that yields the known Ci,0 from
(41)). By setting C2,1 = C1,1C3,0/C2,0, from (41) with the three central moments {C0,1, C1,1, C2,1}, we find
C1|α = 0.3 Note that this solution is unique as long as 0 < ρα and u1 6= u3, which is true for non-degenerate
(i.e., strictly realizable) moments. The form of (41) then leads to the following moment-inversion algorithm
based on CQMOM to find the remaining parameters ραβ and vαβ .

4.3. Moment-inversion algorithm for 2-D, 9-node CHyQMOM

The univariate central moments Ci,0 are used with the algorithm in §2.4 for 1-D, 3-node HyQMOM to
find {ρ1, ρ2, ρ3, u1, u3}. There are three possible cases: (1) a non-degenerate case with u1 6= u3 and ρ2 > 0,
(2) a degenerate case with ρ2 = 1, (3) a degenerate case with ρ2 = 0. Case (2) occurs when C2,0 = 0. Case
(3) occurs when the univariate moments are on the boundary of moment space, namely, when C2,0 > 0 and
C2,0C4,0 = C3

2,0 + C2
3,0.

4.3.1. Case (2)

For this case, we define a 2-D, 3-node CHyQMOM by

fa(v) := M0,0δū(u)

3∑
β=1

ρβδv̄+vβ (v). (43)

The algorithm in §2.4 for 3-node HyQMOM is employed with the central moment set {1, 0, C0,2, C0,3, C0,4}
to find the parameters {ρ1, ρ2, ρ3, v1, v3} (v2 = 0).

3Conversely, if C1|α = 0, then C2,1 = C1,1C3,0/C2,0. Because C2,1 is not in the transported moment set, we are free to
close it in a consistent manner. See Appendix B for the reconstruction algorithm when C1,2 and C2,1 are known. The closure
for C2,1 is found be setting a2 = 0 in the linear system (B.3).

10



4.3.2. Cases (1) and (3)

The five parameters {ρα 1, ρα 2, ρα 3, vα 1, vα 2, } are determined from the five conditional central moments
{1, 0, C2|α, C3|α, C4|α} using the 3-node HyQMOM in §2.4. Thus, we begin by finding the two coefficients
b0 and b1 appearing in the conditional variance defined by

C2|α = C0,2

(
b0 + b1

uα

C
1/2
2,0

)
. (44)

Using (41) with {C0,2, C1,2} where C1,2 = C1,1C0,3/C0,2,4 this yields

3∑
α=1

ραC2|α = C0,2b0 = C0,2 −
C2

1,1

C2,0
or b0 = 1− %2,

3∑
α=1

ραuαC2|α = b1C
1/2
2,0 C0,2 = C1,1

C0,3

C0,2
−
C2

1,1

C2
2,0

C3,0 or b1 = %(q2 − %q1)

(45)

where % = C1,1/
√
C2,0C0,2 is the correlation coefficient, and the skewness coefficients are defined as q1 =

C3,0/C
3/2
2,0 and q2 = C0,3/C

3/2
0,2 . If one of the conditional variances found from (44) is null, then b1 is limited

such that all conditional variances are non-negative. Note that when the limiter is applied, the value of C1,2

will not equal C1,1C0,3/C0,2; however, none of the moments in C will be affected.
In the final step, conditional moments C3|α and C4|α are found from the two central moments {C0,3, C0,4}

by assuming that the conditional moments depend on α through C2|α, namely, C3|α = q?C
3/2
2|α and C4|α =

η?C2
2|α. From (41), this yields the following relations for q? and η?:

q? =

[
3∑

α=1

ρα

(
C†2|α

)3/2
]−1 [

2%3q1 + (1− 3%2)q2

]
(46)

where C†2|α = C2|α/C0,2, and

η? =

[
3∑

α=1

ρα

(
C†2|α

)2
]−1 [

η2 − %4η1 − 6%[%(1− %2) + (q2 − %q1)q1]− 4%q?
3∑

α=1

ραu
†
α

(
C†2|α

)3/2
]

(47)

where u†α = uα/C
1/2
2,0 , η1 = C4,0/C

2
2,0 and η2 = C0,4/C

2
0,2.

In the limit of perfect correlation, |%| = 1, q2 = %q1 and η2 = %2η1, and thus q? = 0 and η? = 0.
For uncorrelated variables, % = 0, q? = q2 and η? = η2. Otherwise, the realizability of C4|α requires
that η? ≥ 1 + (q?)2. If this condition is not met, then q? and η? are projected to the realizability curve
η? = 1 + (q?)2 along the direction of the Gaussian moments (i.e., q? = 0 and η? = 3). Three-node
HyQMOM can then be applied for each α to find the remaining parameters {ρα 1, ρα 2, ρα 3, vα 1, vα 2, }.
When this projection step is applied, the VDF reconstruction does not reproduce the moments C0,3 and
C0,4. Moreover, ρα 2 = 0 for all α in this case.

4.4. Other remarks

The reconstruction in (37) in not unique for this moment set, which is not surprising since a general 2-D,
9-node quadrature has 27 degrees of freedom [24]. For example, transposing the moments Mi,j ⇒Mj,i will
generally lead to a different set of reconstruction parameters. The difference between the two reconstructions

4The value of C1,2 is needed to compute b1 in (44). Because it is not in the transported moment set, C1,2 is closed
analogously to C2,1.
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will lead to different closures for the moments not included in M. As shown in the numerical examples in
§6, the advantage of using CHyQMOM over CQMOM [4], second-order closures [8], and the multi-Gaussian
closure [9] for approximating solutions to kinetic equations is that the system will be hyperbolic, while at
the same time allowing for particle-trajectory crossing [1, 2] for any realizable moment vector M.

