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The Target of Rapamycin (TOR), a protein kinase, is the central

node of a highly conserved signaling network that regulates cell

growth in response to nutrients, hormones, and stresses. TOR

is found in two functionally distinct complexes, TORC1 and

TORC2. In this review we address the most recent advances in

TOR signaling in invertebrate model organisms, including

yeasts, plants, worms, and insects.
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Introduction
Invertebrate model organisms are valuable in biomedical
research. Rapamycin was identified in the early 1970s as
an antifungal agent against the pathogenic yeast Candida
albicans [1,2] but was later developed as an immunosup-
pressive for use in the prevention of allograft rejection. In
the early 1990s, the Target of Rapamycin (TOR) was
discovered in Saccharomyces cerevisiae [3]. Soon thereafter,
TOR was identified in many other organisms ranging
from yeasts to mammals. More recently, TOR was shown
to play a prominent role in many human disorders in
addition to allograft rejection, including cancer, diabetes,
and cardiovascular disease. TOR is a member of the PIKK
family, a family of atypical serine/threonine kinases that
also includes DNA-PK, ATM, and TEL1. It is found in
two conserved complexes termed TOR complex 1
(TORC1) and TOR complex 2 (TORC2) [4]. TORC1
and TORC2 are essential regulators of cell growth in
response to nutrients, hormones, or stresses. TORC1
mediates temporal control of cell growth by activating
anabolic processes such as ribosome biogenesis, protein
synthesis, transcription, and nutrient uptake and by inhi-
biting catabolic processes such as autophagy and ubiqui-
tin-dependent proteolysis [4]. In contrast, TORC2
mediates spatial control of cell growth mainly by regulat-
ing actin cytoskeleton organization. Invertebrates also

played a major role in elucidating these generally con-
served features of the TOR signaling network. Here we
review the major findings of the last two years on TOR
signaling and cell growth regulation in invertebrates.

TOR complexes: composition, structure, and
localization
The TOR complexes were originally described in S.
cerevisiae, but have now been identified in a wide variety
of organisms ranging from yeast to mammals (see
Table 1). In S. cerevisiae, the core components of TORC1
are TOR (TOR1 or TOR2), KOG1, and LST8. The core
components of budding yeast TORC2 are TOR2, AVO1,
AVO3, and LST8. The corresponding components in
other species are listed in Table 1. In addition to the
core components, both complexes contain species-
specific subunits (Table 1) [4]. During the last two years,
TORC1 and TORC2 complexes have been identified
biochemically or genetically in the fission yeast Schizo-
sacchromyces pombe [5,6!!], in the pathogenic yeast C.
albicans [7], in the unicellular green alga Chlamydomonas
reinhardtii [8] and in the protozoan Trypanosoma brucei
[9!], which emphasizes the high degree of conservation of
these complexes in eukaryotes. As in S. cerevisiae, fission
yeast contains two TOR genes, TOR1 and TOR2. How-
ever, because of the naming of the fission yeast TORs
based on order of discovery rather than function, S. pombe
SpTOR1 corresponds to budding yeast TOR2 and vice
versa. SpTOR2 is found mainly in TORC1, associated
with WAT1/LST8, MIP1/KOG1, TCO89, and the
uncharacterized protein TOC1 [5,6!!], whereas SpTOR1
is found mainly in TORC2 associated with WAT1/LST8,
SIN1/AVO1, STE20/AVO3, and BIT61 [5,6!!]. Interest-
ingly, all the so far identified, conserved TORC subunits
are highly phosphorylated. Furthermore, both SpTOR1
and SpTOR2 associate with the casein kinase II ORB5,
the PIKK regulator TEL2 and the uncharacterized
protein TTI1 [6!!]. TEL2 appears to interact with all
PIKKs and, at least in mammals, it maintains the stability
of the TOR protein, thereby indirectly influencing TOR
downstream signaling [6!!,10,11!!].

