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This paper aims at comparing two different approaches to perform a reliability analysis in a context of
uncertainties affecting probability distribution parameters. The first approach called “nested reliability
approach” (NRA) is a classical double-loop-approach involving a sampling phase of the parameters and
then a reliability analysis for each sampled parameter value. A second approach, called “augmented
reliability approach” (ARA), requires to sample both distribution parameters and basic random variables
conditional to them at the same phase and then integrate simultaneously over both domains. In this
article, a numerical comparison is led. Possibilities offered by both approaches are investigated and the
advantages of the ARA are illustrated through the application on two academic test-cases illustrating
several numerical difficulties (low failure probability, nonlinearity of the limit-state function, correlation
between input basic variables) and two real space system characterization (a launch vehicle stage fallback
zone estimation and a collision probability between a space debris and a satellite estimation) for which
only the ARA is tractable.

© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Reliability analysis appears to be one of the dedicated tools 
to quantify the risk of failure for complex aerospace systems re-
garding the uncertainties affecting their behavior and to help engi-
neers to make more informed decisions in the design phase. Under 
safety requirements, one needs to quantify a probability of fail-
ure pf. However, failure scenarios possibly impacting the behavior 
of a system often lead to rare events, i.e. events associated to a 
very low failure probability [1,2]. Estimating such a probability is 
often burdensome since classical methods such as crude Monte 
Carlo (CMC) involve a large number of model evaluations which 
make the calculations untractable [3]. Thus, the particular case 
of coupling between reliability analysis (underlying on multiple 
probabilistic analyses) and expensive aerospace computer codes is 
definitely a well-known issue [4].

Simulation models used in aerospace engineering became more 
and more complex over the last decades and reached high fidelity 
representation. However, they suffer from various key computer ill-
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nesses: high-dimensionality, high-nonlinearities and multi-physics 
combination. All in all, the common similarity between all these 
codes is their expensive-to-evaluate aspect. On top of that, differ-
ent sources of uncertainty affect the way we evaluate the system 
performances (for instance, a number of input variables are uncer-
tain). These uncertainties can be considered as inherent from na-
ture, due to various assumptions or numerical approximations, or 
finally steming from measurement errors. From a pragmatic engi-
neering point of view, uncertainties can be separated into two cat-
egories: aleatory and epistemic [5]. Aleatory uncertainty represents 
natural variability which is supposed to be irreducible in a specific 
context. Epistemic uncertainty ensues from the lack of knowledge 
or mathematical simplifications and can be reduced by adding 
more information or increasing the model fidelity. Both types of 
uncertainty require proper mathematical formalisms, numerical 
modeling and analyses. If aleatory uncertainty is often modeled 
using a probabilistic framework, several competing (and comple-
mentary) formalisms are available to model epistemic uncertainty: 
probabilistic Bayesian analysis [6], interval analysis [7], Dempster–
Shafer’s evidence theory [8,9], possibility theory [10], probability-
boxes [11,12]. This non-exhaustive list mentions multiple frame-
works which are commonly gathered under the global name of 
imprecise probabilities [13]. Mixing aleatory and epistemic uncer-
130

131

132

http://dx.doi.org/10.1016/j.ast.2017.07.016
mailto:vincent.chabridon@onera.fr
http://dx.doi.org/10.1016/j.ast.2017.07.016


JID:AESCTE AID:4111 /FLA [m5G; v1.221; Prn:25/07/2017; 9:27] P.2 (1-12)

2 V. Chabridon et al. / Aerospace Science and Technology ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132
tainties can lead to combine some of these frameworks. Choosing 
one of them depends on the available type of data (bounds, distri-
bution, etc.) and has an impact on the propagation of uncertainties 
through the model. In this paper, we assume that probability dis-
tributions of input data are available but their parameters are not 
known precisely due to a lack of information or very limited data.

A classical approach, known as the “nested reliability approach” 
(NRA), is to consider sampling of uncertain distribution param-
eters and to perform a nested reliability analysis for each real-
ization of these parameters (see, for example [14] for reliability 
assessment under epistemic uncertainty on distribution parame-
ters given by intervals, [15] in the context of probability-based 
tolerance analysis of products or [16] for a coupling with Sparse 
Polynomial Chaos Expansions). Nonetheless, it implies to repeat 
several times a costly reliability analysis, which can be unafford-
able for most cases in a complex industrial environment. Based 
on the context of complex aerospace systems design and taking 
into account all the constraints mentioned earlier, assessing relia-
bility coupled with consideration on the uncertainty affecting the 
distribution parameters seems to be quite challenging. However, 
some researchers proposed methods to incorporate this kind of 
uncertainty affecting distribution parameters into a more general 
Bayesian framework [6,17–19].

An alternative approach, known as the “augmented reliability ap-
proach” (ARA), aims at computing a different failure probability 
(called “predictive failure probability”) which takes into account the 
uncertainty in the distribution parameters by considering an “aug-
mented input space” of the basic variables with their uncertain dis-
tribution parameters. Based on these considerations, the aim of the 
paper is to describe the two approaches (nested vs. augmented) 
within the same framework and investigate different advantages 
offered by ARA. Moreover, explanations are given about the key 
point of the transformation between the physical space of the basic 
input variables and the standard normal space, which is commonly 
used in reliability analysis, under the consideration of this new 
“augmented space”. This article aims at giving a comparison be-
tween NRA and ARA through numerical application to challenging 
test-cases representing the main difficulties that aerospace engi-
neering has to face to (nonlinear codes, correlated inputs and a 
low failure probability to estimate). Another goal is to highlight, 
through numerical results, advantages and drawbacks of both ap-
proaches coupled with advanced reliability methods tested on a 
benchmark representative of real world aerospace problems for 
which only the ARA is a tractable approach.

This paper is organized as follows. Section 2 expounds a bibli-
ography review of reliability assessment under distribution param-
eter uncertainty and aims at introducing the formal concepts and 
notations. Section 3 defines the two approaches into a common 
framework and provides generic algorithms for both methods. Sec-
tion 4 will illustrate the benefits of such an augmented approach 
through a numerical comparison between NRA and ARA on differ-
ent test-cases of increasing complexity (from academic toy-cases 
to real black-box computer codes issued from aerospace research). 
Section 5 discusses limitations of those approaches and evokes 
possible enhancements. A conclusion gathering the most impor-
tant results of this paper is finally given in Section 6.