As discussed in §3.3, for the spatial fluxes a reconstruction based on the eigenvalues can be employed.
Using the flux-based reconstruction in the x direction, the approximate VDF is

fa(v) := M0,0

4∑
α=1

wαδλα(u)

3∑
β=1

ραβδv̄+v̄α+vαβ (v) (48)

where the eigenvalues are λα = ū+
√
C2,0 ϕα and the weights wα are found by solving (32). The formulas

for 2-D reconstruction given above were derived using the notation in (37), but equivalent formulas can be

found for (48) by substituting wα for ρα and ϕα for uα/C
1/2
2,0 . The latter are needed for computing the

kinetic-based fluxes in §5.3.

5. Application of 9-node CHyQMOM to kinetic equations

Consider a 2-D velocity phase space with VDF f(t, x, v) for x = (x, y)t and v = (u, v)t that satisfies the
kinetic equation

∂tf + v · ∂xf + ∂v · (Af) = 0, t > 0, x ∈ R2, v ∈ R2, (49)

with initial condition f(0, x, v) = f0(x, v). The acceleration A = (Ax,Ay)t is a real-valued function of v.
With a 2-D velocity phase space, we approximate the solution to f using CHyQMOM for the bivariate
moments. In this work, we will consider only the minimal CHyQMOM in §4 that uses nine nodes in the
2-D velocity phase space. Nonetheless, the extension to more than nine nodes would be analogous to the
algorithm presented here.

5.1. 2-D moment transport equations

Defining the bivariate moments

Mi,j(t, x) =

∫
R2

f(t, x, v)uivj dv, i, j = 0, . . . ,K; K ∈ N;

the associated governing equations are easily obtained from (49):

∂tMi,j + ∂xMi+1,j + ∂yMi,j+1 = Ai,j , i, j ≥ 0;

where the (unclosed)5 moment acceleration term is defined by

Ai,j = −
∫
R2

iAx(v)f(t, x, v)ui−1vj dv −
∫
R2

jAy(v)f(t, x, v)uivj−1 dv. (50)

5The acceleration terms will be closed if A is a linear function of the form (au, av)t, in which case the moment acceleration
term can be written as Ai,j = −a(i+ j)Mi,j . In gas–particle flows, this limit corresponds to Stokes drag in a stationary fluid.
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We will consider in this work the ten moments in (35):

∂tM0,0 + ∂xM1,0 + ∂yM0,1 = 0,

∂tM1,0 + ∂xM2,0 + ∂yM1,1 = A1,0,

∂tM0,1 + ∂xM1,1 + ∂yM0,2 = A0,1,

∂tM2,0 + ∂xM3,0 + ∂yM2,1 = A2,0,

∂tM1,1 + ∂xM2,1 + ∂yM1,2 = A1,1,

∂tM0,2 + ∂xM1,2 + ∂yM0,3 = A0,2,

∂tM3,0 + ∂xM4,0 + ∂yM3,1 = A3,0,

∂tM0,3 + ∂xM1,3 + ∂yM0,4 = A0,3,

∂tM4,0 + ∂xM5,0 + ∂yM4,1 = A4,0,

∂tM0,4 + ∂xM1,4 + ∂yM0,5 = A0,4,

(51)

which requires a closure for the two third-order moments M2,1, M1,2, the two fourth-order moments M3,1,
M1,3, the four fifth-order moments M5,0,M4,1,M1,4,M0,5, and the acceleration terms. We propose to define
these closures by reconstructing f with 9-node CHyQMOM in (37) and (48). If unclosed, the acceleration
term A can be evaluated using fa. In our numerical examples, Stokes drag is used so that A is closed in
terms of the transported moments, and operator splitting is used for the fluxes and the acceleration.

5.2. Mathematical properties of 2-D moment system with 9-node CHyQMOM

Because we employ a dimensional splitting to solve (51), let us consider the transport part of the system
in the x-direction for the moments used in the CHyQMOM reconstruction in (37):

∂tM + ∂xFx(M) = 0 (52)

with M = (M0,0,M1,0,M2,0,M3,0,M4,0,M0,1,M1,1,M0,2,M0,3,M0,4)t and

Fx(M) = (M1,0,M2,0,M3,0,M4,0,M5,0,M1,1,M2,1,M1,2,M1,3,M1,4)t

where, using the flux-based quadrature in (48),

M5,0 = M0,0

4∑
α=1

wαλ
5
α,

M2,1 = M0,0

4∑
α=1

wαλ
2
α(v̄ + v̄α),

M1,2 = M0,0

4∑
α=1

wαλα
[
(v̄ + v̄α)2 + C2|α

]
,

M1,3 = M0,0

4∑
α=1

wαλα
[
(v̄ + v̄α)3 + 3(v̄ + v̄α)C2|α + C3|α

]
,

M1,4 = M0,0

4∑
α=1

wαλα
[
(v̄ + v̄α)4 + 6(v̄ + v̄α)2C2|α + 4(v̄ + v̄α)C3|α + C4|α

]
.

(53)

Here v̄α = (C1,1/C
1/2
2,0 )ϕα, and the conditional moments Cj|α are defined using ϕα. The right-hand side of

(53) can therefore be expressed in terms of the known central moments, ū, v̄ and M0,0. This observation
leads to the following theorem.
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Theorem 2 (Hyperbolicity). Assuming that the moment-inversion algorithm for 2-D, 9-node CHyQMOM
for the vector M is non-degenerate, system (52) with this closure is hyperbolic for small |%|.