In early studies, TORC1 was characterized by its sensi-
tivity to rapamycin, while TORC2 is insensitive to rapa-
mycin. This was later shown to be because of the ability of
rapamycin (in complex with FKBP) to bind directly to
TORC1 but not to TORC2. In Arabidopsis thaliana,
TORC1 is insensitive to rapamycin due to the absence
of a functional FKBP12 [12–14]. In T. brucei, TORC1 is
insensitive to rapamycin-FKBP12 inhibition while
TORC2 is sensitive. In this case, the rapamycin-FKBP12
complex can bind only to free TOR2 and not to a fully
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assembled TORC2 complex, suggesting that rapamycin
in T. brucei affects the assembly and not the stability of the
complex [9!], as shown previously in mammalian cells
[15]. Finally, in fission yeast both TORC1 and TORC2
seem to be sensitive to rapamycin, although not under all
conditions or for all readouts [5,6!!,16–18].

While the composition of TORC1 and TORC2 are
extensively described, their three-dimensional structures
are far less well known. In 2007, the Llorca group recon-
structed a low-resolution 3D structure of yeast TOR1 and
the TOR1–KOG1 complex, by electron microscopy.
Although the structure is only partial, it suggests that
the RNC (Raptor N-terminal Conserved) domain of
KOG1, which is known to interact with TORC1 sub-
strates, is in close proximity to the kinase domain of
TOR1 [19]. This finding begins to provide an explanation
of how KOG1 might present substrates to the catalytic
region of TOR1 within TORC1. Currently there is no
structure of TORC2 and its resolution would be of great
interest to better understand the regulation of TORC2
activity.

The intracellular localization of TOR and the TORCs has
been debated for several years. In S. cerevisiae, early
studies localized TORC1 at the plasma membrane, endo-
somes, the vacuolar membrane, or in the nucleus [20,21].
During the last couple of years, the issue of TOR local-
ization was revisited. In S. cerevisiae, both TORC1 and
TORC2 were shown to co-fractionate biochemically with
endosomal membranes [22]. However, visualization of
GFP-tagged versions of TOR1, TOR2 and their partners
showed that TORC1 is localized to the vacuolar mem-

brane [23,24!,25!!,26!] while TORC2 is localized to the
cytoplasm and discrete sites at the plasma membrane
[24!,26!]. In S. pombe, GFP-tagged SpTOR2 exhibits
uneven cytoplasmic localization which changes to unde-
fined membranous perinuclear structures upon entry into
G0 [6!!]. In the green algae C. reinhardtii, the TOR and
LST8 homologs were found by biochemical methods to
be associated with ER membranes, and by indirect immu-
nofluorescence to be localized at ‘dot’ structures near the
plasma membrane and the basal body which is enriched
in ER membranes [8]. In trypanosomes, TORC1 localizes
mainly to the nucleus, a localization already observed in
yeast and mammalian cells, and TORC2 was found to be
associated with the ER and mitochondria [9!,21,27,28].
Altogether, the existence of TORC1 and TORC2 at
diverse subcellular locations provides a molecular basis
for the broad and distinct functions of the two TORCs.

TORC1 signaling and cell growth
Upstream regulators of TORC1
TORC1 is a key hub mediating temporal control of cell
growth, by sensing a variety of extra and intracellular
growth cues such as nutrients, especially nitrogen sources
and amino acids availability, growth hormones (insulin/
IGF), cellular energy (ATP), oxygen levels, and noxious
stress [4]. In multicellular organisms, the best character-
ized upstream signaling cascade regulating TORC1 is the
insulin–PI3K–TSC–Rheb pathway [4]. In this pathway,
insulin–PI3K signaling inhibits the GTPase activating
protein (GAP) activity of the TSC complex (a hetero-
dimeric GAP consisting of the two proteins TSC1 and
TSC2), allowing the small GTPase Rheb to activate
TORC1. While TSC–Rheb–TORC1 signaling is not
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Table 1

Listed are the protein components of S. cerevisiae TORC1 and TORC2 and known homologs in other invertebrates (and mammals) in
which TOR has been at least partly characterized. PRR5 has been suggested to be a weak homolog of BIT61 [6!!]. TOR has also been
characterized in Apis mellifera and Zea mays L but no other TORC components have been studied so far in these organisms. – = no
homolog found or the homologs are not known to be part of the complex

