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Article

Inferring causal metabolic signals that regulate the
dynamic TORC1-dependent transcriptome
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Dechant4, Laura Falter1, Morteza Haghir Chehreghani3, Szymon Jozefczuk1, Christina Ludwig1, Florian

Rudroff1, Juliane Caroline Schulz1, Asier González5, Alexandre Soulard5,6, Daniele Stracka5, Ruedi

Aebersold1,7, Joachim M Buhmann3, Michael N Hall5, Matthias Peter4, Uwe Sauer1,* & Jörg Stelling2,**

Abstract

Cells react to nutritional cues in changing environments via the
integrated action of signaling, transcriptional, and metabolic
networks. Mechanistic insight into signaling processes is often
complicated because ubiquitous feedback loops obscure causal
relationships. Consequently, the endogenous inputs of many nutri-
ent signaling pathways remain unknown. Recent advances for
system-wide experimental data generation have facilitated the
quantification of signaling systems, but the integration of multi-
level dynamic data remains challenging. Here, we co-designed
dynamic experiments and a probabilistic, model-based method to
infer causal relationships between metabolism, signaling, and gene
regulation. We analyzed the dynamic regulation of nitrogen
metabolism by the target of rapamycin complex 1 (TORC1) path-
way in budding yeast. Dynamic transcriptomic, proteomic, and
metabolomic measurements along shifts in nitrogen quality
yielded a consistent dataset that demonstrated extensive re-wiring
of cellular networks during adaptation. Our inference method
identified putative downstream targets of TORC1 and putative
metabolic inputs of TORC1, including the hypothesized glutamine
signal. The work provides a basis for further mechanistic studies of
nitrogen metabolism and a general computational framework to
study cellular processes.
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Introduction

The comprehensive elucidation of the multi-level, dynamic molec-

ular networks that underlie the processes of living cells requires

the generation of dynamic data at different levels of biological

organization, the integration of complementary data types, and the

incorporation of prior knowledge (Ideker et al, 2011; Bar-Joseph

et al, 2012). Currently large-scale, dynamic experimental datasets

are still scarce, but it can be anticipated, based on rapidly advanc-

ing technology, that such data will become abundantly available in

the near future. Consequently, the primary challenges for the

comprehensive analysis of dynamic molecular networks will shift

from data generation toward data and knowledge integration. At

present, most molecular network analyses consider a single data

type such as transcript, protein, or metabolite abundances. This

precludes the multi-level, integrated analysis of processes, for

example, the interplay between signaling and transcriptional

networks. Further, the few studies that have integrated different

data types, for example, interacting metabolic and transcriptional

networks (Zhu et al, 2012), almost always inferred static networks

even though the ubiquitous presence of feedback loops suggests

that dynamic resolution is required to infer causal relationships

between network components (Bar-Joseph et al, 2012). Finally,

even with prior knowledge integration by static maps (e.g. of tran-

scriptome data onto known transcription factor networks) or by

large-scale mathematical models (e.g. representations of metabolic

constraints), the inference of causal networks is a largely unsolved

problem (Orth & Palsson, 2010; Ideker et al, 2011; Bar-Joseph

et al, 2012).

These limitations particularly affect studies of metabolism

(Fernie & Stitt, 2012), because metabolism both integrates external
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stimuli and generates internal signals that orchestrate cellular

adaptation, for example by regulating the activity of kinases (Wilson

& Roach, 2002; Dechant & Peter, 2008), transcription factors (Sellick

& Reece, 2005), and metabolic enzymes (Link et al, 2013) in

response to metabolite abundances. For example, the activity of

several transcription factors is feedback-regulated via the direct

binding of intermediates of metabolic pathways that are under their

control (Sellick & Reece, 2005; Pinson et al, 2009). Statistical

descriptions in most existing dynamic multi-omics studies associate

metabolite changes only qualitatively to the consequences of tran-

scriptional and translational regulation of metabolism (Kresnowati

et al, 2006; Dikicioglu et al, 2012). Functional relations between

genes and metabolites were recently inferred with Bayesian

networks from metabolome, transcriptome, and other datasets

(Bradley et al, 2009; Zhu et al, 2012). However, simple Bayesian

networks cannot consider feedback and are therefore unable to

describe the exact nature of most metabolic signaling systems.

Consequently, despite the frequent observations that nutritional

stimuli modulate signaling and transcriptional networks, the exact

nature of most metabolic signals is elusive and their identification

remains a challenge (Wilson & Roach, 2002; Dechant & Peter, 2008;

Watson et al, 2013).

To infer causal relationships between potential metabolic signals

and the kinases and/or transcription factors they regulate, we co-

designed a perturbation matrix for the generation of dynamic

multi-omics datasets and a probabilistic, model-based analysis

method that systematically incorporates prior knowledge. We

focused on nitrogen (N) metabolism of Saccharomyces cerevisiae

where general and specific mechanisms sense and react to the qual-

ity of the available N-source (Magasanik & Kaiser, 2002; Ljungdahl

& Daignan-Fornier, 2012). Cellular responses to N-source quality

are tightly regulated via the TOR kinase complexes (Crespo et al,

2002; Loewith & Hall, 2011), and their downstream effects are rela-

tively well studied (Rohde et al, 2008; Loewith & Hall, 2011). For

example, yeast uses glutamine preferentially over the alternative

N-source proline, partly by nitrogen catabolite repression (NCR) of

proline utilization (Hofman-Bang, 1999; Magasanik & Kaiser,

2002). The response to rapamycin-induced inhibition of the TOR

complex 1 (TORC1) resembles the response to less-preferred

N-sources (Smets et al, 2010; Loewith & Hall, 2011), namely inhibi-

tion of ribosomal biogenesis and induction of autophagy, pseudo-

hyphal growth, and NCR-controlled pathways. At the molecular

level, TORC1 is known to directly target the kinase Sch9 and the

protein phosphatase 2A complex (PP2Ac) and to modulate the

phosphorylation state of several other kinases and transcription

factors (Smets et al, 2010; Loewith & Hall, 2011). Conversely,

while intracellular glutamine and leucine concentrations have

been suggested as upstream endogenous signal(s) to TORC1, the

exact mechanisms are unclear (Crespo et al, 2002; Gaubitz &

Loewith, 2012). Here, we performed dynamic multi-level omics

measurements of yeast cells perturbed by the modulation of the

quality of the N-source and by chemical inhibition of TORC1. Our

metabolome, transcriptome, and TOR-related sub-proteome data

captured the dynamics of the underlying regulation mechanisms,

and our probabilistic, model-based inference method identified

putative metabolic signals up- and downstream of TORC1, includ-

ing the suggested glutamine signal, and novel, enzymatic targets of

TORC1 signaling.