2. Formulation of failure probability estimation under
distribution parameter uncertainty

2.1. Generic time-invariant reliability problem statement

A model M(·) is considered such that it represents a static (i.e. 
time is not an explicit variable here) input–output system given 
by: y = M(x), where x ∈ DX ⊆ R

d is a d-dimensional vector of 
input variables and M : DX → DY ⊆ R a given scalar mapping. 
In general, this mapping can be either defined using an analyti-
cal expression or a numerical model. In our case, this model is a 
computationally expensive simulation code which can lead to con-
sider it as a black-box function only known pointwise. In the rest 
of the paper, M(·) is supposed to be a deterministic model, i.e. 
the underlying behavior of the model is not stochastic.

The scalar random variables X1, X2, . . . , Xd represent the uncer-
tain input variables (denoted as the basic variables in the following, 
see [20] and [21]) of the system. These basic variables are gathered 
in a d-dimensional random vector X of known continuous joint 
probability density function (pdf) fX : Rd → R+ . In the space of the 
realizations x = (x1, x2, . . . , xd)

� of the random vector X, failure is 
characterized by the use of a function g : Rd → R called the limit-
state function (lsf). A classical formulation for the lsf in the context 
of static input–output model can be:

g(X) = yth −M(X) (1)

where yth ∈ R is a characteristic threshold output value beyond the 
one the system falls into a failure state. Thus, one can distinguish 
two domains associated to the behavior of g(·): the failure domain
given by Fx = {x ∈ DX : g(x) ≤ 0}, which in fact does include the 
limit-state (hyper-)surface (LSS) F0

x = {x ∈ DX : g(x) = 0} splitting 
the space into two, and the safe domain Sx = {x ∈ DX : g(x) > 0}. 
With no consideration of any distribution parameter uncertainty, 
the failure probability pf therefore reads:

pf = P [g(X) ≤ 0] =
∫
Fx

fX(x)dx =
∫
DX

1Fx(x) fX(x)dx

= E fX

[
1Fx(X)

]
(2)

where 1Fx (·) is the indicator function of the failure domain de-
fined such that 1Fx (x) = 1 if x ∈Fx and 1Fx (x) = 0 otherwise.

Finally, estimating such a failure probability can be achieved 
using one of the classical methods available in the structural re-
liability literature [22]. To do so, two distinct classes of methods 
have been developed: approximation methods such as the First-
Order Reliability Method (FORM) and the Second-Order Reliability 
Method (SORM), which both rely on the concept of Most-Probable 
Point (MPP); and simulation methods based on Monte Carlo sim-
ulations [21]. Among this second class of methods, one can find 
more advanced sampling-based methods such as Importance Sam-
pling (IS) [3], Directional Sampling (DS) [20], Line Sampling (LS) or 
Subset Simulations (SS) [4].

Approximation methods (such as FORM/SORM) have been de-
veloped, following well-argued mathematical and historical rea-
sons [23,21], in the so-called standard normal space (denoted as 
U-space) in which all random components of X become indepen-
dent standard Gaussian variates gathered in the vector U. Among
the simulation methods, the use of such a standard normal space
is not always required (e.g., CMC method is performed in the orig-
inal physical space, denoted as X-space). However, most advanced
sampling-based methods such as those cited above are dedicated,
or have some adapted versions of their initial algorithms, to the
standard normal space. The general idea is to construct a regular
transformation T : DX → R

d allowing (in terms of probability dis-
tributions) to get:

U = T (X) ⇔ X = T −1(U) (3)

where U = (U1, U2, . . . , Ud)
� is a d-dimensional standard Gaussian 

vector of independent normal variates Ui with zero means and 
unit standard deviations. Then, one can define a new mapping for 
the lsf in the standard space considering G : Rd → R defined such 
that:

U 	→ G(U) =
(

g ◦ T −1
)

(U) (4)
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which allows to rewrite the failure probability:

pf = P [G(U) ≤ 0] =
∫
Fu

ϕd(u)du =
∫
Rd

1Fu(u)ϕd(u)du

= Eϕd

[
1Fu(U)

]
(5)

where Fu = {u ∈ R
d : G(U) ≤ 0} stands for the failure domain in 

the standard space, du = du1du2 . . . dud and ϕd : Rd → R+ is the 
d-dimensional standard Gaussian pdf of U.

The choice of the transformation T (·) generally depends on
the available information. When only the marginal distributions 
f Xi (·) and the linear correlations are known, following the recom-
mendations in [24,25], one should use the so-called Nataf trans-
formation [26]. When the full knowledge of the joint pdf fX(·) is 
available, it is advised [27] to better use the so-called Rosenblatt 
transformation [28]. Thus, under the assumption of normal cop-
ula [29], without any consideration of parameter uncertainty, both 
transformations can be used since they are identical in this specific 
case [30].

2.2. Reliability analysis under distribution parameter uncertainty

For complex systems such as aerospace ones, the joint pdf 
fX(·) is not accurately known [17,23]. For example, the choice 
of a parametric model for the density fX(·) can be based on 
estimation of some distribution parameters (i.e. some moments 
of the pdf) which can introduce an important bias if the initial 
samples only provide some limited information. Moreover, some 
expert-judgment-based assumptions can lead to an a priori choice 
of some values for the parameters instead of others. The perfect 
knowledge of the joint pdf fX(·) would require, from a general 
point of view, the full knowledge of the marginal pdfs and the 
copula. However, the probabilistic information available about the 
input random vector X often reduces to the marginal distributions 
and, in the case of dependent inputs, to the imperfect knowledge 
of the linear correlation matrix R = [ρi j]i, j∈{1,...,d} [29]. Thus, in ad-
dition to the first uncertainty level characterizing the basic input 
variables, uncertainty may also affect both distribution parame-
ters and the dependence structure. Consequently, engineers have 
to face what we call a bi-level uncertainty. In this context, giving 
back an hypothetic single measure of reliability taking only one 
level into account seems to be inappropriate.

Such a topic has been early discussed among the structural re-
liability community, mainly in the first investigations led by Der 
Kiureghian [6,17,31,32] and Ditlevsen [18–20,33]. In their common 
paper [5], these authors stress the need of a measure of reliabil-
ity that takes into account parameter uncertainty (the first author 
proposed in [6] to call it “predictive reliability measure”, following 
Bayesian analysis vocabulary, and provided a formal definition that 
will be recalled later).