S. cerevisiae S.
pombe

C.
albicans

D.
discoideum

C.
reinhardtii

T.
brucei

A.
thaliana

C.
elegans

D.
melanogaster

Mammals

TORC1
TOR1 or TOR2 TOR1 or

TOR2
TOR1 TOR TOR TOR1 TOR TOR TOR mTOR

KOG1 MIP1 – – – RAPTOR Raptor1A
Raptor1B

DAF15 RAPTOR RAPTOR

LST8 WAT1 – – LST8 – – LST8 LST8 mLST8
TCO89 TCO89 TCO89 – – – – – –

– TOC1 – – – – – – –

– – – – – – – – – PRAS40

TORC2
TOR2 TOR1 or

TOR2
TOR1 TOR TOR TOR2 TOR TOR TOR mTOR

AVO1 SIN1 – PiaA – – – SINH1 SIN1 mSIN1
AVO2 – – – – – – – –

AVO3 STE20 – RIP3 – AVO3 – RICT1 RICTOR RICTOR
LST8 WAT1 – LST8 LST8 – – LST8 LST8 mLST8
BIT61 BIT61 – – – – – – – PRR5/PRR5L
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found in S. cerevisiae (no TSC homologs), this pathway is
present in the fission yeast S. pombe and in the filamentous
fungal pathogen C. albicans [5,6!!,16,29–32], indicating
that the pathway appeared early in evolution. However,
TSC1/2 is absent or not characterized in several organ-
isms where TOR has been identified, including plants,
worms, slime mold, and T. brucei (some of which evolved
later than yeasts).

The translationally controlled tumor protein (TCTP),
recently identified in Drosophila as a Guanine Exchange
Factor (GEF) for Rheb, positively regulates Rheb and
downstream TORC1 signaling [33]. While the role of
TCTP in Rheb–mTORC1 signaling is not conserved in
mammals, RNAi-mediated knockdown of TCTP in A.
thaliana leads to growth phenotypes similar to loss of
AtTOR, suggesting that TCTP is involved in TOR
signaling in plants [34–36]. Furthermore, TORC1 in
Drosophila seems to be regulated indirectly through pro-
teasomal degradation [37]. Indeed, TSC2 can be
degraded in an ubiquitin-dependent and E3 ubiquitin
ligase complex (FBW5–DDB1–CUL4 complex)-depend-
ent manner. This underscores the complexity of TORC1
regulation by the TSC–Rheb axis.

Amino acids and nitrogen sources are well known reg-
ulators of TORC1 in several organisms; however, the
molecular mechanism that triggers TORC1 activation
specifically by amino acids was unknown until recently.
Two new activators of TORC1 in response to amino acids
were identified in D. melanogaster. The MAP kinase
homolog MAP4K3 activates TORC1 leading to the phos-
phorylation of S6K and 4EBP in response to amino acids
but not to insulin [38!]. A dimeric complex of the two
small GTPases RagA and RagC also activates TORC1
specifically in response to amino acids, independently of
the TSC complex and downstream or in parallel to Rheb
[39!!,40]. The Rag complex affects cell growth and organ
size in a nutrient-dependent manner and inhibits autop-
hagy and starvation induced cell death [39!!,40]. The
underlying molecular mechanism is likely conserved in S.
cerevisiae because the vacuolar proteins GTR1 and GTR2
(homologs of RagA and RagC) are involved in microau-
tophagy and have been proposed to mediate the amino
acid signal to TORC1 [20,41]. This notion is supported by
the finding that GTR1 and GTR2 are required to inhibit
nitrogen catabolite-repressed (NCR) genes, which are
well known target genes of TORC1 signaling, and that
GTR deletion causes rapamycin hypersensitivity, an
indication of a defect in TORC1 signaling [42,43].

In S. cerevisiae, membrane trafficking to the vacuole
appears to be important to trigger the amino acid signal
to TORC1. Indeed, several recent studies have shown
that TORC1 co-fractionates and genetically interacts
with several proteins involved in protein sorting to the
vacuole, including the class C and class D VPS (Vacuolar

Protein Sorting) proteins [22,44,45]. Mutants defective in
these VPS proteins exhibit rapamycin hypersensitivity,
reduced intracellular amino acid pools, and constitutive
GLN3 nuclear accumulation [44,45] — all phenotypes
suggesting a defect in TORC1 signaling. These findings,
together with the localization of TORC1 at the vacuolar
membrane and at the endosome, suggest a model in
which intracellular protein trafficking (from Golgi to
endosomes and from endosomes to vacuole) controls
the level of intracellular amino acids which in turn affect
TORC1 activity at the vacuolar membrane and at endo-
somes.