Results

A comprehensive and consistent dataset for dynamic shifts
between nitrogen sources

To elucidate the dynamic interplay between the signaling, transcrip-

tional, and metabolic networks controlling the cellular response to

the quality of the external N-source, we subjected S. cerevisiae

YSBN6 wild-type cells (Canelas et al, 2010) to nutritional upshift

and downshifts that were each done as fully independent biological

triplicate experiments. Dynamic shifts in well-controlled bioreactor

batch cultures with glucose minimal medium were induced by

adding glutamine to yeast growing exponentially on the poor

N-source proline (upshift) or by glutamine depletion in yeast grow-

ing on glutamine plus proline (downshift) (Fig 1A, Supplementary

Tables S1 and S2). In the upshift, proline was nearly depleted at the

time of the shift, but it still sustained exponential growth, and added

glutamine was almost immediately taken up. In the downshift,

exponentially growing cells exclusively consumed glutamine until

its complete depletion, as expected from NCR (Hofman-Bang, 1999;

Magasanik & Kaiser, 2002). Additionally, we induced a downshift

chemically by adding rapamycin to a culture growing exponentially

on glutamine as the sole N-source, thereby bypassing the natural

nitrogen quality signal by inhibiting TORC1 directly (Loewith &

Hall, 2011) (Fig 1A). Expectedly, TORC1 activity increased rapidly

during the upshift and decreased during both downshifts, as

measured by the phosphorylation status of Sch9 (Urban et al, 2007;

Loewith & Hall, 2011) (Supplementary Fig S1, Supplementary Table

S3). Likewise, cell volume and percentage of cells in the G1 phase

of the cell cycle matched the expectations (Loewith et al, 2002)

(Supplementary Fig S2, Supplementary Table S4).

To capture the regulatory events triggering or reflecting cellular

adaptation to the shifts, we quantified the intracellular abundances

of 5,716 transcripts by expression array analysis, 20 TOR-related

signaling proteins and six enzymes of glutamine–glutamate metabo-

lism by targeted proteomics (Picotti et al, 2013), and 42 metabolites

by targeted LC-MS/MS (Buescher et al, 2010) (Supplementary

Tables S5, S6 and S7). A further 256 metabolites were analyzed by

untargeted semi-quantitative flow injection time-of-flight MS (Fuhrer

et al, 2011) (Supplementary Table S7). To minimize biological

variability, all samples for the different omics analyses were with-

drawn from one bioreactor culture in three independent biological

replicates, at a temporal coverage adapted to the expected dynamics

of metabolite, transcript, and protein responses (Buescher et al,

2012) (Fig 1B). Since all 20 TOR-related signaling proteins showed

constant abundances during the shifts (Supplementary Fig S3), we

assessed the consequences of signaling at the metabolic and tran-

scription level.

Altogether, 3,203, 1,585, and 2,104 transcript abundances

changed by more than two-fold (maximum observed fold-change

across the time course) in the upshift, the nutritional, and the rapa-

mycin-induced downshift, respectively. We tested the consistency of

our dataset across experiments by principal component analysis of

transcript dynamics for the 909 metabolic enzymes (Herrgard et al,

2008). The first two principal components, which capture ~60% of

the variance, indicated that the cellular states at the start and end

points of up- and downshifts were in close vicinity (Fig 1C; see

Supplementary Fig S4 for all genes). Also, transcript responses of
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the nutritional and rapamycin-induced downshifts followed each

other closely, confirming that rapamycin addition mimics a nitrogen

downshift to proline. We conclude that our dynamic shift experi-

ments were complementary and consistent and therefore suitable

to address two specific questions: (i) what is the extent of global

rewiring of yeast metabolism, and (ii) how are metabolic signals

related to TORC1 signaling as inputs or outputs.

Extensive dynamic rewiring of metabolism via
multiple mechanisms

The extent of transcriptional responses during the shift experi-

ments indicated a large-scale reorganization of metabolism during

adaptation, reminiscent of the global re-wiring during bacterial

nutrient source transitions (Buescher et al, 2012). Despite the

consistency across the three shifts, the broad distributions of

transcript correlations (Fig 2A) and response timings (Fig 2B)

indicated rather heterogeneous responses of individual transcripts.

Average onset times [times for reaching half of the maximum

changes in transcript abundance according to an impulse model

(Chechik et al, 2008; Chechik & Koller, 2009; Supplementary Table

S5)] were around 7 min in the upshift and wider, bimodally

distributed in the two downshifts with peaks at around 10 and

25 min. These data, furthermore, indicate that transcriptional

responses were highly similar between nutrient downshift and

rapamycin perturbation also at the level of individual transcripts,

which is a prerequisite for inferring causal relations between

metabolites and transcripts based on all pairwise correlations (see

below for the corresponding computational method).

The transcript responses across the three shifts distributed over

13 clusters (Fig 2C) according to a robust method for the validation

of cluster assignments based on maximization of information

A

B C

Figure 1. Experimental design and data consistency.

A Biomass evolution (filled circles) and extracellular concentrations of glutamine (open circles) and proline (triangles) for the three dynamic shifts. Fermentation time is
scaled relative to the time of shift. Grey areas mark the exponential growth phase prior to the shift. Yellow areas mark the 2 h following the shifts during which
samples were taken. The maximum specific rates of steady-state growth on proline and glutamine plus proline were 0.20 � 0.03/h (N = 3, SD) and 0.36 � 0.01/h
(N = 6, SD), respectively. See also Supplementary Tables S1 and S2.

B Sampling times for the different measurements relative to the time of shift, taken in independent biological triplicates. The sample �10 min represents the steady-
state cellular status preceding the shifts and is henceforth referred to as time 0. See also Supplementary Tables S4, S5, S6 and S7.

C Scores plot of the first two principal components (PC1, 2; variance captured by each component in parentheses; PC3 explains 10% of the variance) for the transcripts
of the 909 metabolic genes from all time point samples across the three shift experiments (red: N-upshift; blue: N-downshift; green: rapamycin-induced downshift;
numbers near arrows: minutes after shift). For transcript data, see Supplementary Table S5.
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content (Chehreghani et al, 2012). To focus on TORC1-regulated

genes, we analyzed clusters 2, 5, 7, 9, 10, and 13, which showed

similar responses in the two downshifts, and the opposite behavior

in the upshift (Fig 2C). Clusters 2, 5, 7, and 10 included most of the

known NCR-sensitive genes (Hofman-Bang, 1999) and targets of the

retrograde response pathway (Magasanik & Kaiser, 2002) (Supple-

mentary Table S8). They were also over-represented in the gene

ontology process terms endocytosis, pseudohyphal growth, mito-

chondrion organization, and cellular respiration, all of which are

induced upon TORC1 inactivation (Loewith & Hall, 2011). The

opposite response—induced upshift and repressed downshift

expression—was found in clusters 9 and 13 that included nearly all

ribosomal protein and ribosome biogenesis genes, known targets of

TORC1-regulated transcription factors such as Sfp1 and Fhl1-Ifh1

(Smets et al, 2010; Loewith & Hall, 2011). The overall processes

captured in the six clusters agreed with previous transcriptional

studies in rapamycin-treated yeast (Smets et al, 2010; Loewith &

Hall, 2011). Documented targets of Gcn4 (Teixeira et al, 2006), the

general amino acid transcriptional regulator, were over-represented

in clusters 1, 8, 9, and 10. Similar responses of cluster 8 transcripts

to nutrient upshift and rapamycin treatment indicate additional,

TORC1-independent transcriptional regulation.

The long-term metabolite response approached a new pseudo

steady state within 1 h of perturbation onset (Fig 3A and Supple-

mentary Table S7). Specifically, aspartate and citrate/isocitrate

levels showed similar long-term trends in the two downshifts and

the opposite response in the upshift. The long-term responses of

arginine and aromatic amino acids levels were similar between

upshift and rapamycin addition, consistent with the starvation-like

transcriptional response of their biosynthesis genes in cluster 8

(Fig 2C). The immediate metabolite changes within the first

10 min precede transcriptional regulation and reflect readjust-

ments of reaction equilibrium, post-translational, or allosteric

enzyme regulation. Within the first minutes, several metabolite

abundances changed in the upshift but only very few in the two

downshifts (Fig 3B). The most pronounced responses in the

upshift were the instantaneous increase in intracellular glutamine

and the decrease in trehalose 6-phosphate (T6P) concentration,

accompanied by transient decreases of metabolite concentrations

in upper glycolysis and pentose phosphate pathway, and transient

A B

C

Figure 2. Comparison of transcriptome profiles across the three shifts.