Proof. The additional fluxes for the 2-D problem can be written as

M2,1 = v̄M2,0 +M0,0C1,1

(
2ū+

C3,0

C2,0

)
,

M1,2 = ūM0,2 +M0,0C1,1

(
2v̄ +

C0,3

C0,2

)
,

M1,3 = ūM0,3 + 3v̄M0,0C1,1

(
v̄ +

C0,3

C0,2

)
+M0,0C1,3,

M1,4 = ūM0,4 + 2v̄2M0,0C1,1

(
2v̄ + 3

C0,3

C0,2

)
+M0,0

(
4v̄C1,3 + C1,4

)
where, using the flux-based quadrature in (48),

C1,3 =
√
C2,0

4∑
α=1

wαϕα
(
v̄3
α + 3v̄αC2|α + C3|α

)
,

C1,4 =
√
C2,0

4∑
α=1

wαϕα
(
v̄4
α + 6v̄2

αC2|α + 4v̄αC3|α + C4|α
)
,

and the eigenvalues ϕα are found from the eigenvalues λα of the 1-D system as shown below. These

eigenvalues have the property
∑4
α=1 wαϕ

k
α = Ck,0/C

k/2
2,0 for k = 0, 1, . . . , 5 where C0,0 := 1.

The Jacobian matrix J2D of the fluxes is block triangular:

J2D =


J 0 0 0
X1 A1 0 0
X2 B1 A2 0
X3 C B2 λ10


where J is the 5× 5 Jacobian matrix given in Theorem 1, corresponding to the 1-D system. X1 and X2 are
2× 5 matrices and X3 is a 1× 5 matrix. B1 is a 2× 2 matrix. C and B2 are 1× 2 matrices. A1 is a 2× 2
matrix given by

A1 =

[
0 1
ν ξ

]
with

(ν, ξ) =
DM2,1

D(M0,1,M1,1)
=

(
C2,0 − ū2 − ūC3,0

C2,0
, 2ū+

C3,0

C2,0

)
.

A2 is a 2× 2 matrix given by

A2 =

[
a11 a12

a21 a22

]
with

(a11, a12) =
DM1,2

D(M0,2,M0,3)
=

(
ū− C1,2

C0,2
− 3v̄

C1,1

C0,2
,
C1,1

C0,2

)
,

a21 =
∂M1,3

∂M0,2
= −3v̄

C1,2

C0,2
− 9v̄2C1,1

C0,2
+M0,0

∂C1,3

∂M0,2
,

a22 =
∂M1,3

∂M0,3
= ū+ 3v̄

C1,1

C0,2
+M0,0

∂C1,3

∂M0,3

where C1,2 = C1,1C0,3/C0,2.
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Using the dimensionless variables ū† = ū/C
1/2
2,0 , v̄† = v̄/C

1/2
0,2 , % = C1,1/(C2,0C0,2)1/2, q1 = C3,0/C

3/2
2,0 ,

q2 = C0,3/C
3/2
0,2 , η1 = C4,0/C

2
2,0, and η2 = C0,4/C

2
0,2, the partial derivatives can be expressed in dimensionless

form as (
∂C1,3

∂M0,2

)†
=

4∑
α=1

wαϕα

[
3

(
%ϕα +

1

2
q?
(
C†2|α

)1/2
)(

∂C2|α

∂M0,2

)†
+
(
C†2|α

)3/2
(

∂q?

∂M0,2

)†]
,

(
∂C1,3

∂M0,3

)†
=

4∑
α=1

wαϕα

[
3

(
%ϕα +

1

2
q?
(
C†2|α

)1/2
)(

∂C2|α

∂M0,3

)†
+
(
C†2|α

)3/2
(

∂q?

∂M0,3

)†]
where C†2|α = C2|α/C0,2 = b0 + b1ϕα,(

∂C2|α

∂M0,2

)†
= 1− %

(
3v̄† + q2

)
ϕα,

(
∂C2|α

∂M0,3

)†
= %ϕα,

(
∂q?

∂M0,2

)†
= −3

[
4∑

α=1

wα

(
C†2|α

)3/2
]−1 [

v̄† − %2
(
3v̄† + q2

)
+

1

2
q?

4∑
α=1

wα

(
C†2|α

)1/2
(
∂C2|α

∂M0,2

)†]
,

and (
∂q?

∂M0,3

)†
=

[
4∑

α=1

wα

(
C†2|α

)3/2
]−1 [

1− 3%2 − 3

2
q?

4∑
α=1

wα

(
C†2|α

)1/2
(
∂C2|α

∂M0,3

)†]
.

From Theorem 1, the matrix J is diagonalizable with five distinct eigenvalues λα = ū+
√
C2,0ϕα. Matrix

A1 is also diagonalizable with the following two eigenvalues:

λ± = ū+
1

2

√
C2,0

(
q1 ±

√
4 + q2

1

)
.

Neither of these eigenvalues is an eigenvalue of J . The eigenvalue

λ10 =
∂M1,4

∂M0,4
= ū+

√
C2,0

4∑
α=1

wαϕαC
2
2|α

∂η?