Targets and processes downstream of TORC1
TORC1 mediates temporal control of cell growth in
response to nutrients and, in metazoans, growth factors.
The growth-related processes controlled by TORC1
include transcription, protein synthesis, ribosome bio-
genesis, autophagy, stress responses, and nutrient trans-
port. Despite the large number on TORC1-regulated
processes, only a few direct TORC1 substrates have been
identified. In metazoans, the best characterized sub-
strates for TORC1 are the translational inhibitor 4E-
BP and the S6 kinase S6K [4]. In Drosophila, the depho-
sphorylation of S6K upon rapamycin treatment or amino
acid withdrawal depends on the activity of the type 2A
phosphatase PP2A, linking two well known TORC1
functions — activation of kinases and inhibition of phos-
phatases [46]. TORC1–S6K signaling seems to be con-
served in yeast. In S. cerevisiae, the AGC kinase and S6K
homolog SCH9 is directly phosphorylated and activated
by TORC1 [25!!]. SCH9 is required for TORC1-de-
pendent regulation of ribosome biogenesis, control of
translation initiation via phosphorylation of the S6 ortho-
log, activation of RNA polymerase III through direct
phosphorylation and inhibition of the transcriptional
repressor MAF1, and inhibition of entry into G0 phase
via direct phosphorylation of the kinase RIM15
[25!!,47,48]. Contrary to the known inhibitory effect of
noxious stresses on TORC1–SCH9 [25!!,47,49], osmotic
stress seems to promote the binding of SCH9 to the
promoter of osmostress-responsive genes where it acts
as a transcriptional activator [50]. This finding together
with genome-wide expression profiling suggests that
SCH9 also has TORC1-independent functions in yeast
[50,51].

One of the major roles of TORC1 in the promotion of cell
growth is the positive regulation of ribosome biogenesis
and function [4,52]. In yeast, TORC1 regulates ribosomal
protein (RP) gene and ribosomal biogenesis (RiBi) gene
expression through SCH9 [25!!] and through the control
of at least two transcription factors, FHL1 and SFP1
[4,52]. Interestingly, it was recently shown in yeast that
TORC1 binds and phosphorylates SFP1 directly, in a
rapamycin sensitive manner, and that this phosphoryl-
ation by TORC1 is essential to maintain SFP1 in the
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nucleus where it can activate RP and RiBi gene expres-
sion [53!]. The authors of this study propose that SFP1 is
a functional homolog of the proto-oncogene c-MYC that
regulates RP and Ribi gene transcription in mammals
[52,53!,54]. This notion was recently strengthened by the
finding that MYC in flies is downstream of TORC1 in
activating cell growth, by promoting Ribi gene expression
in response to nutrients [55!,56!]. MYC binds and acti-
vates several Ribi genes in a TORC1-dependent manner
[56!]. Furthermore, an overgrowth phenotype due to
TSC1 knockdown in flies is completely abolished in
the absence of MYC, while the effect of MYC over-
expression in muscle cell endoreplication is abolished
by TSC overexpression [55!,56!]. However, MYC is
regulated not only via the TOR signaling pathway but
also by the EGFR–Ras pathway [57!]. Taken together,
these data support a model in which MYC in flies is a
downstream effector of TOR signaling in regulating Ribi
gene expression and cell growth in response to nutrients.

TORC1 also regulates other factors involved in RP gene
expression or ribosome biogenesis. In yeast, TORC1
regulates the subcellular localization of the 40S ribosome
biogenesis factor DIM2, and the function of HMO1 in the
regulation of rRNA and RP genes expression [58,59]. In
Drosophila, TORC1 controls the RNA pol I dependent
transcription factor TIF-IA in the regulation of rRNA
synthesis, similarly to what was observed for the regula-
tion of TIF-IA homologs in yeast and mammals [60–62].