A Distribution of Pearson’s correlation coefficients for every pair of transcripts across all possible pairs of shifts. Dashed lines correspond to the median value for each
distribution. See also Supplementary Table S5.

B Distribution of onset times (time to reach half of the maximum gene expression change) per shift.
C Average transcriptional responses (normalized to the steady-state sample of the N-downshift) for all 13 clusters. Visualization based on the linear interpolated

response of the cluster averages. Dashed lines represent � SD.
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increases of AMP, ADP, GMP, and GDP (Fig 3B). In contrast to the

glutamine upshift response in Escherichia coli (Doucette et al,

2011), we observed no changes in glutamate, alpha-ketoglutarate,

and other TCA cycle intermediates (Supplementary Fig S5). The

similar but not identical early metabolite changes in the two

downshifts (Fig 3C) were few, subtle, and less dynamic (Fig 3B).

Since extracellular glutamine is in excess during the rapamycin

downshift, early metabolite changes in common with the nutri-

tional downshift may reflect post-translational modifications

induced by TORC1 inactivation, while changes specific to the

nutritional downshift may be independent or upstream of TORC1.

Overall, multiple level adjustments were observed that are

non-trivial to explain, that is, they are not just consequences of

transcriptional regulation.

A

B

C

Figure 3. Metabolite profiles across the three shifts.

A Profiles of the metabolites referred to in the text over the 120 min after the shift, for one representative experiment per shift. Fold-changes refer to absolute
concentrations normalized to the steady state of the respective shift. Solid lines are the linear interpolated responses, used here for purpose of visualization. See
also Supplementary Table S7.

B Example of metabolite responses within the first 15 min after the shift for metabolites within central carbon, amino acids, nucleotide mono- and di-phosphates
(NXP), and other nucleotide metabolism intermediates. Data for one representative experiment per shift are shown as in (A). Semi-quantitative metabolite
concentrations from untargeted FIA-QTOF-MS are marked with *. AICAR: 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide; imidazole glycerol-P: D-erythro-
1-(imidazole-4-yl)glycerol 3-phosphate.

C Principal component analysis of metabolite responses during the first 10 min after the shifts. PC3 explains 9% of the variance.
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A computational method for assigning metabolic signals to
network motifs

To identify the metabolic signals that modulate transcriptional

responses, and to find how such regulation relates to TORC1 activ-

ity, existing computational methods are not sufficient because they

do not systematically integrate dynamic metabolomics and tran-

scriptomic data with prior knowledge. For example, current Bayes-

ian integration of transcriptomic and metabolomics data elucidates

functional, but not causal relations between the two data types

(Bradley et al, 2009). By exploiting metabolic network structures as

prior knowledge, Chechik et al (2008) defined “activity motifs”,

patterns such as ordered transcriptional activation along a metabolic

pathway, but they only integrated gene expression data. Here, we

developed a probabilistic, integrative framework that infers causal

relations from heterogeneous data types and exploits prior knowl-

edge on networks and biological mechanisms. To apply the frame-

work to the specific metabolic system of this study, we formalized

prior knowledge as prototypic interactions between signaling,

metabolism, and gene expression and as generic interaction mecha-

nisms. This is exemplified by a situation where, if a metabolite

controls transcription factor activity, a changing metabolite concen-

tration should change the rate of gene expression at a later time,

which makes the approach inherently causal.

Specifically, our framework classifies the metabolic signals into

four network motifs that reflect different modalities of metabolite-

TORC1-transcriptional regulation interactions (Fig 4A; see Materials

and Methods and Supplementary Text S1 for a detailed rationale of

the approach). The “unrelated” network motif accounts for metabo-

lite changes unrelated to the transcriptional responses, the “down-

stream” motif for metabolite responses that are consequences of

post-translational enzyme regulations downstream of TORC1, the

“upstream” network for metabolites that are potential signals

upstream of TORC1, and the “parallel” motif for metabolite

responses that modulate transcriptional responses independent of

TORC1. The framework uses the early metabolic dynamics and the

genome-wide transcript dynamics across the three shift experiments

for classification (Fig 4B). We assume that an unknown dynamic

network connects each metabolic response and the transcript

changes over time. At this point, no further assumptions or prior

knowledge on the dynamic network and its characteristics are used

(see also Supplementary Text S1). From the experimental data, we

extract features that approximate: (i) how consistent the observed

dynamics are with a causal relation between metabolites and gene

expression (“dynamic dependence”; DD), and (ii) how strongly each

metabolite is associated with genes that are direct targets of tran-

scription factors regulated by TORC1 (“representation of TOR

genes”; RG; see Materials and Methods for details). We use the

feature values for each experimental condition to estimate probabili-

ties of metabolite assignments to the network motifs via Bayesian

inference (Kass & Raftery, 1995) as explained in detail in Materials

and Methods.

Formally, we defined prototypic values for each motif by

combining the expected biological events in the three experimental

conditions (Fig 4B, bottom; see also Supplementary Text S1). A

metabolic signal that acts upstream of TORC1 in the two nutritional

shifts should elicit a TORC1-dependent transcriptional response.

Consequently, the “upstream” network’s prototypic feature values

for DD and RG are maximal in the two nutrient shifts. However, the

metabolic signal is bypassed during rapamycin-induced TORC1

inactivation such that the feature values should not be statistically

distinguishable from those of a random response (Fig 4B). Similarly,

all the “downstream” network’s prototypic feature values are maxi-

mal for all three experiments because TORC1 should control the

same gene sets transcriptionally, and induce metabolite changes

post-translationally in all three conditions. For a metabolite to regu-

late transcription in a TORC1-independent manner (“parallel

network”), DD should be high in the two nutrient shifts, but essen-

tially random upon rapamycin treatment (because rapamycin affects

only TORC1 activity, not the metabolite concentration), and RG

needs to be random in all experiments. Finally, when all feature

values of a metabolite are random for all three experiments, we

postulate that metabolic and transcriptional changes are not related.

To assign the measured metabolites to the four motifs, we

considered every pair of metabolite and transcript in our dataset

(Fig 4C). Specifically, we computed the dynamic dependence (see

Materials and Methods) between every metabolic trajectory and the

rate of change of every transcript (Fig 4C, right, for YML018C).

Signaling metabolite changes should precede their effects on tran-

scriptional regulation, and we allowed for variable delays between 0

and 10 min in 1-min increments for all transcript responses (Fig 4C,

right). Hence, for every metabolite–transcript pair in every experi-

mental condition, we computed 11 DD values (Fig 4D). The maxi-

mum values of every pair defined a DD distribution for each

metabolite in each experimental condition. For every metabolite, we

selected the gene set consisting of 10% of the transcripts with the

best DD to calculate the final (average) dynamic dependence

(Fig 4E) and then determined the fraction of genes known to be

targeted by TORC1-dependent transcription factors. In the Bayesian

inference framework, these feature values were compared to the

distribution of random metabolic data (Fig 4F, see Materials and

Methods) to estimate network assignment probabilities. To ensure

robust assignments, we varied the assumed level of data noise (four

variants), the type of interpolation of the metabolite data (2),

the method to compute the dynamic dependence of metabolite–

transcript pairs (3), and the calculation of network assignments (2),

leading to 48 assignment probabilities. Finally, we assigned each

metabolite to a network motif by majority vote (exceeding 50%

assignment probability in more than half of the methods; Materials

and Methods).