∂C0,4
= ū+

√
C2,0K2,

where

K2 =

∑4
α=1 wαϕα

(
C†2|α

)2

∑4
α=1 wα(C†2|α)2

=

∑4
α=1 wαϕα (b0 + b1ϕα)

2∑4
α=1 wα(b0 + b1ϕα)2

=
b1(2b0 + b1q1)

b20 + b21
,

is real and distinct.
It thus remains to show that the two eigenvalues of A2 are real and distinct. The two eigenvalues of A2

are

λ± = ū− 1

2

√
C2,0

[
%q2 −

(
∂C1,3

∂M0,3

)†
± %
√

∆

]
where ∆ = [(a11 + a22)2 − 4(a11a22 − a12a21)]/(%2C2,0). Thus, a sufficient condition is that ∆ > 0 where

∆ =

[
1

%

(
∂C1,3

∂M0,3

)†
+ q2

]2

+
4

%

[
3v̄†

(
∂C1,3

∂M0,3

)†
+

(
∂C1,3

∂M0,2

)†]
. (54)

It is straightforward to show that ∆ does not depend on v̄† so that it can be evaluated at v̄† = 0. Expanding
∆(%, q1, q2, η1) about % = 0 yields

∆ = 4(3 + q2
2) + 3q1q2(2 + q2

2)%+O(%2),

and thus ∆ > 12 for small |%|. This concludes the proof.
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For larger |%|, the condition that C†2|α = b0 + b1ϕα > 0, where

ϕ1 =
1

2

(
q1 +

√
4η1 − 3q2

1 + 4
√

(η1 − q2
1)(η1 − q2

1 − 1)

)
> 0,

ϕ4 =
1

2

(
q1 −

√
4η1 − 3q2

1 + 4
√

(η1 − q2
1)(η1 − q2

1 − 1)

)
< 0,

leads to two functions that must be positive:

g1(%, q1, q2, η1) = 1 + %q2|ϕ1| − %2 (q1|ϕ1|+ 1) > 0,

g4(%, q1, q2, η1) = 1− %q2|ϕ4|+ %2 (q1|ϕ4| − 1) > 0.

For given values of (q1, q2, η1), these functions provide bounds on %: %min < % < %max. From (54),
∆(%, q1, q2, η1) can be found explicitly using symbolic software. For %min < % < %max it can be shown
that ∆ > 12 when η1 ≥ 1 + q2

1 . When a conditional variance C2|1 = 0 or C2|4 = 0, it is likely that ∆ > 0 for
all realizable values of |%| ≤ 1 so the that the moment system in (52) remains at least weakly hyperbolic.
The numerical examples in §6.1 support this conjecture. As noted earlier, when limiters are applied to
keep the conditional variances non-negative, some of the second-order and higher central moments are not
reproduced.

5.3. Kinetic-based flux

The moment transport system (51) has the form

∂tM + ∂x · F(M) = A

with flux vector F = (Fx,Fy)t for the 10-moment vector M. In our numerical implementation (see §3.3),
the components of the fluxes for moment Mi,j are computed using a kinetic-based definition:

Fx;i,j =

∫
R

(∫ ∞
0

f(t, x, v)ui+1vj du

)
dv +

∫
R

(∫ 0

−∞
f(t, x, v)ui+1vj du

)
dv, (55)

Fy;i,j =

∫
R

(∫ ∞
0

f(t, x, v)uivj+1 dv

)
du+

∫
R

(∫ 0

−∞
f(t, x, v)uivj+1 dv

)
du. (56)

Thus, for the non-degenerate case, we follow the example in (30) and use the flux-based quadrature in (48):

Fx;i,j = M0,0

4∑
α=1

wα
[
max(0, λα)i+1 + min(0, λα)i+1

]
Θj
u,α (57)

where the u-conditioned jth-order moment of v is defined by

Θj
u,α :=

3∑
β=1

ραβ (v̄ + v̄α + vαβ)
j

=

4∑
β=1

w?β

(
v̄ + v̄α + C

1/2
2|αϕ

?
β

)j
(58)

with weights w?β and eigenvalues ϕ?β found from (0, 1, q?, η∗) as in (32). This yields

Θ0
u,α = 1,

Θ1
u,α = v̄ + v̄α,

Θ2
u,α = (v̄ + v̄α)2 + C2|α,

Θ3
u,α = (v̄ + v̄α)3 + 3(v̄ + v̄α)C2|α + q?C

3/2
2|α ,

Θ4
u,α = (v̄ + v̄α)4 + 6(v̄ + v̄α)2C2|α + 4(v̄ + v̄α)q?C

3/2
2|α + η?C2

2|α

(59)
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where v̄α, µ2
α, q?, and η? are found with the flux-based quadrature and a limiter on b1 to ensure b0+b1ϕα ≥ 0

for α = 1, 4. The eigenvalues λα and weights wα in (57) are the same as in (30) (i.e., they are found using
q1 and η1).

Likewise, for the flux in the y direction,

Fy;i,j = M0,0

4∑
α=1

wα
[
max(0, λα)i+1 + min(0, λα)i+1

]
Θj
v,α (60)

where the v-conditioned jth-order moments of u is defined by

Θj
v,α :=

3∑
β=1

ραβ (ū+ ūα + uαβ)
j

=

4∑
β=1

w?β

(
ū+ ūα + C

1/2
2|αϕ

?
β

)j
. (61)

The eigenvalues λα and weights wα in (60) are defined as in (30), but found using q2 and η2. In other words,
the parameters in (57) and (58) are found by conditioning on u, while those in (60) and (61) by conditioning
on v.

6. Numerical examples

As example applications, we consider a Riemann problem with 1-D velocity phase space, crossing jets
in 2-D, and a Taylor–Green vortex problem with a 2-D velocity phase space. For each case, we solve the
moment transport equations in (23) and (51), respectively.