Assuming now that X is distributed according to the para-
metric joint pdf fX|�(·|·), each random variable Xi is distributed 
according to the marginal pdf f Xi |�i (·|·). In the case of depen-
dent inputs, in the normal copula case, uncertainty affecting the 
correlation matrix could easily be considered in this framework. 
However, from a more general point of view, uncertainty affecting 
the dependence structure (i.e. the copula) is not a widely stud-
ied topic in literature. Moreover, from an engineering perspective, 
this problem is really difficult to assess due to the crucial lack 
of information. In this paper, we will only consider distribution 
parameter uncertainty and let copula structure uncertainty to fu-
ture work. Indeed the vector � gathers all distribution parameters 
of the corresponding marginals such that � = (�1, �2, . . . , �d)

� , 
where each �i, i ∈ �1, d� is a set of distribution parameters for 
the i-th marginal (for instance, if Xi ∼ N (μXi , σXi ), then �i =
(μXi , σXi )
�). One can imagine that depending on the distribution 

type, all the marginal pdfs will not be defined with the same 
number of parameters. In this paper, we assume that only a set 
of uncorrelated distribution parameters are uncertain which leads 
to consider a general collection of univariate random parameters 
given by � = (�1, �2, . . . , �k)

� ∈ D� ⊆ R
k (which can be either 

moments or bounds). Consequently, without any loss of generality, 
one can assume the existence of a joint pdf f� =∏k

j=1 f� j as a 
product of the marginal pdfs of the � j [34]. Note here that one 
could also consider a dependence structure between the distribu-
tion parameters. However, the problem would be far more difficult 
and would imply to have, at minimum, a prior information about 
such a dependence structure. This topic is beyond the scope of this 
paper. To get a deeper insight about the practical characterization 
of f�(θ) based on available data (which is not the scope of this pa-
per), the reader may refer to [35]. To sum up, in this paper, only a 
prior probability distribution (for instance, following an expert-based 
judgment) will be assumed for � without any purpose of Bayesian 
reliability updating [36].

Thus, a new formulation for the failure probability can be pro-
posed, following [17]. Indeed, due to this bi-level uncertainty (on 
the vector of basic variables X and on the vector of distribution pa-
rameters �), the failure probability pf is no more a deterministic 
value. It becomes a random variable, denoted as P f , which depends 
on the realization θ of the random vector of uncertain parameters 
such that:

P f(θ) = P [g(X) ≤ 0 | � = θ ] (6a)

=
∫
DX

1Fx(x) fX|�(x|θdx (6b)

= E fX|�
[
1Fx(X) | � = θ

]
. (6c)

Hence, by integrating over θ , we get the so-called “predictive failure 
probability” P̃ f which is a measure of reliability taking into account 
the effect of the uncertain characterization of distribution parame-
ters:

P̃ f = E f� [P f(�)] (7a)

=
∫
D�

P f(θ) f�(θ)dθ (7b)

=
∫
D�

⎛⎜⎝∫
DX

1Fx(x) fX|�(x|θ)dx

⎞⎟⎠ f�(θ)dθ . (7c)

Eq. (7c) is the key equation whose solving is under consideration 
in this paper. The idea is that it can be numerically solved by two 
different approaches.

From a numerical point of view, a first way of computing this 
integral relies on evaluating pointwise the inner integral for each 
realization θ of � [14–16]: this leads to the nested reliability ap-
proach (presented in subsection 3.1). The second way consists in 
evaluating it by treating both basic variables and uncertain distri-
bution parameters together and by integrating simultaneously on 
both domains (but still respecting the conditioning) as suggested 
in [17]: this is the augmented reliability approach (presented in 
subsection 3.2). The next section describes these approaches in 
details. As a remark, one can notice that this Bayesian frame-
work provides here a single reliability measure (the predictive fail-
ure probability). Nevertheless, this quantity can help engineers to 
make more informed decisions during the design process and can 
be coupled with the classical reliability measure so as to analyze 
properly the risk undertaken with a design choice. Decision can be 
then enlightened by such additional information [37–39].
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Up to now, to our knowledge, several researchers deployed ef-
forts to carry on the way of other approaches to compute this 
predictive failure probability (see another approach by [40], used 
in [6] and in [41] only with FORM calculations). Nevertheless, the 
track of exploring the augmented space has not been over-exploited 
yet. In [42], the author recommended and implemented this strat-
egy on a fracture mechanics test-case but limited his study to 
FORM algorithm. All these works mainly focused on providing a 
global reliability index, robust to parameter uncertainty, in the spe-
cific context of FORM. The use of an augmented space has also 
been exploited by [43] for design sensitivity purpose while con-
sidering uncertain design parameters. More recently, in [44], the 
authors proposed in a broader view on the comprehension and in-
terpretation of the different levels of uncertainty involved in these 
calculations and encouraged to use an augmented approach to 
solve a similar integral problem given in Eq. (7c). However, their 
study did not aim at performing reliability assessment for rare 
event failure probabilities of some complex simulation codes which 
is the scope of the present paper.

3. Description of the two approaches

3.1. The nested reliability approach (NRA)

This approach is a nested-loop-based approach since it involves 
the numerical estimation of two different quantities. The first 
(nested or inside) loop aims at computing a “conditional” failure 
probability whose numerical estimator is denoted as P̂ f(θ). This 
estimator is a measure of reliability under the realization θ of the 
random vector �. The second (outside) loop aims at computing an 
estimator of the predictive failure probability, denoted as ̂̃P f , by in-
tegrating over the support of the random vector �. In practice, it 
consists in computing several P̂ f(θ) for a range of realizations θ of 
the vector of uncertain parameters �. It has been widely used in 
literature, in various contexts, such as rare event probability es-
timation with Kriging-based approach in [14], probability-based 
tolerance analysis of products in [15] or uncertainty propagation 
using probability-boxes and polynomial chaos expansions in [16].

Algorithm 1 Nested reliability approach (NRA) with CMC for prob-
ability estimation.

A generic implementation of NRA framework coupled with a 
nested CMC method is given in the Algorithm 1. In the rectan-
gular box at lines 5–9, one can choose any available reliability 
method to estimate the conditional failure probability P̂ f(θ), from 
approximation methods (FORM, SORM) to most advanced simu-
lation methods (IS, SS). Nevertheless, it seems more relevant to 
focus on the ones that are still, up-to-now, the most widely used 
either in aerospace industry or in research. Indeed CMC is still 
considered as the reference method for validation. FORM offers 
wide possibilities for practitioners who want to perform reliabil-
ity assessment with a low computational cost, even if this method 
only gives the true failure probability for linear lsfs [21]. Finally, 
Algorithm 2 NRA generic box (FORM or SS).