Computational assignment of metabolites to network motifs

While most metabolites were assigned to the “unrelated” network,

our method revealed seven “downstream”, seven “parallel”, and six

“upstream” metabolites to TORC1 (Fig 5A and Supplementary Table

S9). To analyze the robustness of the assignments and how motif

assignments depend on the prior biological knowledge on TORC1-

controlled TFs and their controlled genes, we considered two

scenarios: (i) prior knowledge is correct but limited—we know

fewer than the 11 reported TFs directly controlled by TORC1—and

(ii) knowledge on TORC1-controlled TFs is incomplete, meaning

that additional TFs could be directly controlled by TORC1. We

investigated both scenarios for different numbers of TFs affected,

and we refer to them as “�3 . . . �1 TFs” and “+ 1 . . . + 3 TFs”

scenarios, respectively (see Materials and Methods for details).
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Computing motif assignments for all metabolites and all

perturbation scenarios revealed that the total error rate, defined as

the average rate of assignments that differ from the unperturbed

analysis, generally is below 30% (Fig 5B and Supplementary Table

S9). Sufficient prior knowledge on real TORC1-TFs is important (red

curves in Fig 5B), whereas additional unknown TFs have less effect

(blue curves). If we expect errors in assigning motifs by exceeding

the 50% motif frequency threshold, these errors will be false nega-

tives (no motif is assigned although it should be, Fig 5C), rather

than false positives (assignment of spurious motifs, Fig 5D). In

particular, all assignment frequencies that exceed approximately

70% have practically zero false-positive and false-negative rates on

average. For our original motif assignments shown in Fig 5A, we

find generally high motif robustness as quantified by the motif
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Figure 4. Computational framework for motif assignment.

A Schematic diagrams of the four network motifs (“MET”: metabolite; “TOR”: TORC1 complex; “Genes”: whole genome of Saccharomyces cerevisiae). Arrows denote direct
causal interactions.

B Method overview. For each metabolite monitored under the three experimental conditions (small boxes, upper left), we extract features (grey box, upper right; feature
values range between 0 and 1) assuming that the measured quantities are connected by an unknown dynamic network in which metabolite concentrations ([M])
control transcript ([Tr]) dynamics. The middle grey box illustrates such a causal relation in the form of an ordinary differential equation with an unknown functional
relation f(�) that depends on time t and unknown parameters p. Bayesian inference (bottom grey box) is then used to compute the probability of each metabolite
being assigned to each network motif characterized by a set of “prototypic” feature values across the three experimental conditions (“R”: representative of artificial,
random metabolic time-course data).

C Example time-course data from rapamycin downshift. Filled circles represent experimental data points, and open circles denote interpolated data points used for the
computation of dynamic dependence. Left: time evolution of T6P (black: linear interpolation from the experimental data; colors: experimental repeats). Right: time
evolution of the normalized mRNA level of YML018C (blue line, spline interpolation from the experimental data), and of its derivative values (green line). The thick
part of the curves correspond to a 10-min interval with a 4-min time delay used in conjunction with the metabolic data (left) to compute the dynamic dependence
for this particular delay.

D Dynamic dependence values between T6P and the derivative of YML018C for all delayed versions of the transcript (from 0 to 10 min).
E Distribution of dynamic dependence values of T6P with all genes. The top 10% of the distribution (in red) define the significant gene set associated with T6P.
F Computation of likelihood values for Bayesian inference of T6P for the “dynamic dependence” feature (left) and “representation of TOR genes” feature (right)

computed in the rapamycin downshift. The distribution of the features’ values from artificial, random metabolic time-course data is shown in blue (scaled values),
and the corresponding empirical cumulative density function (eCDF) is shown in cyan. The green line denotes the “R” value of (B) and corresponds to the median of
the random distributions. Red lines denote the feature values of T6P as shown in (E), used to compute the likelihood value for each network.
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recovery stability for the + 3 TFs case. This scenario gives a lower

bound in our application-relevant +TF scenarios; previous

experimental analyses provide us with high confidence for the valid-

ity of the 11 known TORC1-TFs.

Biologically, many of the metabolites assigned to the “down-

stream”, “parallel”, and “upstream” motifs are intermediates of

amino acid or nucleotide metabolism, processes known to be

regulated via TORC1 (Loewith, 2011) (Fig 5A and E). The seven

“downstream” metabolites include aspartate, T6P, and the purine-

related metabolites IMP and adenosine/deoxyguanosine (Fig 5A),

whose response within the first 10 min suggests post-translational

control of an associated enzyme. In the pathway that converts

aspartate to threonine, Hom3 and Hom2 catalyze the first two

reactions and Thr4 the final conversion to threonine; all three are

phospho-enzymes and their deletion causes growth defects with

rapamycin (Chan et al, 2000). Continuous accumulation of aspar-

tate over at least 20 min (Fig 3A), but not of threonine or any of the

four pathway intermediates upon TORC1 inactivation, therefore

suggests regulation of Hom3 and/or Hom2 activity by TORC1-

dependent (de)phosphorylation. T6P is a precursor for the reserve

carbohydrate and stress protectant trehalose. Two enzymes of the

T6P-synthetase/phosphatase complex that catalyzes T6P produc-

tion/degradation, Tsl1 and Tps3, were previously found to be

hyperphosphorylated in rapamycin-treated yeast (Soulard et al,

2010). T6P association with the downstream motif may therefore be

a consequence of TORC1 phospho-regulation of the T6P-synthetase/

phosphatase complex. The purine-related metabolites are inter-

mediates of DNA and RNA degradation and nucleotide salvage

pathways (Fig 5E). Deamination of AMP to IMP, catalyzed by the

tetrameric Amd1 that becomes dephosphorylated upon rapamycin

treatment (Soulard et al, 2010; Loewith, 2011), is important for

rapid and energy–cost-efficient adaptation of nucleotide pools

during changing conditions (Walther et al, 2010). Increasing IMP

concentration with TORC1 activation during the upshift and the

opposite response upon rapamycin treatment (Fig 3B) suggest

that TORC1 activates Amd1 activity, possibly to avoid accumulation

of the allosteric effector AMP, in addition to the well-known

TORC1-dependent transcriptional regulation of purine metabolism

(Loewith, 2011). “Parallel” motif metabolites are predicted to affect

transcription in a TORC1-independent manner (Fig 5A), and tran-

scriptional induction of aromatic amino acid catabolism genes by

tryptophan has already been described (Iraqui et al, 1999).