6.1. 1-D Riemann problem

The 1-D Riemann problem is the same as in [9] where it was used to test 5-moment Gaussian-EQMOM
and entropy maximization closures against the analytical solution. The objective here is to illustrate the
differences between the hyperbolic flux functions in (29) and (30), and a weakly hyperbolic flux found using
2-node QMOM. Nonetheless, the moment predictions with 3-node HyQMOM are closest to those of the 5-
moment entropy maximization closure in [9]. In particular, the moments exhibit sub-shocks due to the finite
number of velocities used to define the kinetic-based fluxes. In [9], it is shown for the entropy maximization
closure that by increasing the number of moments (i.e., seven or nine), the sub-shocks can be eliminated.
We would therefore expect to see similar behavior with HyQMOM.

The initial conditions for the 1-D Riemann problem are defined on the real line with a step in the mean
velocity at x = 0:

ū =
M1

M0
=

{
1 if x < 0,

−1 otherwise.

For all x, the initial density is unity and the VDF is Maxwellian with energy C2 = 1/3. The velocity
distribution is assumed initially to be in equilibrium (C3 = 0, C4 = 3C2

2 ). However, the discontinuous
nature of the mean particle velocity quickly leads to particle trajectory crossing (PTC) and a strongly non-
equilibrium VDF. Although we do not do so here, the HyQMOM closure can be used with C4 > 3C2

2 , which
is not the case for the 5-moment closures in [9].

In order to solve the moment equations numerically, the 1-D computational domain −0.5 < x < 0.5 is
discretized into 4002 finite-volume cells. The spatial fluxes are treated using the first-order kinetic-based
approach described in detail in [9]. The time step is chosen based on the largest magnitude of the abscissas
uα used to define the spatial fluxes with a CFL number of 0.8. Note that the maximum CFL number is
determined from the largest eigenvalue of the spatial flux (e.g., from (26) for 3-node HyQMOM).

Simulation results for the 1-D Riemann problem using HyQMOM are presented in Figs. 1–3 at time
t = 0.1. For the sake of comparison, the analytical solution is also presented along with results found
with the weakly hyperbolic 2-node QMOM [6], based on a delta-function reconstruction using the first four
moments. We observe from Fig. 1 that the equilibrium condition is still present on the left and right sides of
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(a) HyQMOM - eigenvalues flux
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(b) HyQMOM - 3-node flux
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(c) QMOM - 2-node flux

Figure 1: Five moments (M0,...,4) in 1-D Riemann problem at t = 0.1. (a) flux based on four eigenvalues. (b) flux based on
3-node HyQMOM. (c) flux based on 2-node QMOM. Moment method (blue line) versus analytical solution (red line). The
moment method in column (c) exhibits δ-shocks.

18



-0.4 -0.2 0 0.2 0.4

0

0.5

1

1.5

2

C
2

-0.4 -0.2 0 0.2 0.4

-2

-1

0

1

2

S
3

-0.4 -0.2 0 0.2 0.4

2

4

6

8

10

S
4

-0.4 -0.2 0 0.2 0.4

x

0

1

2

3

4

5

6

7

H
4

(a) HyQMOM - eigenvalues flux

-0.4 -0.2 0 0.2 0.4

0

0.5

1

1.5

2

C
2

-0.4 -0.2 0 0.2 0.4

-2

-1

0

1

2

S
3

-0.4 -0.2 0 0.2 0.4

2

4

6

8

10

S
4

-0.4 -0.2 0 0.2 0.4

x

0

1

2

3

4

5

6

7

H
4

(b) HyQMOM - 3-node flux

-0.4 -0.2 0 0.2 0.4

0

0.5

1

1.5

2

C
2

-0.4 -0.2 0 0.2 0.4

-2

-1

0

1

2

S
3

-0.4 -0.2 0 0.2 0.4

2

4

6

8

10

S
4

-0.4 -0.2 0 0.2 0.4

x

0

1

2

3

4

5

6

7

H
4

(c) QMOM - 2-node flux

Figure 2: Central moments (C2, S3 = q, S4 = η) and Hankel determinant |H4| for 1-D Riemann problem at t = 0.1. (a) flux
based on four eigenvalues. (b) flux based on 3-node HyQMOM. (c) flux based on 2-node QMOM. Moment method (blue lines)
versus analytical solution (red line). By definition, |H4| = 0 for 2-node QMOM.
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(b) HyQMOM - 3-node flux

Figure 3: Flux weights and abscissas, and low-order moments (ρ = M0, ū = M1/M0) for 1-D Riemann problem at t = 0.1.
(a) flux based on four eigenvalues. (b) flux based on 3-node HyQMOM. Due to the numerical scheme, in the right column the
density ρ exhibits a peak at the location where the mean velocity ū = 0.
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the computational domain. Note that unlike in a pure PTC problem6 where the velocity abscissas remain at
their initial values, in Fig. 3 the abscissas have their largest magnitudes just behind the “shock” in density at
the edge of the equilibrium domain. This behavior is a direct result of the definition of the spatial fluxes in
terms of the underlying 3-node HyQMOM distribution. Indeed, the outer tails of the Gaussian distribution
have higher velocity than the value at the peak density and thus penetrate faster into the equilibrium
domain, resulting in a higher local flux velocity. The strong deviations from equilibrium are also clearly
observed in the central moments in Fig. 2.

Except at the edges of the equilibrium domain, we see from Fig. 1 that when the eigenvalues are used to
define the fluxes, the moments are smoothly varying functions of x. More importantly, due to the hyperbol-
icity of the spatial fluxes, the moments are always realizable, and the moment-inversion algorithm always
computes a well-defined quadrature from the updated moments. Moreover, the singularities appearing in
the solution do not belong to the class of δ-shocks, but to the less singular class of shocks encountered with
hyperbolic systems of conservation laws, thus revealing a potentially well-behaved system. Indeed, the peak
in M0 at x = 0 observed for the 3-node flux is mainly an artifact due to numerical diffusion classically
encountered when using first-order transport schemes [24, 25]. In contrast, when comparing to a weakly
hyperbolic method, such as 2-node QMOM in Figs. 1(c) and 2(c), the advantage of guaranteeing hyperbol-
icity is obvious: QMOM generates stiff discontinuities that are (i) unphysical and (ii) highly constraining in
terms of mesh refinement. This type of singularity is also produced using 3-node QMOM (not shown here)
for the 6-moment system (M0,M1, . . . ,M5)t.