In response to nutrients, TORC1 inhibits autophagy, a
process of bulk degradation of protein and organelles by
the vacuole/lysosome [63]. Autophagy is mediated by a
number of conserved ATG proteins each of which acts at
a specific step in this process. Activation of the protein
kinase ATG1 is a critical step in the induction and
formation of the preautophagosomal structure (PAS). In
yeast, TORC1 inactivation upon starvation leads to the
dephosphorylation of ATG13 (see Figure 1). Depho-
sphorylated ATG13 then forms a complex with ATG1
and ATG17 in which the ATG1 kinase is activated [64].
At the signaling level, it appears that both SCH9 and the
type 2A phosphatases, two well known TORC1 targets,
are also implicated in the regulation of autophagy [65,66].
However, it should be noted that SCH9 cooperates with
PKA to inhibit autophagy and that this effect seems to be
partially independent of TORC1 activity [65]. The
ATG1–ATG13 complex is conserved in Drosophila as a
nutrient-sensitive regulator of autophagy. In flies, ATG1
interacts with TOR, and the ATG1–ATG13 complex is
phosphorylated in a TOR-dependent and ATG1-de-
pendent manner (see Figure 1). However, contrary to
what is observed in yeast, ATG13 in flies is hyperpho-
sphorylated even during starvation and remains associ-
ated with ATG1 during feeding conditions [67].
Interestingly, in flies (and mammalian cells), overexpres-
sion of ATG1 inhibits TORC1 signaling while ATG1

disruption increases TORC1 activity as measured by
variation in TOR-dependent S6K phosphorylation
[68!,69!]. Furthermore, overexpression of ATG1 or
depletion of ATG13 significantly affects the cellular
localization of TOR in flies [67]. These results suggest
a model whereby ATG1–ATG13, by antagonizing
TORC1, is involved in a self-reinforcing feedback loop
[67,68!,69!] (see Figure 1).

A second target of TORC1 during autophagy in Droso-
phila might be the class III PI3K VPS34 (see Figure 1).
VPS34 is activated by TORC1 and ATG1 and is required
for TORC1-dependent and ATG1-dependent PAS for-
mation during starvation [70]. These findings suggest that
VPS34 is a downstream target of nutrient–TORC1–
ATG1 signaling, contrary to what has been observed in
mammals where VPS34 seems to be upstream of
mTORC1 [71]. The regulation of VPS34 by TORC1,
as seen in flies, might be conserved in S. cerevisiae. A
VPS34 deletion in yeast is synthetic lethal with a TOR1
deletion, and a VPS34 deletion impairs GLN3-dependent
gene expression (a well known TORC1 readout) in
response to poor nitrogen source [44,45]. Finally, as
discussed below, autophagy has emerged as an important
process in the regulation of longevity by TORC1 in flies,
worms, and yeast.

TORC1 and aging
Over the last five years, TORC1 has been shown to
promote aging in invertebrates. Similar to the well known
negative effect of dietary restriction (DR) on aging,
inactivation of TORC1 leads to an increase in lifespan
in C. elegans, D. melanogaster, and S. cerevisiae [72]. Further-
more, in yeast and worms, DR is not able to further
increase lifespan when TORC1 is inactive, suggesting
that DR and TORC1 are in the same pathway regulating
aging [72].

During the last two years, important advances were made
in understanding how TORC1 regulates lifespan. Several
independent studies in worms and yeast have shown that
translation capacity of the ribosomal pool, which is well
known to be positively regulated by TORC1, is a deter-
minant of longevity. In C. elegans, knockdown of genes
encoding ribosomal proteins (RPs) or translation initiation
factors, such as the S6K homolog RSKS-1 or the eIF4E
homolog IFE-2, significantly increases lifespan
[73,74!,75!,76!!]. Similarly, in S. cerevisiae, deletion of
nonessential RP genes, especially those encoding the
60S ribosome subunit, also extends lifespan [77,78!!].
Contrary to what is observed in C. elegans, DR is unable
to extend further the long lifespan phenotype of RP gene
mutants in yeast, similar to a tor1 mutant [74!,76!!,78!!].
This suggests that translation is an important determinant
of longevity downstream of DR/TORC1 signaling. Inter-
estingly, in S. cerevisiae, the nutrient-controlled transcrip-
tion factor GCN4 is required for full lifespan extension in
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response to either DR, to inhibition of TORC1–SCH9
signaling or to 60S ribosome subunit depletion, placing
GCN4 downstream of TORC1 in regulating lifespan
[78!!].