SS appeared to be a very powerful method to reach estimation 
of rare event failure probabilities, under the constraint of nonlin-
ear lsfs, with a rather moderate computational effort [45]. In brief, 
the rectangular box can be seen as a non-intrusive plug-in uncer-
tainty propagation code for reliability assessment. An example of a 
plug-in box (for FORM or SS) is given in the Algorithm 2. In nu-
merous cases, an additional step is required: the transformation 
to the standard normal space (see subsection 2.1). In the nested 
case, the transformation is already included in the plug-in relia-
bility rectangular box, i.e. classical transformations such as Nataf 
or Rosenblatt ones can be both used, and the distribution parame-
ter uncertainty does not change anything to their implementation. 
Nevertheless, one should notice that for each sampled parameter, 
the algorithm needs to rebuild and recalculate the transformation 
since it depends on the parameter value. Thus, for complicated 
transformations, with a large number of basic variables, the simu-
lation cost induced can be increased.

In this nested case, we can demonstrate that the estimator ̂̃P f is 
unbiased. Moreover, the mean and variance of ̂̃P f are estimated by 
replication of the algorithm, using the following classical statistics:

m̂̃P f
= 1

Nrep

Nrep∑
i=1

̂̃P (i)

f (8)

which is the sample mean with Nrep the number of replications of 
the predictive failure probability estimation and S2̂̃P f

the unbiased 
sample variance defined by:

S2̂̃P f
= 1

Nrep − 1

Nrep∑
i=1

(̂̃P (i)

f − m̂̃P f

)2

. (9)

3.2. The augmented reliability approach (ARA)

Another approach is to consider an augmented input random vec-

tor Z def= (�, X)� composed of the basic variables and their distri-
bution parameters as it appears in Eq. (7c) (see [16] for a similar 
definition). Thus, this augmented input space has a dimension of 
k + d (k uncertain distribution parameters � j and d random basic 
variables Xi ).

A generic implementation framework is given in the Algo-
rithm 3. Again, in this algorithm, the rectangular box can be re-
placed by any non-intrusive plug-in uncertainty propagation code 
for reliability assessment as the ones cited previously for the NRA 
(see Algorithm 4 as an example). This shows that the ARA does 
not suffer from any major difference with the classical nested ap-
proach in terms of the variety of methods that it can handle. Again, 
as for the NRA, one can demonstrate that the estimator ̂̃P f is un-
biased. One major difference concerns the transformation to stan-
dard normal space: since there exists a conditioning between the 
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Algorithm 3 Augmented reliability approach (ARA) bluewith CMC 
for probability estimation.

Algorithm 4 ARA generic box (FORM or SS).

distribution parameters and the basic input variables, Nataf trans-
formation cannot be used anymore and Rosenblatt transformation 
is the only one that can handle this constraint.

Considering uncertainties affecting distribution parameters leads 
to adapt the usual Rosenblatt transformation. We assume the joint 
pdf fX|�(·|·) is known since we know all the marginal pdfs and 
the correlation matrix (or the covariance matrix) giving the linear 
correlation structure between the basic input variables (normal or 
Gaussian copula case [29]). In addition, we know the joint pdf 
f�(·) as explained previously in subsection 2.2. In this case, un-
der the consideration of the augmented space of dimension k + d
(k distribution parameters and d basic variables), one can apply 
Rosenblatt transformation [28] first to the k components of � and 
then to the d components of the vector X|� such that:

T Ros
aug :∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R
k+d −→ R

k+d

z 	−→ u =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�−1
(

F�1
(θ1)

)
.
.
.

�−1
(

F�k
(θk)

)
.
.
.

�−1
(

F X1|�1,...,�k
(x1|θ1, . . . , θk)

)
.
.
.

�−1
(

F Xd |�1,...,�k ,X1,...,Xd−1
(xd |θ1, . . . , θk , x1, . . . , xd−1)

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10)

where �−1(·) is the normal inverse cumulative density function
(CDF) and F�i (·), F X j |�i (·|·) respectively the marginal CDFs of the 
parameters and the conditional marginal CDFs of the basic vari-
ables. In the case of correlated inputs, one can implement this reg-
ular transformation following and adapting general formulas given 
in [28]. As a remark, one should notice that from a numerical point
of view, the inverse transformation 

(
T Ros

aug

)−1
(·) (from the standard

normal space to the physical space) can be the most useful (espe-
cially when FORM, SORM or SS methods are used).
3.3. Illustration

From a numerical point of view, NRA and ARA can be illustrated 
through a two-dimensional example with one uncertain distribu-
tion parameter. Let us call X1 and X2 the two basic input vari-
ables modeled as two Gaussian variates such that X1 ∼ N (μX1 =
7, σX1 = 5/

√
3) and X2 ∼ N (� = μX2 , σX2 = 2/

√
3). The mean of 

X2 is considered as being uncertain (for example, � ∼ N (2, 1.5)). 
For the sake of clarity, in Fig. 1(a), only three clouds of samples 
are plotted for three different values of θ (200 points per cloud). 
Indeed such a sequential sampling is the underlying principle of 
NRA.

As for ARA, graphical results plotted in Fig. 1(b) bring out the 
underlying principle of this approach: covering in one algorithm 
step the augmented input space (for the sake of comparison, 600
points are used, instead of 3 ×200 points for NRA). One can clearly 
notice the same trend between NRA and ARA, the first one by a 
sequential sampling strategy, the second one by a simultaneous 
sampling over all the dimensions of the augmented input space. In 
brief, it appears that ARA offers better space-filling properties than 
NRA [46].

4. Numerical comparison between NRA and ARA

To evaluate the efficiency of the ARA, a numerical validation 
benchmark has been performed with a systematic comparison 
to the classical NRA. Several test-cases of increasing complex-
ity have been chosen (from two analytical cases to two different 
“real life” aerospace industrial applications) to check the validity 
of the methods. The choice of these test-cases aims at covering a 
range of classical problems encountered in reliability assessment 
of aerospace systems: complex black-box models with numerous 
input variables, high nonlinearities, high computational cost, low 
probability of failure. Moreover, three reliability methods have 
been tested to calculate the failure probability: CMC, FORM and 
SS. The following numerical applications have been implemented 
in Matlab® and performed using the open source toolbox FERUM 
v4.1 [47].

4.1. Methodology and comparison metrics

This paper aims at comparing results obtained for both NRA 
and ARA. For each type of approach, two reliability methods, FORM 
(when lsf is linear) and SS, will be used to estimate the predic-
tive failure probability P̃ f . These combined approaches (NRA/FORM, 
NRA/SS, ARA/FORM, ARA/SS) will be respectively compared to a 
reference estimation performed using CMC (most of the time, a 
NRA/CMC with a large number of samples on both domains). Ta-
ble 1 gives a brief overview of the methodology.