Overall, the 5-moment closure employed in 3-node HyQMOM yields a robust numerical algorithm. In
comparison to QMOM [24], the 3-node HyQMOM provides a higher-fidelity flux representation for a fixed
number of moments. Moreover, because the moments of the HyQMOM distribution can be computed to
any desired order, the flux representation described in §3.3 has the potential to be systematically improved.
This advantage becomes even more significant for 2-D phase spaces where the number of moments needed
for the delta-function reconstruction increases rapidly with the order of the moments [24].

6.2. 2-D crossing jets with a compressive gas field

As in [26], CHyQMOM is applied here to simulate the crossings of two jets of particles in a compressible
carrier phase by solving the 10-moment system in (51). The gaseous flow field is the following:

ug(x, y) = ug,0, vg(x, y) = ε(y − 1) (62)

and the acceleration terms are

Ax =
1

τp
(u− ug), Ay =

1

τp
(v − vg)

where ug,0 = 0.2 m s−1 is the axial gas velocity and ε = 1 s−1 is the rate of strain in the vertical direction.
The dynamics of particles in this flow field are characterized by the Stokes number St = ετp, whose critical
value Stc = 1/4 delineates two regimes: for St < Stc, the particles are exponentially relaxing towards the
centerline y = 1 m, while for St > Stc the particles will in addition oscillate around the centerline.

In Fig. 4, particles are injected with zero vertical velocity and the same axial velocity as the gas phase,
through two slots at x = 0 and y ∈ [0.4, 0.6] and y ∈ [1.4, 1.6], and with a Stokes number St = 20Stc. Because
of their high Stokes number and the symmetry of the injection about the centerline, the two jets cross each
other at the centerline. It can be seen that CHyQMOM properly handles the particle trajectories as well as
the crossing events. To further validate the ability of CHyQMOM to reproduce crossing events, the PDF of
the vertical velocity component is presented in Fig. 5 at the three crossing locations. For CHyQMOM, these
velocities correspond to the flux-based quadrature, i.e., to λα. It is worth mentioning that the analytical
solution of the proposed configuration does not lead to a bidisperse velocity but to a double-window solution.
Here we observe that the predicted velocities are close to the limits of the analytical solution.

6A pure PTC problem corresponds to the initial condition with C2 = 0, which is on the boundary of moment space.
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Figure 4: Number density in two-jet crossing with St = 20Stc at steady state for CHyQMOM. White dashed lines represent
the trajectories delineating the region where the particles lie in the analytical solution [26].
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Figure 5: Probability density function for the vertical velocity at the three first crossing locations (from left to right) in two-jet
crossing with St = 20Stc at steady state for CHyQMOM (continuous black lines) and analytical solution (dashed lines).
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Figure 6: Number density in Taylor–Green vortices with St = 5Stc at time t = 2 for AG (left), CHyQMOM (center) and
Lagrangian (right) simulations.

6.3. 2-D Taylor–Green vortices

In this section, CHyQMOM is applied to simulate a 2-D Taylor–Green flow with Stokes drag [26] by
solving the 10-moment system in (51). The gas-phase velocity components are

ug(x, y) = sin(2πx) cos(2πy), vg(x, y) = − cos(2πx) sin(2πy);

and the acceleration terms are

Ax =
1

St
(u− ug), Ay =

1

St
(v − vg).

With these definitions, the moment acceleration terms from (50) are closed. The moment system is solved
on a unit-square domain with grid resolutions 2562, 5122 and 10242 to illustrate grid convergence. Unless
stated otherwise, all results are shown for the 5122 resolution. For comparison, a 6-moment system (i.e.,
up to second order) with the anisotropic Gaussian (AG) closure [26] and a Lagrangian particle method are
solved on the same grids. Details concerning the latter can be found in [26] where similar comparisons
are made with a 4-moment isotropic Gaussian (IG) closure. At time t = 0, the particles are uniformly
distributed in the computational domain with zero velocity.

For 2-D Taylor–Green flow, there exists a critical Stokes number Stc = 1
8π [26], below which the particle

velocity variance is null (i.e., the central moments are null) and above which particle trajectory crossings
(PTC) occur, making the particle velocity distribution multi-modal and the central moments non-null.
When St = Stc, all particles accumulate at the edges of the vortices (see Fig. 9 in [26]). By its nature, the
Lagrangian simulation can capture all PTC events and thus yields the highest fidelity solution. In contrast,
the AG closure does not allow for PTC (which requires knowledge of the third-order moments), while the
CHyQMOM closure can capture (locally) one PTC event. In any case, when the moment closures are unable
to reproduce the multi-modal velocity distribution, the number density field M0,0 is ‘smoothed out’ relative
to the Lagrangian field.

In Figs. 6–8, number density fields at t = 2 are shown for the three methods at three different Stokes
numbers: 5Stc, 10Stc and 20Stc, respectively. In comparison to AG, the CHyQMOM result in Fig. 6 captures
the primary PTC seen in the Lagrangian result for St = 5Stc. However, as expected, near the center of
the domain where multiple PTC occur, the moment closures cannot capture the fine details present in the
Lagrangian simulation. As the Stokes number increases, more and more PTC occur. For the largest Stokes
number shown in Fig. 8, CHyQMOM captures more fine details as compared to AG, but both moment
closures are significantly ‘smoother’ than the Lagrangian field.