The six “upstream” metabolites represent candidate endogenous

signals to modulate TORC1 activity. Our analysis quantitatively

supports the previously raised hypothesis of glutamine being a

TORC1 signal in yeast (Crespo et al, 2002; Gaubitz & Loewith,

2012). Leucine, in contrast, is assigned to the “parallel” network,

which renders its hypothetical role of a natural TORC1 input

(Gaubitz & Loewith, 2012) unlikely. Strikingly, the “upstream”

network associated glutamine, AICAR, and imidazole glycerol-P,

all of which participate in a single reaction at the branch point

between histidine and purine nucleotide metabolism (Fig 5E). In

particular, AICAR is a promising candidate to coordinate amino

acid and nucleotide metabolism in response to nitrogen availability

because: (i) it stimulates in vivo interactions between the phos-

phate metabolism transcription factor Pho2 with either Pho4 or the

regulator of purine nucleotide and histidine metabolism Bas1

(Pinson et al, 2009; Ljungdahl & Daignan-Fornier, 2012), and (ii)

TORC1 responds (weakly) to histidine deprivation (Binda et al,

2009).

Discussion

Metabolites are top signal candidates to drive rapid cellular adapta-

tions to environmental change because they are amongst the first

responding cellular constituents. However, their transient and

weak interactions with proteins, potentially leading to immediate

allosteric regulation, are notoriously difficult to assess (Gerosa &

Sauer, 2011; Link et al, 2013). Hence, the field is replete with spec-

ulation on the actual signals that govern kinase activity, and

TORC1 is no exception (Loewith & Hall, 2011). Here, we developed

a generic experimental/computational framework to infer causal

relationships within intertwined regulatory networks that combines

a probabilistic, model-based method with dynamic metabolite and

transcript data. The key novelty of the approach is to correlate the

experimentally observed dynamics via prototype models that inte-

grate prior network information systematically. This enables

predictions of metabolites that best explain the dynamics of the

global transcriptional responses by acting (directly or indirectly)

upstream, downstream, or in parallel to a signaling pathway of

interest.

Beyond confirming the hypothesized TORC1 signal glutamine

(Crespo et al, 2002; Gaubitz & Loewith, 2012; Stracka et al, 2014),

we identified other, putative endogenous inputs into the upstream

network of TORC1 signaling. Given our prediction that AICAR acts

upstream and IMP, the next intermediate in purine synthesis, acts

downstream of TORC1, it is tempting to speculate that TORC1 (or

◀ Figure 5. Classification of metabolite functions in nitrogen regulation.

A Heat-map of the percentage (%) of the normalized assignment frequency of the metabolites over 48 different methods of probabilistic computation. A metabolite is
associated with a network if the probability of assignment to this network exceeds 50% for a particular computation method. Metabolites semi-quantified with
untargeted FIA-QTOF-MS are marked with *. Assignment robustness scores are the recovery frequencies of the network associations assuming that three additional,
random TFs are directly controlled by TORC1 (N = 100 samples). Pyrroline-3H-5C: L-1-pyrroline-3-hydroxy-5-carboxylate; Tetracosanoate: tetracosanoate (n-C24:0);
dGuanosine: deoxyguanosine; GABA: 4-aminobutanoate; NAD: nicotinamide adenine dinucleotide; aKG: alpha-ketoglutarate; PRPP: 5-phosphoribosyl 1-pyrophosphate.
See also Supplementary Table S9.

B Robustness of motif assignments in terms of average total error rate for all metabolites binned by their maximal motif assignment frequencies. Red colors show the
scenarios of reduced sets of known TORC1-controlled TFs (�3 . . . �1 TFs, with decreasing color intensity), and blue colors, the scenarios of additional, random TFs
assumed to be controlled directly by TORC1 (+3 . . . +1 TFs, with decreasing color intensity).

C Average false-negative motif assignment rates in analogy to (B).
D Average false-positive motif assignment rates in analogy to (B).
E Mapping of metabolites with normalized assignment frequency over 50% (bold face: > 65%) to central carbon, amino acid, and nucleotide metabolism. Violet, orange,

and blue colors correspond to the “downstream”, “upstream”, and “parallel” networks, respectively.
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an upstream effector) senses AICAR to regulate the activity of the

reaction from AICAR to IMP that is catalyzed by the phosphopro-

teins Ade17 (Holt et al, 2009) or its paralog Ade16 (Soufi et al,

2009). By predicting tryptophan to regulate its own synthesis in a

TORC1-independent manner, we capture also one of the few known

direct interactions of metabolites with yeast transcription factors

(Iraqui et al, 1999). Downstream of TORC1, we found metabolic

imprints of several TORC1-dependent post-translational modifica-

tions, including the previously hypothesized T6P-synthase/

phosphatase (Soulard et al, 2010), whose increased activity

accumulates the stress protectant trehalose, the tetrameric Amd1 in

purine metabolism (Soulard et al, 2010; Loewith, 2011), whose

activation is important for efficient adaptation of nucleotide pools

during changing conditions (Walther et al, 2010), and the novel

TORC1-dependent regulation of threonine biosynthesis at Hom3

and/or Hom2. Through a combination of the here reported meta-

bolomics data with phosphoproteomics data, TORC1-dependent

activation of T6P-synthase and Amd1 as well as inhibition of Hom3

were independently confirmed (Oliveira et al, 2015).

In contrast to earlier approaches, our co-design of perturbation

experiments and a probabilistic analysis framework integrates

heterogeneous dynamic data and exploits existing network knowl-

edge (e.g. TORC1 controlled genes), prototypic interaction classes

(network motifs), and approximations of biological control mecha-

nisms (dynamic dependence). We expect that our approach for

model-based data integration will extend to other (nutrient) signal-

ing networks because, while the formalization of the prior knowl-

edge is application specific, the approach itself is generic: target

sets, network motifs, and temporal relations of events and vari-

ables could be formulated analogously for other applications. Note,

however, that the approach may not be applicable to existing data-

sets in retrospect: a co-design of experiments is critical, for exam-

ple, because equivalent perturbations of signaling via natural

inputs and drugs (here: amino acids and rapamycin, respectively)

are needed for the inference approach. Another possible limitation

concerns the availability of prior knowledge on, for example, tran-

scriptional regulation. Here, we employed only experimentally

documented interactions between TORC1-controlled transcription

factors and target genes, but already general sampling biases in the

well-characterized yeast transcriptional network could lead to

biased inference results. However, our robustness analysis indi-

cates that such confounding factors have less severe effects on

prediction accuracy than limited biological knowledge. In addition,

the approach requires a careful definition of the “prototypic” motifs

(see also Supplementary Text S1), but this cannot guarantee that

all possible causal interactions will be identified (e.g. “hybrid”

motifs in which a metabolite has multiple roles in the network may

be missed).

Future extensions of the computational method to counteract

these limitations could incorporate mechanistic details, prior infor-

mation such as transcriptional or metabolic network structures, and

quantitative features of transcriptional control (using, correspond-

ingly, more detailed models) to improve resolution and confidence

of inferred causal relationships. For example, the structure of a

metabolic network could provide constraints because any change in

a metabolite concentration should be preceded by changes in educt

concentration(s) in the corresponding reaction(s). In terms of

experimental data, constant protein abundances allowed us to focus

on metabolite and transcript dynamics. With more detailed dynamic

measurements, such as (phospho-)proteomics data, it should

become possible to unravel regulatory interactions across multiple

network types and timescales, addressing one of the most promi-

nent current challenges for data integration in complex cellular

networks. Provided that the topology of transcriptional or phos-

phorylation regulation networks, or substantial parts thereof, is

known, the presented approach is also applicable to regulation in

healthy and diseased higher cells.