In Table 1, the black squares � stand for successful calculations 
of the test-cases and the crosses × indicate that FORM is clearly 
inappropriate since the lsf is known explicitly to be nonlinear. As a 
remark, one can notice that some specific cases are denoted as 
computationally “untractable”. Indeed, to overcome such a diffi-
culty and to get a reference result to make the comparison viable, 
specific computational strategies have been set up. For the sake of 
clarity and to avoid any confusion, these strategies are presented 
and discussed in the dedicated subsections of the test-cases.

One needs to introduce the comparison metrics used in the fol-
lowing numerical benchmarks. Thus, following [4], we choose in 
this paper to characterize the quality of our estimator ̂̃P M

f of P̃ f
obtained with the method M by the use of three performance met-
rics computed with respect to the reference calculations, i.e. those 
obtained by CMC:
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Fig. 1. Illustration of NRA and ARA simulation procedures on a two-dimensional problem.

Table 1
Overall methodology.

Test-case Ref. NRA ARA

Ref. CMC CMC FORM SS CMC FORM SS

Correlated R − Sa (cf. 4.2.1) � � � � � � �
Nonlinear oscillatorb (cf. 4.2.2) � � × � � × �
Launch vehicle fallback zonec (cf. 4.3) untractable � � � � � �
Collision between orbiting objectsd (cf. 4.4) untractable untractable � untractable � � �
a 2 correlated basic variables, 1 uncertain parameter, g(·) linear, low classical failure probability.
b 8 independent basic variables, 1 uncertain parameter, g(·) nonlinear, low classical failure probability.
c 6 independent basic variables, 2 uncertain parameters, g(·) nonlinear, low classical failure probability.
d 6 correlated basic variables, 3 uncertain parameters, g(·) nonlinear, low classical failure probability.
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• the Relative standard Error (RE):

RE

[̂̃P M

f

]
=

√
V

[̂̃P M

f

]
E

[̂̃P M

f

] (11)

where E 
[̂̃P M

f

]
and V 

[̂̃P M

f

]
are estimated on the sample ob-

tained by replication of the analysis (see Eq. (8) and Eq. (9));
• the Relative Bias (RB):

RB

[̂̃P M

f

]
=

E

[̂̃P M

f

]
− ̂̃P C MC

f

̂̃P C MC

f

. (12)

It gives a description of how close the estimate ̂̃P M

f is close to 

the reference value ̂̃P C MC

f . In the following (see Tables 3 to 6), 
RB for NRA is computed with reference to the quantity ̂̃P f,ref
(estimated by a reference CMC or another method when CMC 
is untractable) while RB for ARA is computed with reference 
to ̂̃P AR A/C MC

f to make the comparison representative;
• the efficiency νM relatively to CMC estimate (respectively

NRA/CMC and ARA/CMC) defined such that:

νM = NC MC
sim

N M
(13)
sim
where NC MC
sim is the required number of CMC simulations to get 

RE

[̂̃P C MC

f

]
= RE

[̂̃P M

f

]
. Thus, the νM ratio can be rewritten 

as:

νM =

(
1 − ̂̃P M

f

)
N M

sim × ̂̃P M

f × RE

[̂̃P M

f

]2
. (14)

A value of νM > 1 indicates that the method M is more ef-
ficient than CMC for the given test-case. In other words, νM

indicates the quantity by which we can divide the initial CMC 
simulation budget for a same level of accuracy.

4.2. Application on two academic test-cases

4.2.1. A first R − S example with correlated basic variables and low 
failure probability

Description. The aim of this first academic test-case is to check the 
validity of the two approaches regarding two difficulties: assum-
ing a strong correlation in the input probabilistic model and trying 
to estimate a low failure probability with respect to a given sim-
ulation budget. Table 2 gives the input data. The reference failure 
probability without parameter uncertainty is pf,ref = 8.84 × 10−8

(because of the linear lsf, the true failure probability can be ob-
tained using FORM). The correlation coefficient ρ = 0.9 expresses 
the linear correlation between the two basic variables. The failure 
is considered when the sollicitation S overcomes the resource R . 
The lsf thus reads:

g(X) = R − S = X1 − X2. (15)
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Table 2
Second-order statistics and distributions of input random variables for the R − S
test-case.

Variable Xi
a Distribution Mean μXi Std σXi

X1 = R Normal 12 5/
√

3
X2 = S Normal μX2 uncertainb 2/

√
3

� = μX2 Normal 2 1.5

a Linear correlation between X1 and X2: ρ = 0.9.
b For a fixed value μX2 = 2, pf,ref = 8.84 × 10−8.

The conditional failure probability, i.e. P f(� = θ), can be written 
in its integral form since the joint conditional pdf fX|�(·|·) can be 
analytically derived. One gets:

P f(θ = μX2)

=
∫
Fx

1

2πσX1σX2

√
1 − ρ2

× exp

[
− 1

2(1 − ρ2)

×
(
(x1 − μX1)

2

σ 2
X1

− 2ρ(x1 − μX1)(x2 − θ)

σX1σX2

+ (x2 − θ)2

σ 2
X2

)]
dx

. (16)

In the specific case of two correlated normal variables and a linear 
lsf, the probability of failure becomes:

P f(θ = μX2) = �(−βC ) = �

⎛⎜⎝− μX1 − θ√
σ 2

X1
+ σ 2

X2
− 2ρσX1σX2

⎞⎟⎠ ,

(17)

where βC is the Cornell reliability index [48]. This simple closed-
form solution can be used to check and validate numerical results 
obtained for this elementary test-case.

Results. Table 3 illustrates that NRA and ARA give similar results for 
estimating the predictive failure probability. Moreover, for almost 
all the methods (except NRA/CMC which suffers here from a lack 
of points while computing the integral over D�) it demonstrates 
that ARA can handle both rare event probabilities and strong corre-
lation between basic input variables. On the one hand, ARA/FORM 
seriously challenges other methods since it has a very small num-
ber of simulation code evaluations compared to CMC and SS and it 
gives exact results since the lsf is linear. On the other hand, ARA/SS 
definitely gives promising results compared to ARA/CMC since the 
ν value (ν = 54.44) is high. In a classical context of rare event 
(often encountered in aerospace engineering), one can see the su-
periority of ARA (coupled with FORM or SS) compared to other 
NRA-coupled methods. This test-case serves as a preliminary ver-
ification for ARA before testing it on a real aerospace simulation 
code such as those presented in subsections 4.3 and 4.4. It also re-
veals how high can be the variations between the classical failure 
probability estimate and the predictive one considering parameters 
uncertainty (here, it drops from 108 to 105).