Autophagy is another TORC1-dependent process that
seems to be important for DR-dependent lifespan exten-
sion. Several analyses in worms have shown that DR
induces autophagy, and that blocking autophagy by
RNAi-mediated knockdown of ATG genes blocks the
extension of lifespan normally observed during DR or
upon TORC1 loss of function (let63 and daf15 RNAi)
[79!,80!,81!]. In Drosophila, mutation or knockdown of
ATG genes shortens lifespan, while induction of autop-
hagy by the overexpression of ATG8a in the brain
reduces age-associated phenotypes and extends lifespan
[81!,82!,83!]. Finally, in S. cerevisiae deletion of ATG1 or
ATG7 shortens lifespan of post mitotic cells, known as
chronological lifespan (CLS) [84]. Interestingly, in
worms the forkhead transcription factor PHA4/FOXA
seems to be a downstream effector of TORC1–S6K that

promotes autophagy and longevity in response to DR
[79!,85!!,86!!]. Taken together, these findings suggest a
conserved mechanism in which TORC1 promotes aging
through, at least, the inhibition of autophagy.

In budding yeast, different studies have highlighted the
importance of the SCH9 branch of TORC1 signaling in
longevity. TORC1 promotes aging through the inhibition
of mitochondrial respiration [87!!] whereas deletion of
SCH9 leads to increased respiration and increased life-
span. These findings suggest that SCH9 is an important
downstream target of TORC1 inhibiting mitochondrial
activity during growth in the presence of glucose [88].
Furthermore, the protein kinase RIM15, which is directly
phosphorylated and inhibited by SCH9, and the RIM15
target transcription factors MSN2/4 and GIS1 are
required for the increase in lifespan upon TORC1 inhi-
bition [47,89!,90]. The activation of MSN2/4 upon
TORC1 inhibition promotes the expression of the pro-
longevity nicotinamidase gene PNC1. This leads to the
activation of the well-known longevity regulator SIR2, a
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Figure 1

Regulation of autophagy by TORC1 in (a) S. cerevisiae and (b) D. melanogaster. In response to nutrient availability, TOR complex 1 (TOR1/TOR2/
dTOR, KOG1/RAPTOR, and LST8/dLST8) negatively regulates autophagy in yeast and flies. (a) In S. cerevisiae, TORC1 inhibits autophagy by
promoting hyperphosphorylation of the kinase ATG1 and ATG13. Upon TORC1 inhibition (nutrient limitation or rapamycin treatment) ATG1 and ATG13
are dephosphorylated and associated. This leads to the formation of the preautophagosomal structure (PAS), an essential early step in autophagy. The
protein kinase SCH9, a direct target of TORC1, and the TORC1 controlled type 2A phosphatase (PP2A) SIT4 inhibit and promote autophagy. The class
III PI3K VPS34 is likely involved in the TORC1-dependent regulation of autophagy. (b) Contrary to yeast, in D. melanogaster, the ATG1–ATG13
interaction is not altered upon TORC1 inhibition. ATG1 interacts directly with dTOR and, once activated, signals back to TORC1 in a positive feedback
loop reinforcing autophagy. VPS34 is required for the early step of autophagosome formation. The AGC kinase S6K is required for normal induction of
autophagy.
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histone deacetylase, suggesting that TORC1 promotes
aging via negative regulation of the Sirtuin SIR2 in yeast
[89!]. In both flies and worms, the PNC1 homolog was
shown to be involved in regulating longevity and stress
resistance [91,92]. However, at least in Drosophila, the
nicotinamidase homolog does not seem to be regulated by
TORC1 or DR [92].

It is striking that, in response to nutrients, TORC1
promotes aging in different organisms through a common
set of downstream processes such as mitochondrial respir-
ation, translation, autophagy, and transcription. Are these
TORC1-regulated processes coordinated to regulate life-
span in response to nutrients? Recent findings seem to
suggest an affirmative answer to this question. As shown
in yeast, mature ribosomes are subject to selective, ubi-
quitin-dependent autophagy during nutrient starvation,
linking autophagy, and translation capacity of the cell
[93]. Furthermore, mRNA mistranslation in yeast induces
PNC1 expression which in turn activates SIR2, linking
translation efficiency and SIR2 function [94].