Materials and Methods

Strain and growth conditions

Throughout we used the prototrophic S. cerevisiae strain YSBN6

(Canelas et al, 2010). Precultures were prepared in 500-ml shake

flasks with 50 ml yeast minimal medium, grown for 24 h at 30°C

and 300 rpm. Bioreactor batch cultures of 2.5 l medium in a 3.1-l

KLF glass vessel (Bioengineering AG, Wald, Switzerland) were

inoculated to a starting optical density at 600 nm (OD600) of 0.03–

0.08, and grown at 30°C, pH 5, impeller speed of 1,000 rpm, and

sparging with 3 l air per min. Growth was monitored by OD600

measurements and the concentration of CO2 in the reactor exhaust

gas stream. The yeast minimal medium (YMM) contained (per

liter): 20 g D-glucose, 5 g K2SO4, 3 g KH2PO4, 0.5 g MgSO4�7H2O,

15 mg EDTA, 4.5 mg ZnSO4�7H2O, 0.3 mg CoCl2�6H2O, 1.0 mg

MnCl2�4H2O, 0.3 mg CuSO4�5H2O, 4.5 mg CaCl2�2H2O, 3.0 mg

FeSO4�7H2O, 0.4 mg NaMoO4�2H2O, 1.0 mg H3BO3, 0.1 mg KI,

0.05 mg biotin, 1.0 mg Ca-pantothenate, 1.0 mg nicotinic acid,

25 mg inositol, 1.0 mg pyridoxine, 0.2 mg p-aminobenzoic acid,

1.0 mg thiamin, and 10 mM potassium hydrogen phthalate buffer

(pH 5). Nitrogen source supplementation was as followed (final

concentrations): “preculture-YMM” with 1 g/l of either L-glutamine

or L-proline (for cultures initially growing in glutamine or proline,

respectively); “downshift-YMM” with 500 mg/l of L-glutamine and

250 mg/l of L-proline; “rapamycin-YMM” with 1 g/l of L-glutamine;

and “proline-YMM” with 200 mg/l of L-proline. All experiments

were performed in three independent biological replicates.

Dynamic perturbations and sampling times

Proline to glutamine upshift

The initial culture was inoculated in “proline-YMM”. At

OD600 = 1.07 � 0.24 (N = 3, SD), still in exponential growth, gluta-

mine was instantaneously added into the bioreactor to a final

concentration of 400 mg/l. The time of glutamine addition is

referred to as the “time of shift”.

Glutamine to proline downshift

The initial culture was inoculated in “downshift-YMM”, containing

both glutamine and proline as nitrogen sources. At appropriate

intervals, the concentration of glutamine in the broth was monitored

by using at-line direct flow injection MS analysis on an Agilent LC-

QTOF system, allowing readouts within < 2 min after sampling. The

time at which glutamine was not detected anymore by direct flow

injection MS is referred to as the “time of shift”, at an OD600 of

0.84 � 0.02 (N = 3, SD).
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Rapamycin pulse

The initial culture was inoculated in “rapamycin-YMM”. At

OD600 = 0.85 � 0.08 (N = 3, SD), still in exponential growth, rapa-

mycin was instantaneously added into the bioreactor to a final

concentration of 400 lg/l. The time of rapamycin addition is

referred to as the “time of shift”.

Sampling times and sampling setup

Throughout the cultivation, we monitored OD600 and extracellular

concentrations of glucose, glutamine, proline, ethanol, glycerol,

acetate, and pyruvate (Supplementary Table S2). Immediately

before and for 120 min after the shift, samples for determination of

mRNA levels, protein abundances, intracellular metabolites, cell

physiology, cell size and DNA content were taken as shown in

Fig 1B. Steady-state samples taken a few minutes before the shift

are also referred to as sample time 0 min (t0), since concentrations

at this time scale can be assumed as constant. The high sampling

frequency following the shift was enabled by independent sampling

ports, installed at the bottom of the reactor, specific for each

measurement type. Sampling for intracellular metabolomics was

performed by an automated sampling device with a vacuum pump

to maintain a rapid and reliable sampling frequency.

Determination of biomass and extracellular
metabolite concentrations

Biomass concentration was determined as OD600 in a spectropho-

tometer. The correspondence to dry cell weight (DCW) for the

YSBN6 strain growing in minimal media was initially determined to

be 0.463 gDCW/l/OD600. Extracellular concentrations of glucose,

ethanol, acetate, glycerol, succinate, and pyruvate were determined

with an HPLC system (Agilent HP1100), equipped with a polymer

column (Aminex HPX-87H from Bio-Rad) (Buescher et al, 2012).

Extracellular concentrations of glutamine and proline were deter-

mined by GC-MS. Sample derivatization and GC-MS operation were

adapted from Zamboni et al (2009) with norvaline and glutarate as

internal standards. In all cases, quantification was achieved with

pure chemicals obtained from Sigma as external standards.

Determination of intracellular metabolite levels

Quenching and extraction

Culture broth was quickly quenched into a tube containing (1:4 v/v)

60% (v/v) methanol buffered with 10 mM ammonium acetate

(pH 7.5), precooled at �40°C, and pelleted by centrifugation. Intra-

cellular metabolites were extracted from the pellet with 1 ml 75%

(v/v) ethanol buffered with 10 mM ammonium acetate pH 7.5, at

80°C for 3 min. Samples for LC-MS/MS were supplemented with

50 ll 13C-labeled internal standard before extraction. After centrifu-

gation for 5 min at 3,500 g at �9°C, the extracts (supernatant) were

dried completely in a vacuum centrifuge (Christ-RVC 2–33 CD plus,

Kuehner AG, Birsfelden, Switzerland). The extracts were resus-

pended in water before analysis.

LC-MS/MS (targeted metabolomics)

Liquid chromatography coupled with mass spectrometry was

adopted from Buescher et al (2010), including the selected reaction

monitoring (SRM) transitions used (Supplementary Table S7).

Specifically, liquid chromatography separation was achieved by an

ion pairing-reverse phase method implemented on a Waters Acquity

UPLC (Waters Corporation, Milford, MA, USA) using a Waters

Acquity T3 end-capped reverse phase column with dimensions

150 × 2.1 mm × 1.8 lm (Waters Corporation). The metabolites

were ionized with a heated electrospray ionization source and

detected with a Thermo TSQ Quantum Ultra QQQ mass spectro-

meter (Thermo Fisher Scientific, Waltham, MA, USA) using a heated

electrospray ionization source. The MS was operated in negative

mode with SRM. Data acquisition and peak integration were

performed with the Xcalibur software version 2.07 SP1 (Thermo

Fisher Scientific) and in-house integration software. Peak areas were

normalized to fully 13C-labeled internal standards and absolute

quantification of metabolites was achieved with linear calibration

curves of standards. Finally, concentrations were normalized to the

amount of biomass.

FIA-QTOF-MS (untargeted metabolomics)

Sample extracts were analyzed by flow injection into a time-of-flight

MS (6,550 Series QTOF, Agilent Technologies) operated in the nega-

tive ionization mode. High-precision mass spectra were recorded

from 50 to 1,000 m/z and analyzed as described previously (Fuhrer

et al, 2011). Each sample was injected and measured twice. Ions

were annotated to yeast metabolites based on accurate mass with

tolerance of 0.001 Da. Only high confidence annotations were used,

for a total of 186 unique m/z ions annotated to 256 yeast metabo-

lites (Supplementary Table S7). Relative intensities were normalized

to the amount of biomass. The overall performance of the untargeted

method was compared against the LC-MS/MS measurements for

the common metabolites measured in both platforms (Supplemen-

tary Fig S6), and generally the Spearman correlation coefficient

was high for those metabolites changing by two-fold or more.