4.2.2. A nonlinear oscillator

Description. This nonlinear oscillator is a well-known structural re-
liability test-case firstly proposed in [49] and then used for bench-
marking purposes in [2,50,51]. The aim here, is to assess reliability 
of a two-degree-of-freedom primary-secondary system, as shown 
in Fig. 2, under a white noise base acceleration. The basic variables 
characterizing the physical behavior are the masses mp and ms , 
spring stiffnesses kp and ks , natural frequencies ωp = (kp/mp)1/2
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Fig. 2. Two-degree-of-freedom damped oscillator with primary and secondary sys-
tems.

and ωs = (ks/ms)
1/2 and damping ratios ζp and ζs , where the sub-

scripts p and s respectively refer to the primary and secondary 
oscillators. If Fs denotes the force capacity of the secondary spring, 
then the reliability of the system can be evaluated using the fol-
lowing lsf [49,52]:

g(X) = Fs − 3ks

×
√√√√ π S0

4ζsω
3
s

[
ζaζs

ζpζs
(
4ζ 2

a + r2
)+ γ ζ 2

a

(
ζpω

3
p + ζsω

3
s
)
ωp

4ζω4
a

]
(18)

where S0 is the intensity of the white noise, γ = ms/mp the mass 
ratio, ωa = (ωp + ωs)/2 the average frequency ratio, ζa = (ζp +
ζs)/2 the average damping ratio and r = (ωp − ωs)/ωa a tuning 
parameter. The probabilistic model for X is detailed in Table 7.

The two interesting characteristics of this application test-case 
are its set of non-normal basic random variables and the fact that 
it suffers from a highly nonlinear limit-state surface [50] (which 
prevents from using any FORM-based approach). Moreover, follow-
ing [51], it seems relevant to consider the mean of the force capac-
ity μX7 as the most influent distribution parameter on the failure 
probability. The nominal value for μX7 is chosen to be 21.5 N so 
as to reach a reference probability without parameter uncertainty 
pf,ref equal to 4.75 × 10−5 [51].

Results. Numerical results summarized in Table 7 show that, for the 
same simulation budget, ARA/CMC is more accurate than NRA/CMC 
to estimate the predictive failure probability (the reference result ̂̃P f,ref is provided below the table). As for ARA/SS, a significant 
gain is noticeable referring to the high ν values compared to unity 
(ν > 10). In brief, that means the ARA/SS is very efficient to treat 
this problem compared to a classical Monte Carlo approach. A fi-
nal remark concerns the comparison between the two reference 
probabilities pf,ref = 4.75 × 10−5 and ̂̃P f,ref = 1.55 × 10−4: one can 
see that, in this case, considering uncertainty on a distribution pa-
rameter makes the system less safe, which can be, for example, an 
important indicator for design or re-design purposes.

4.3. Application on a launch vehicle stage fallback zone estimation

Description. Space launcher complexity arises from the coupling be-
tween several subsystems such as stages or boosters and other 
embedded systems. Optimal trajectory assessment is a key disci-
pline since it is one of the cornerstones of the mission success 
(for ascent as well as for re-entry trajectories). However, during 
the real flight, aleatory uncertainties can affect the different flight 
phases at different levels (e.g., on the dynamics perturbations or 
stage combustion) and be combined to lead to a failure state of 
the space vehicle trajectory. After their propelled phase, the dif-
ferent stages reach successively their separation altitudes and may 
fall back into the ocean (see Fig. 3). Such a dynamic phase is of 
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Fig. 3. Illustration scheme of the first stage fallback phase into the Atlantic Ocean.
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Table 7
Second-order statistics and distributions of input random variables for the nonlinear
oscillator test-case.

Variable Xi
a Distribution Mean μXi C v δXi

b

X1 = mp (kg) Lognormal 1.5 10%
X2 = ms (kg) Lognormal 0.01 10%
X3 = kp (N m−1) Lognormal 1 20%
X4 = ks (N m−1) Lognormal 0.01 20%
X5 = ζp (1) Lognormal 0.05 40%
X6 = ζs (1) Lognormal 0.02 50%
X7 = Fs (N) Lognormal μX7 uncertainc 10%
X8 = S0 (m s−2) Lognormal 100 10%
� = μX7 (N) Normal 21.5 10%

a The basic variables are independent.
b Note that the coefficient of variation (C v ) of Xi is defined by δXi = σXi /|μXi |

for μXi 
= 0.
c For a fixed value μX7 = 21.5, pf,ref = 4.75 × 10−5.

utmost importance in terms of launcher safety since the conse-
quence of a mistake in the prediction of the fallback zone can be 
dramatic in terms of human security and environmental impact. 
For that reason, the handling of uncertainties plays a crucial role 
in the comprehension and prediction of the global system behav-
ior. That is the reason why it is of utmost importance to take it 
into account during the reliability analysis.

The black-box model M(·) considered here is a trajectory sim-
ulation code of the dynamic fallback phase of a generic launcher 
first stage. For the interested reader, two different but close test-
cases (with different numerical values) are used in [4] and in [53]. 
As an input vector of the simulation code, the following basic vari-
ables representing the initial conditions and the launch vehicle 
characteristics will be passed through the code:

X1: stage altitude perturbation at separation (�h (m));
X2: velocity perturbation at separation (�v (m s−1));
X3: flight path angle perturbation at separation (�γ (rad));
X4: azimuth angle perturbation at separation (�ψ (rad));
X5: propellant mass perturbation at separation (�m (kg));
X6: drag force error perturbation (�Cd dimensionless).

Moreover, in this case, the mean values of the basic variables X2
and X3 are considered as uncertain (see Table 8) as they are phys-
ical quantities difficult to measure and to control in reality. As an 
output, the code will give back the distance Dcode = M(X), which 
is also a random variable, between the theoretical fallback posi-
Table 8
Second-order statistics and distributions of input random variables for the launch
vehicle stage fallback test-case.