As done in [26], the time-dependent behaviors of the three simulation methods are compared using the
following statistics:

gp =
{M2

0,0}
{M0,0}2

, δθ̃p =
{M0,0(C2,0 + C0,2)}

2{M0,0}
, Ẽp =

{M2,0 +M0,2}
2{M0,0}
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Figure 7: Number density in Taylor–Green vortices with St = 10Stc at time t = 2 for AG (left), CHyQMOM (center) and
Lagrangian (right) simulations.

Figure 8: Number density in Taylor–Green vortices with St = 20Stc at time t = 2 for AG (left), CHyQMOM (center) and
Lagrangian (right) simulations.

Figure 9: Time evolution of segregation, internal energy and total energy in Taylor–Green vortices with St = 5Stc for AG (blue
dashed line), CHyQMOM (red dot-dashed line) and Lagrangian (black line) simulations.
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Figure 10: Time evolution of segregation, internal energy and total energy in Taylor–Green vortices with St = 10Stc for AG
(blue dashed line), CHyQMOM (red dot-dashed line) and Lagrangian (black line) simulations.

Figure 11: Time evolution of segregation, internal energy and total energy in Taylor–Green vortices with St = 20Stc for AG
(blue dashed line), CHyQMOM (red dot-dashed line) and Lagrangian (black line) simulations.
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Figure 12: Time evolution of segregation, internal energy and total energy in Taylor–Green vortices with St = 20Stc for
Lagrangian (black line) and CHyQMOM with 2562 (blue), 5122 (red) and 10242(green) mesh cells.

where {·} denotes the spatial average over all grid cells. The segregation index gp measures the degree of

non-uniformity of the number density field. The internal energy δθ̃p is a measure of the level of velocity
fluctuations (i.e., the granular temperature or spatially uncorrelated kinetic energy [27, 28, 29]), while the
total energy Ẽp measure the total kinetic energy transferred from the fluid to the particle phase.

In Figs. 9–11, these statistics are plotted for each simulation method for the three Stokes numbers,
respectively. Qualitatively, the statistics for the AG and CHyQMOM closures are very similar (especially
when compared to IG statistics in [26]). This would imply that adding more moments by increasing N in
CHyQMOM will lead to only a small improvement in the energy statistics as compared to the Lagrangian
simulations. Overall, CHyQMOM does a better job than AG in capturing the time-dependence of the
statistics, particularly for t > 2. However, the most obvious advantage of CHyQMOM with N = 3 over AG
is its ability to capture PTC, and thus to provide a higher fidelity representation of the number density field
in particle-laden flows with strong vorticity.

In Fig. 12, the dependence of the CHyQMOM statistics on the computational grid is shown for St = 20Stc.
In general, for t < 2.5 the dependence on the grid is small. However, for larger times the segregation is
higher for the finer grid. In contrast, the energy statistics are only weakly dependent on the grid resolution.
We should emphasize that unlike with CQMOM [4], which is weakly hyperbolic [6], the hyperbolic nature
of CHyQMOM should allow for grid-independent solutions on sufficiently fine grids with minimal additional
computational cost. Indeed, with the modified CQMOM employed in CHyQMOM, less moments are required
with CHyQMOM as compared to the original 2-D CQMOM formulation in [4].

7. Conclusions

The conditional hyperbolic quadrature method of moments and the related moment-inversion algorithms
introduced in this work appear to be a very promising approach for the direct-numerical simulation of
the kinetic equation describing particle-laden turbulent flows [30, 31]. The proposed approach combines
numerical stability and a lower level of singularity compared to existing quadrature-based moment methods,
see [6], and is able to capture both particle trajectory crossing (PTC) caused by the free-transport term and
the effects of vortices. It is noteworthy that CHyQMOM naturally degenerates toward the correct velocity
distribution with the associated spatial fluxes in both the PTC and dispersion limits. Moreover, by relying
on the recent advances in CQMOM [4], the CHyQMOM naturally adapts to the required number of nodes
in even highly degenerate cases (e.g., in the absence of particles). As such, the Eulerian moment methods
described in this work should offer an attractive alternative to Lagrangian particle tracking methods for
simulating particle-laden flows. Here, we have focused on HyQMOM with N = 2 and 3 nodes, but future
work is warranted to determine the constraint on C2N−1 in HyQMOM needed to make the 1-D moment
system hyperbolic for N ≥ 4.
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Appendix A. Hankel matrices, moment space, and moment constraints

Let M be the vector of moments of a VDF f(u) defined for u ∈ R. If 0 < M0, let Cj be the corresponding
central moment of order j. The Hankel matrix H2n [14, 32], defined by

H2n =


C0 C1 . . . Cn
C1 C2 . . . Cn+1

...
...

. . .
...

Cn Cn+1 . . . C2n

 , (A.1)

is non-negative if |H2n| ≥ 0. The moments M up to order 2n are realizable if |H2m| is non-negative for all
m ∈ {0, 1, . . . , n}. The moments live in the interior of moment space if |H2m| > 0 for all m ∈ {0, 1, . . . , n},
and reside on the boundary if |H2m| = 0 for some m ∈ {0, 1, . . . , n}. Note that if |H2j | = 0 then |H2m| = 0
for m > j. In the main text, we make use of the conditions |H2| = C2 ≥ 0 and |H4| = C2C4 −C3

2 −C2
3 ≥ 0

as the realizability conditions for the even-order moments for 2-node and 3-node HyQMOM, respectively.
For infinite domains, the odd-order moments can take any value in R.