Determination of mRNA levels

To cover the entire dynamics for transcriptome analysis, 14 or 15

samples were processed per nutritional shift from one representa-

tive bioreactor experiment (Supplementary Table S5), and

samples from time points �10, 7, and 24 min in the triplicate

experiments allowed to statistically assess biological variability,

yielding a total of 43 array images. Culture broth was quickly

quenched into a tube containing (1:1 v/v) methanol precooled at

�40°C, and pelleted by centrifugation. Pellets were washed once

with 10 ml ice-cold water. Total RNA extraction was done using

the RNeasy kit (Quiagen), including on column DNase treatment

for 20 min. The manufacturer’s instructions were followed except

that we used lysing matrix C for yeast RNA extraction from MP

Biomedicals (Santa Ana, CA, USA). Quality of the isolated RNA

was determined with a NanoDrop ND 1000 (NanoDrop Technolo-

gies, Delaware, USA) and a Bioanalyzer 2100 (Agilent, Wald-

bronn, Germany). Only samples with a 260/280 nm value

between 1.8–2.1 and a 28S/18S value within 1.5–2 were further

processed. Total RNA samples (50 ng) were reverse-transcribed

into double-stranded cDNA and then in vitro transcribed in the

presence of biotin-labeled nucleotides using GeneChip� 30 IVT

Express Kit (Affymetrix Inc., P/N 901229). The quality and quan-

tity of the biotinylated cRNA were determined using NanoDrop

ND 1000 and Bioanalyzer 2100.
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Biotin-labeled cRNA samples (15 lg) were fragmented

randomly to 35–200 bp at 94°C in fragmentation buffer (Affymetrix

Inc., P/N 900371) and were mixed in 300 ll of hybridization mix

(Affymetrix Inc., P/N 900720) containing hybridization controls

and control oligonucleotide B2 (Affymetrix Inc., P/N 900454).

Samples were hybridized to GeneChip� Yeast 2.0 arrays for 16 h

at 45°C. Arrays were then washed using an Affymetrix Fluidics

Station 450 FS450_0001 protocol. An Affymetrix GeneChip Scanner

3000 was used to measure the fluorescent intensity emitted by

the labeled target. The raw CEL files were normalized using

R/Bioconductor, Affy package (background correction: RMA; only

perfect-match probes; probe intensity normalization: QSPLINE;

expression index calculation: Li and Wong method). The resulting

dataset with one intensity per ORF per time point per experiment

was the final working dataset. For clustering and PCA analysis, all

25 CEL files comprising the three complete time series (eight in

N-upshift, eight in rapamycin and nine in N-downshift) were

normalized together, allowing the relative comparison of transcripts

across all experiments. For statistical dependency analysis, all

CEL files from each specific shift, including the replicates, were

normalized together (14 in N-upshift, 14 in rapamycin and 15 in

N-downshift), allowing adequate statistical treatment for each shift.

Raw data are deposited in NCBI GEO under the accession number

GSE54852.

Determination of protein levels

Protein samples were taken by addition of trichloroacetic acid

directly to the yeast culture, followed by cell lysis using glass beads

beating in condition of 8 M urea. As internal standard, a 15N stable-

isotope labeled protein reference yeast extract was spiked into all

samples. After reduction, alkylation and trypsin digestion peptide

mixtures were purified using C18 cartridges, and all protein samples

were assayed in biological triplicates.

SRM measurements were performed on a TSQ Vantage QQQ

mass spectrometer (Thermo Fischer Scientific) equipped with a

nano-electrospray ion source and a nano-LC system (Eksigent). For

all targeted proteins, proteotypic peptides and optimal transitions

for identification and quantification were selected based on two

high-quality SRM assay repositories of S. cerevisiae: (i) A proteome-

wide mass-spectrometric map generated from synthetic reference

peptides (Picotti et al, 2013) (accessible at www.srmatlas.org/

yeast/) and (ii) a yeast ion-trap consensus spectral library from the

National Institute of Standards and Technology (NIST) (built 2009,

accessible at http://peptide.nist.gov). Relative protein quantification

was carried out based on the ratio between summed transition areas

for light (endogenous) and heavy (15N reference) peptide form. For

proteins quantified with several peptides the average peptide ratio

was used to compute the protein ratio. The quantitative SRM dataset

has been deposited to the public repository “Panorama” and is

accessible via the link https://daily.panoramaweb.org/labkey/

project/Aebersold/ludwig/BigY_SRMdata/begin.view.

Analysis of transcriptome and metabolome data

Principal component analysis (PCA)

PCA was performed with the R-package pcaMethods (method

ppca) on the entire transcript set (5,716 transcripts), metabolic

gene set [909 transcripts encoding for metabolic enzymes described

previously (Herrgard et al, 2008)] and LC-MS/MS metabolome set

(42 metabolites). Transcript and metabolite intensities were mean-

centered by subtracting the average intensity of each transcript/

metabolite over the entire samples and scaled to unit variance by

dividing by the standard deviation.

Onset times

Onset times, defined as the time for a transcript to reach half of

its maximum intensity change, were determined by fitting a six-

parameter impulse model (Chechik & Koller, 2009) to the dynamic

transcript profiles. The impulse model fit was implemented in

Matlab, and the parameters h0, h1, h2, t1, t2, and beta that best fit

the data were identified based on an optimization problem formu-

lated as minimization of unconstrained variables. By interpolation

of the dynamic transcript response given by the impulse response,

we calculated the onset time t1/2.

Clustering

Clustering was applied to the dataset containing all measured tran-

scripts over the complete time-course datasets for the three shifts

(matrix size: 5,716 transcripts × 25 samples). Model selection and

statistical validation was performed with the principle of Approxi-

mation Set Coding to determine the most predictive clustering and

the number of clusters (Chehreghani et al, 2012), which determines

the best tradeoff between informativeness and stability of the clus-

tering solutions. Here, it has been employed to compare two rela-

tional cost models: pairwise clustering (Hofmann & Buhmann,

1997) and correlation clustering (Bansal et al, 2004) with Pearson

correlation similarity. Pairwise clustering yielded a higher approxi-

mation capacity than correlation clustering, that is a larger number

of bits-per-sample which are reliably extracted from the data. For

each cluster, a representative time trajectory was estimated by the

average value of the members of the cluster at each time point.

Probabilistic assignment to network motifs

Interpolation of metabolite and transcript data

Depending on how we computed the “dynamic dependence” (see

below), we either used interpolated trajectories of the average (across

three biological replicates) response of each metabolite in every shift,

or we interpolated each biological replicate independently for every

shift. In both cases, we used two interpolation techniques: (i) linear

interpolation, and (ii) cubic smoothing spline interpolation. We inter-

polated the experimental time points between 0 and 10 min of the

metabolic response. To estimate the rate of change of each transcript

in time (that is, its time derivative), we interpolated each transcrip-

tional time course (experimental time points between 0 and 24 min

of the transcriptional response, evaluated in equally spaced intervals

of 1 min) with cubic smoothing splines and differentiated the result-

ing polynomials. All the interpolated curves were sampled every

minute to establish sampled datasets.