Variable Xi
a Distribution Mean μXi Std σXi

X1 = �h (m) Normal 0 1650
X2 = �v (m s−1) Normal μX2 uncertainb 3.7
X3 = �γ (rad) Normal μX3 uncertain 0.001
X4 = �ψ (rad) Normal 0 0.0018
X5 = �m (kg) Normal 0 70
X6 = �Cd (1) Normal 0 0.1
�2 = μX2 (m s−1) Normal 0 3.7
�3 = μX3 (rad) Normal 0 0.001

a The basic variables are independent.
b For fixed values μX2 = 0 and μX3 = 0, pf,ref = 2.31 × 10−7.

tion into the ocean and the estimated one due to the uncertainty 
propagation. The system failure is considered if the distance Dcode
exceeds a threshold safety distance dsafe:

g(X) = dsafe −M(X) = dsafe − Dcode. (19)

In the numerical experiment, the threshold safety distance dsafe
is chosen to be equal to 20 km so as to reach a reference prob-
ability without parameter uncertainty pf,ref equal to 2.31 × 10−7

(estimated by CMC with 108 samples and confirmed by SS with 
103 samples/step).

Results. Numerical results gathered in Table 5 show that both 
NRA/CMC and ARA/CMC give similar results and manage to cor-
rectly estimate the predictive failure probability (whose reference 
value is given in Table 5). NRA/SS and ARA/SS even if a signifi-
cant value of the efficiency (ν > 20) for ARA/SS which indicates 
how promising is the use of ARA/SS with such an industrial test-
case. As for NRA/FORM and ARA/FORM, they both give poor results. 
ARA/FORM gives at least an order of magnitude of the predictive 
failure probability quite close to the reference one.

Through this test-case, one can illustrate the budget allocation 
problem which appears in NRA. Classical reference failure prob-
ability without parameter uncertainty pf,ref is very low (order of 
magnitude of 10−7, see Table 8) and can be time-consuming to 
get, especially with an expensive computer model. Adding a sec-
ond integration loop over Dθ to get the reference predictive failure 
probability ̂̃P f,ref can be untractable in a context of rare event. The 
problem concerning the simulation budget allocation (between the 
two domains, DX and D�) can be an obstacle to an accurate esti-
mation of the predictive failure probability when using CMC-based 
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methods. For instance, for a fixed simulation budget, one needs to 
decide whether to allow a substantial budget (i.e. more samples) 
to get a better precision over the integral on DX or over the inte-
gral on D� . On the one hand, because the simulation budget over 
DX is not easily reducible as it directly affects the estimation ac-
curacy of the failure probability, it comes that adding the second 
integration budget over D� can be computationally critical. On the 
other hand, sampling with only a few number of points over D�

may introduce a bias in the final measure of reliability by advan-
taging some parameter values which influence the final probability 
measure without taking their relative weight into account. For all 
these reasons, a design of experiments (DOE) has been conducted so 
as to optimize the sampling on D� . To do so, we decided to use a 
quadrature scheme-based DOE over D� . The idea is to approximate 
a k-variate integral over D� ⊆ R

k of the form:

I[P f(θ)] =
∫
D�

P f(θ) f�(θ)dθ (20)

where f�(θ) ≡ w(θ) is a density (or weight) function which 
is evaluated on gridpoints. The quadrature rule provides an ap-
proximation using a combination of these weight functions such 
that [54]:

I[P f(θ)]

≈
M1∑

j1=1

M2∑
j2=1

· · ·
Mk∑

jk=1

(w j1 ⊗ w j2 ⊗ · · · ⊗ w jk )

× P f(θ
( j1)
1 , θ

( j2)
2 , . . . , θ

( jk)

k ) (21)

with w j the weights and ⊗ the tensor product operator. The in-
dices M1, . . . , Mk represents the number of points in each dimen-
sion. In the specific case of launch vehicle stage fallback, we have 
two uncertain distribution parameters, which means that the in-
tegration domain is R2. The quadrature type is chosen to be a 
Gauss–Hermite quadrature scheme, which means that we use Gaus-
sian weights [55,56]. Depending on the problem dimensionality, 
one can choose an accuracy level Macc which allows to integrate 
complete polynomials of total order 2Macc − 1 exactly. Here, we 
chose an accuracy level Macc = 14 so as to provide enough samples 
(here, it corresponds exactly to 1009 samples [55]) to cover the do-
main D� . Such a choice is constrained by the expensive aspect of 
the computer code. However, for different applications, one could 
choose another accuracy level. Finally, coupling this DOE with a 
SS method with 104 samples/step allows to estimate the reference 
predictive failure probability ̂̃P f,ref. A last remark concerns the fact 
that taking only two parameters out of six basic variables as being 
uncertain implies to increase the failure probability of three loga-
rithmic decades in terms of magnitude compared to the classical 
reference estimate. Again, that emphasizes how crucial taking dis-
tribution parameters uncertainty is during the reliability analysis 
phase.

4.4. Application on estimation of collision probability between orbiting 
objects

Description. Because of the drastic growth of the number of or-
biting objects (cataloged and uncataloged space debris) over the 
past few decades, the number of potential collision between satel-
lites and other orbiting objects increased (see Fig. 4). Space debris 
surveillance and management is one of the key issue and is di-
rectly linked to the rare event probability estimation topic.

In this test-case, the failure scenario concerns a collision be-
tween a space debris and a satellite, both orbiting around an 
Earth-centered inertial reference frame. The dynamical model used 
Fig. 4. Picture extracted from a video (The story of space debris) by ESA© (http :/ /
www.esa .int).

Table 9
Second-order statistics and distributions of input random variables for the collision
test-case.

Variable Xi
a Distribution Mean μXi Std σXi

X1 = rdeb,1 (km) Normal μX1 uncertainb 10%
X2 = rdeb,2 (km) Normal μX2 uncertain 10%
X3 = rdeb,3 (km) Normal μX3 uncertain 20%
X4 = vdeb,1 (km s−1) Normal 0 20%
X5 = vdeb,2 (km s−1) Normal 0 40%
X6 = vdeb,3 (km s−1) Normal 0 50%
�1 = μX1 (km) Normal 0 0.0625
�2 = μX2 (km) Normal 0 0.04
�3 = μX3 (km) Normal 0 0.000625

a Linear correlation structure given by the matrix R in Eq. (22).
b For fixed values μX1 = μX2 = μX3 = 0, pf,ref = 3.4 × 10−4.

here is a deterministic model M(·) computing the minimum dis-
tance Dmin between the debris and the satellite during a given 
time span τ . For the interested reader, two other applications 
(with different numerical values) of a similar test-case are treated 
in [4] and in [34] and another approach to estimate the probabil-
ity of collision can be found in [57]. Assuming that the position 
and the speed of the satellite are perfectly known, the input vec-
tor of basic variables gathers the three components of the space 
debris position vector and the three components of its speed vec-
tor [58]. Here, the mean values of the space debris position vector 
are uncertain (see Table 9) because of the difficulty to measure 
accurately these quantities. As for the correlation structure of the 
basic variables, it is given by the following linear correlation ma-
trix R = [ρi j]i, j∈{1,...,d}:

R =

⎡⎢⎢⎢⎢⎢⎣
1 0.97 0.12 0.84 −0.85 −0.98

1 0.10 0.73 0 0
1 −0.14 −0.47 −0.11

1 −0.79 −0.81
(sym.) 1 0.83

1

⎤⎥⎥⎥⎥⎥⎦ . (22)

Thus the lsf can be expressed as follows:

g(X) = dcollision −M(X) = dcollision − Dmin. (23)

In the numerical experiment, the threshold collision distance 
dcollision is chosen to be equal to 20 m so as to reach a ref-
erence probability without parameter uncertainty pf,ref equal to 
3.4 × 10−4 (estimated by CMC with 106 samples and confirmed 
with a SS with 104 samples/step).

Results. This industrial test-case can be considered as the worst 
case here since it involves six correlated basic random variables 
with three uncertain distribution parameters. Numerical results are 
given in Table 6. Again, since we know the conditional marginal 

http://www.esa.int
http://www.esa.int
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pdfs and the covariance matrix, we can apply the same approach 
using the adapted Rosenblatt transformation. Here, none of the 
nested approaches are accessible computationally speaking since 
the model is very expensive to evaluate. This is worse if we want 
to get a reference result using a huge CMC. Moreover, the strategy 
using quadrature-based scheme and subset simulations as used in 
subsection 4.3 is not conceivable here since it would require to 
truncate the scheme at a very high order so as to get enough 
points over D� to get relevant results. For all these reasons, ARA 
seems to be the only alternative to assess reliability under distribu-
tion parameter uncertainty regarding a realistic simulation budget 
constraint. ARA/CMC gives a result confirmed by ARA/SS with 103

samples/step. However, the ν factor is just above one and does 
not indicate a huge efficiency compared to ARA/CMC. However, 
ARA/SS offers still more tuning possibilities in the algorithm and 
can handle lower probabilities. ARA/FORM definitely fails to assess 
a correct probability. As a consequence, ARA/SS remains the only 
solution to possibly assess reliability considering uncertain distri-
bution parameters. Even if the efficiency is not as good as the one 
obtained for previous test-cases, it still highlights the fact that this 
method allows benefits compared to ARA/CMC.

4.5. Synthesis about aerospace test-cases

The aim of this subsection is to give a synthesis for the inter-
ested reader to get the main advantages and drawbacks of both 
NRA and ARA. According to the numerical results, one can sum up 
the following characteristics:

• ARA leads to more accurate results than NRA with respect to
a given simulation budget;

• only ARA is able to handle very expensive simulation codes;
• NRA suffers from the “budget allocation” problem;
• ARA requires to adapt the Rosenblatt transformation so as to

use the classical reliability methods in the standard normal
space.

As a final remark concerning the coupling between ARA and reli-
ability methods, one can notice that ARA/SS seems to be the most 
generic method since it can handle most of the difficulties encoun-
tered in complex simulation codes. However, other methods can be 
used if some specific characteristics are preponderant. For instance, 
a linear limit-state function should lead to use ARA/FORM instead 
(regardless the rareness of the failure probability). Combining sev-
eral characteristics lead to deduce which optimal method should 
be used regarding all these simulation constraints.

5. Limitations and possible enhancements

As described in previous sections, reliability assessment un-
der parameter uncertainty involves mainly two components: the 
choice of an estimator for the failure probability (here, the pre-
dictive failure probability P̃ f) and the choice of a numerical strat-
egy to get an estimate of it (i.e. NRA vs. ARA). Concerning the 
first point, P̃ f corresponds to the mean failure probability over 
all the conditional failure probabilities P f(θ). As discussed in [38,
39], such a predictive estimator appears to be, from the statisti-
cal decision theory [59] point of view, associated to a quadratic cost 
function whose aim is to quantify the impact of a mis-estimation 
through P̃ f with respect to the true failure probability pf (probabil-
ity obtained with a full knowledge of the probability distribution 
of X and with a perfect computer model). However, as pointed 
out in [39], since the associated quadratic cost function is sym-
metric, both under- and over-estimations have the same costs, 
theoretically speaking. Nevertheless, this symmetry of costs may 
have asymmetric consequences from a risk management perspec-
tive. Thus, a more conservative estimate (e.g., a quantile) could be 
combined with P̃ f to more accurately characterize the probabil-
ity of interest. However, estimating such an indicator is possible 
with NRA but, as mentioned previously, with a computational cost 
incompatible with industrial considerations. Further investigations 
are required to make the calculation of quantiles possible with 
ARA. In order to reduce the computational cost of these estima-
tions, one possible enhancement track could be to use a surrogate 
model [4]. However, the use of surrogate models also raises several 
difficulties. Firstly, the construction of such a model over the whole 
definition domain (required for quantile estimation mentioned pre-
viously) of the input random variables can be a challenging task. 
Secondly, the performance of a surrogate mainly depends on the 
tuning of hyper-parameters. Thirdly, the surrogate model induces 
its own uncertainty that has to be handled.

6. Conclusions

In this article, we compared two different approaches to handle 
reliability assessment under distribution parameter uncertainty. If 
the first one, the nested reliability approach (NRA) is widely used 
and simple to set up, it definitely crashes with both the curse of 
dimensionality and simulation budget considerations. The second 
one, the augmented reliability approach (ARA) relies on the defini-
tion of an augmented input vector of uncertain distribution param-
eters and the basic input variables. For ARA, numerical sampling 
and integration can be carried simultaneously on both basic ran-
dom variables conditioned on uncertain distribution parameters. 
The main principles of both methods have been presented into 
a unified common framework. Specific attention has been given 
to the algorithmic links and differences existing between these 
approaches. Specificities concerning the use of Rosenblatt transfor-
mation with ARA have been evoked. Then, a comparison between 
NRA and ARA has been carried out through application on both 
academic and industrial test-cases (launch vehicle stage fallback 
zone estimation and collision probability estimation between or-
biting object and space debris), the final ones being representative 
of the complex simulation codes used in aerospace engineering. 
This study showed the benefits of using ARA with dedicated rare 
event probability estimation methods such as Subset Simulations 
for complex models with nonlinear lsfs and correlated inputs. Sev-
eral enhancements raised in Section 5 are current open research 
tracks.
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