As discussed in the main text, the choice of C2N−1 in HyQMOM is related to the moment fluxes. In
order for the Jacobian matrix of the 1-D moment fluxes for the moment system M = (M0, . . . ,M2N−2)t to
have an eigenvalue at ū, the following condition must hold for N ≥ 3:

∂M2N−1

∂M0

∣∣∣∣
M1=0

= 0 =⇒ 2N = 3 +

2N−4∑
n=1

n
∂ lnS2N−1

∂ lnSn+2
(A.2)

where Sn = Cn/C
n/2
2 (e.g., S3 = q and S4 = η) and S2N−1 depends only on (S3, . . . , S2N−2). For example,

with N = 4 the choice

S7 = 3S3S6 − S4S5 + 2S3S
2
4 − 3S2

3S5 + a
3

4
(4S4 − 3S2

3)(S3
3 − 2S3S4 + S5)

+ b
3(10S2

4 + 6S6 − 15S3S5)(S3
3 − 2S3S4 + S5)

4(4S4 − 3S2
3)

(A.3)

satisfies (A.2) for all real values of a and b. Thus, this choice will result in a normalized eigenvalue at ϕ0 = 0.
From the moment system M = (M0, . . . ,M6)t, when |H4| = 0 (i.e. S4 = 1+S2

3), the choice in (A.3) results
in two distinct normalized eigenvalues at ±1, which are triple roots, for all values of a and b. For |H6| = 0,
(A.3) results in three distinct normalized eigenvalues at (0,±

√
S4) for a = 1− b. Note that the eigenvalues

for these two cases exactly correspond the QMOM abscissas for N = 2 and 3, respectively. Numerical tests
reveal that b = 2 and a = −1 yields real normalized eigenvalues for |H6| > 0 when S3 = S5 = 0 (i.e., for
any symmetric VDF). However, it remains to be shown whether (A.3) yields real-valued eigenvalues for all
of moment space (e.g., with any highly asymmetric VDF).

Appendix B. 2-D, 9-node CHyQMOM with twelve moments

In this appendix, we briefly describe the extension of (37) using the symmetrical 12-moment set

M =


M0,0 M0,1 M0,2 M0,3 M0,4

M1,0 M1,1 M1,2

M2,0 M2,1

M3,0

M4,0

 (B.1)
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for the non-degenerate case. This moment set is of interest because all third-order moments (which control
the energy flux) are included. At the same time, the degenerate cases with exactly one or two velocity
abscissas needed to handle particle-trajectory crossing at arbitrary angles are allowed. As done in the main
text, we assume that 0 < M0,0 and define the reconstruction algorithm using the central moments Ci,j .

For the central moments found from (B.1), the conditional velocity is written as a second-order poly-
nomial in uα, i.e., v̄α = a0 + a1uα + a2u

2
α. The coefficients a0, a1 and a2 are defined by the following

constraints:
3∑

α=1

ραv̄α = C0,1 = 0,

3∑
α=1

ραuαv̄α = C1,1,

3∑
α=1

ραu
2
αv̄α = C2,1, (B.2)

which yields a linear system for the coefficients: 1 0 C2,0

0 C2,0 C3,0

C2,0 C3,0 C4,0

a0

a1

a2

 =

 0
C1,1

C2,1

 . (B.3)

This linear system has a unique solution if the central moments Ci,0 are in the interior of moment space
(i.e., the system is non-degenerate: C2,0 > 0 and C2,0C4,0 > C3

2,0 + C2
3,0). In the degenerate case C2,0 = 0,

v̄α = 0; and when C2,0 > 0 but C2,0C4,0 = C3
2,0 +C2

3,0, v̄α =
C1,1

C2,0
uα.7 Note that these two cases correspond

to ρ2 = 1 and ρ2 = 0, respectively.
As in the main text, the additional parameters {ρα 1, ρα 2, ρα 3, vα 1, vα 2, } are determined from the condi-

tional moments {1, 0, C2|α, C3|α, C4|α} using the 3-node HyQMOM in §2.4. Thus, we compute the coefficients
b0 and b1 in C2|α = b0 + b1uα from (41) using {C0,2, C1,2}. This yields

3∑
α=1

ραC2|α = b0 = C0,2 −
3∑

α=1

ραv̄
2
α,

3∑
α=1

ραuαC2|α = b1C2,0 = C1,2 −
3∑

α=1

ραuαv̄
2
α.

(B.4)

If one of the conditional variances is null, then b1 is limited such that all conditional variances are non-
negative

As in the main text, the conditional moments C3|α and C4|α are found from {C0,3, C0,4} by assuming

that they are depend on α through C2|α, i.e., C3|α = q?C
3/2
2|α and C4|α = η?C2

2|α. This yields

q?
3∑

α=1

ραC
3/2
2|α = C0,3 −

3∑
α=1

ραv̄
3
α − 3

3∑
α=1

ραv̄αC2|α,

η?
3∑

α=1

ραC
2
2|α = C0,4 −

3∑
α=1

ραv̄
4
α − 6

3∑
α=1

ραv̄
2
αC2|α − 4q?

3∑
α=1

ραv̄αC
3/2
2|α ,

(B.5)

which are solved for q? and η?. The realizability of C4|α requires that η? ≥ 1 + (q?)2. If this condition
is not met, then q? and η? are projected to the realizability curve η? = 1 + (q?)2 in the direction of the
Gaussian moments (i.e., q? = 0 and η? = 3). Three-node HyQMOM can then be applied for each α to find
the remaining parameters.
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