Computation of “dynamic dependence”

To compute the dynamic dependence between every metabolite–

transcript pair for each experiment, we employed the sampled

version of distance correlation (Székely et al, 2007). The computa-

tion of a distance correlation between a set of pairwise samples
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(within a 10-min interval) of a metabolite–transcript pair resulted in

a dynamic correlation value of that pair for that particular time inter-

val. Since the experimental measurements are noisy, we also added

Gaussian noise to the pairwise samples (with coefficient of variation

equal to 0.1. 0.2, 0.3, and 0.4). Causality was introduced by comput-

ing the dynamic correlation between each metabolic trajectory and

the derivative of each transcriptional response, and by making use of

ten “delayed” versions of the transcriptional response for the compu-

tation of the distance correlation (a 10-min window of the initial

transcript–trajectory was used in every case, which was moved by

1 min until the 20th min of the transcriptional response). Hence, for

each pair of metabolite–transcript, we computed 11 values (each

assigned to one transcriptional “delay” value) of dynamic depen-

dence for each experimental case. To achieve robust results, we used

three definitions of pairwise correlations: (i) average trajectories:

average metabolite samples (over biological replicates) and tran-

script samples in time define two one-dimensional feature vectors;

(ii) individual trajectories, variant 1: the one-dimensional vector of

metabolite responses is constructed from all biological replicates;

and (iii) individual trajectories, variant 2: the metabolite and tran-

script vectors are both three-dimensional (for the replicates). With

these three variants, two versions of the interpolated metabolite

data, and four different levels of variance for the Gaussian noise, we

computed the dynamic dependence for each metabolite–transcript

pair by 24 different methods. Finally, we selected the 10% of the

transcripts with the highest maximum distance correlation value

(across all the transcriptional delays) to define a set of genes associ-

ated with a metabolite (significant set of genes of a metabolite; SSG

of a metabolite). The “dynamic dependence” feature value of a

metabolite used for network assignment was defined as the mean

value of the distance correlation values of the SSG of this metabolite.

Computation of “representation of TOR genes”

For each metabolite, the feature of “representation of TOR genes” is

defined as the normalized fraction of genes in SSG that are known to be

directly associated with at least one of the transcription factors Gcn4,

Rtg1, Rtg3, Gln3, Sfp1, Fhl1, Ifh1, Msn2, Msn4, Gis1, and Sko1 that are

known direct targets of TORC1. The direct association was inferred

from the YEASTRACT database (Teixeira et al, 2006) using the direct

and documented interactions (downloaded on 10 Nov 2011).

Bayesian inference framework

Given the computed values for the features of “dynamic depen-

dence” and of “representation of TOR genes” for each experimental

condition, we employed Bayes factors (Kass & Raftery, 1995) to

perform the probabilistic assignment of each metabolite to the four

network motifs. The Bayes factor Bij is defined as the fraction of the

posterior probability of the motif Mi given the data D with the

posterior probability of the motif Mj given the data:

Bij ¼ PðMi jDÞ
PðMj jDÞ

The posterior probability of each motif M given the data can be

computed via Bayes’ rule as:

PðM jDÞ ¼ PðD jMÞ � PðMÞ
PðDÞ

where P(D|M) is a likelihood that represents the probability that

the data are produced under the assumption of the motif M, P(M)

is the prior value of the motif M (representing the initial degree of

belief in the motif), and P(D) is the evidence of the data. We

assumed uniform priors for each metabolite-network assignment

such that the Bayes factor Bij is given by:

Bij ¼ PðD jMiÞ
PðD jMjÞ ;

namely the fraction of the likelihoods of the two motifs. The likeli-

hood of assigning a metabolite to a network motif was computed

based on the corresponding “motif prototype” values (see Fig 4B)

and the values of the metabolite-related features compared to the

feature distribution of a random set of metabolites (of an initial

constant value plus Gaussian noise of same coefficient of variation

as in the experimental dataset). Specifically, the likelihood value was

defined as the product of the distances of the features’ values on the

empirical cumulative density function (eCDF) of the random metabo-

lite set from the “motif prototype” values. When a “motif prototype”

value is “R”, then the eCDF distance (of a feature with value x) from

the median of the random set distribution is computed only when

eCDF(x) > 0.5. If eCDF(x) < 0.5, then the eCDF distance equals

zero. Note that we employed two ways to compute the likelihood of

assigning a metabolite to a network motif M: (i) by accounting for

the likelihood in all three conditions, and (ii) by accounting for the

likelihood values of the rapamycin downshift and of the nutrient

shift with the highest likelihood value. Finally, by computing the

values of:

B21 ¼ PðD jM2Þ
PðD jM1Þ ; B31 ¼ PðD jM3Þ

PðD jM1Þ ; B41 ¼ PðD jM4Þ
PðD jM1Þ ;

and accounting for the fact that the sum of all four posterior

probabilities has to equal one, we can easily compute posterior

probabilities of the assignments of each metabolite to the four

network motifs.

Frequency of assignment to network motifs

Altogether, we performed 48 different probabilistic assignments of

each metabolite to the four network motifs (24 variants for comput-

ing the dynamic dependence and two variants of determining proba-

bilities of network assignments). For a metabolite, the frequency of

assignment to a network motif is defined as the fraction of the meth-

ods that support the metabolite-network assignment with more than

50% probability. Note here that although the probabilities of the

network assignments always sum up to one, this does not apply to

the frequencies of assignments. When, for a metabolite, the assign-

ment probabilities (computed with a particular method) are identi-

cal for the four network motifs (i.e. 25%), then this method will

increase the frequency of “no network motif”.

Robustness of assignments to network motifs

The only prior knowledge we use for the analysis is the set of tran-

scription factors (TFs) that, according to the literature, are direct

targets of TORC1 (11 TORC1-TFs). This set of TFs influences directly

the values of the feature “representation of TOR genes”, which in

turn affects the motif frequency value (fraction of computational
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methods assigning a metabolite to a specific motif), and hence the

final assignment of a metabolite to a network motif via the domi-

nant motif frequency. We performed two types of perturbations to

the TORC1-TFs set: (i) We removed all possible combinations of

one (�1), two (�2), or three (�3) TFs and recomputed the assign-

ments of the metabolites to network motifs for all possible TF

subsets (11, 55, and 155 sets, respectively). (ii) We added one (+1),

two (+2), or three (+3) TFs to the TORC1-TFs set by random selec-

tion from the yeast TFs not known to be targets of TORC1, with

N = 100 samples each. We call “assignment robustness” the frac-

tion of perturbation sets in which a metabolite is assigned to the

same network motif as in the unperturbed case. Supplementary

Table S9 contains the “assignment robustness” and the standard

deviation of the dominant frequency for every metabolite and for all

perturbations cases.

Data availability

The raw gene expression data comprising all three shift experiments

are deposited in the NCBI Gene Expression Omnibus (GEO) under

the accession number GSE54852 (http://www.ncbi.nlm.nih.gov/

geo/query/ acc.cgi?acc=GSE54852). Each individual shift experi-

ment can alternatively be retrieved under accession numbers

GSE54844 (N-upshift), GSE54850 (N-downshift), and GSE54851

(rapamycin-induced downshift). The protein quantitative SRM data-

set is deposited in the public repository Panorama and accessible via

the link https://daily.panoramaweb.org/labkey/project/Aebersold/

ludwig/BigY_SRMdata/begin.view. All data were processed as

described in Materials and Methods. The Matlab code for the

network inference method is provided as Supplementary File S1.

Supplementary information for this article is available online:

http://msb.embopress.org
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