TORC1 controls development
Several studies in invertebrates have highlighted the
role of TORC1 as a regulator of development. In the
filamentous pathogenic fungus C. albicans, nitrogen
limitation induces a switch from nonfilamentous growth
to filamentous growth, leading to virulence. Recently,
different reports have suggested that nitrogen limitation
induces this filamentation and virulence through a con-
served TSC2–RHEB–TORC1–GLN3–MEP2 signaling
cascade [30,95–97]. In the plant Zea mays L (maize),
TOR expression is induced during germination. While
TOR is not expressed early in germination, it appears
during germination and remains at this high level in
different tissues at later developmental stages and in
adult plants [98].

TOR is important for development in Drosophila. For
example, insulin–TOR–S6K signaling appears to be a
critical pathway controlling neuronal growth and differ-
entiation [99,100]. Furthermore, when fly larvae are
starved, there is a delay in the transition from larva to
pupa. This delay in the timing of development is
mediated by TOR in the prothoracic gland (PG), a gland
that regulates the production of the hormone ecdysone. It
has been suggested that a nutrient-dependent signal
activates TOR in the PG which in turn leads to the
production of ecdysone and subsequent pupariation
[101]. Similarly, in the honeybee Apis mellifera, change
in nutrient quality during feeding of female larvae leads
to dimorphic caste development. While normal nutrition
leads to the development of female larvae into sterile
worker bees, feeding of female larvae with a particularly
nutritious ‘royal jelly’ results in the development of
queen bees. Inhibiting TOR in female larvae fed royal
jelly, by rapamycin treatment or RNAi, prevents devel-

opment of queen bees and results in bees with worker
phenotypes [102]. Furthermore, queen development is
associated with high TOR gene expression [102,103]. This
suggests that TORC1 is a central switch in diphenic caste
development in response to nutrients, and identifies
nutrient–TORC1 signaling as a social determinant.

TORC2 and growth control
Current knowledge on TORC2 is lagging behind that on
TORC1, mainly because of the lack of a good pharma-
cological tool, such as rapamycin, for TORC2 inhibition.
However, since the identification of TORC2 in yeast
[104,105] and mammals [106,107], significant progresses
has been made toward a better understanding of TORC2.
Below we focus on the function and regulation of TORC2
in invertebrates. In general, the pattern that seems to be
emerging is that TORC2 in different organisms is more
varied than TORC1, in function and regulation.

Upstream regulators of TORC2
While processes and targets downstream of TORC2 are
known (actin cytoskeleton, lipid metabolism, etc.) the
nature of the upstream regulators of TORC2 are poorly
characterized. In Drosophila, like in mammals, TORC2
appears to be regulated by the insulin–PI3K pathway.
However, in Dictyostelium discoideum, another pathway
activates TORC2. In this organism, TORC2 is activated
in response to a chemoattractant in a PIP3-independent
manner. The activation of TORC2 by chemoattractant is
mediated by heterotrimeric G proteins and by RAS-like
G proteins rasC and rasG [108!!]. But other intermediate
G proteins are also suggested to be involved in this
process. In yeast, while nitrogen source and stress are
well known regulators of TORC1, their effect on TORC2
is unclear. In S. pombe, TOR1 is part of TORC2, but upon
mild nitrogen limitation TOR1 seems also to be part of
TORC1. TOR1 in TORC1 controls G2/M transition
upon mild nitrogen limitation. TOR1 in TORC2 controls
G1 arrest, activation of mating, and mitotic entry in
response to heat and osmotic stress and upon complete
nitrogen depletion [109,110]. These findings suggest that
both TORC1 and TORC2 can be regulated by nitrogen at
least in S. pombe. It is still unclear if the TSC1/2-RHEB
pathway is able to regulate TORC2, in addition to
TORC1, in S. pombe.

Targets and processes downstream of TORC2
Similar to TORC1, only few direct substrates have been
identified for TORC2. The best characterized substrates
of TORC2 are protein kinases of the AGC kinase family,
such as YPK2 in S. cerevisiae and Akt/PKB in mammals, D.
melanogaster and C. elegans [4,111]. TORC2 regulates
these AGC kinases by phosphorylating a conserved serine
or threonine in a C-terminal regulatory domain known as
the hydrophobic motif. Over the last two years, this
mechanism of regulation by TORC2 has shown to be
conserved in other invertebrates. In S. pombe, TORC2
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phosphorylates the hydrophobic motif in the YPK2 homo-
log GAD8 to control mitotic initiation and G1 arrest in
response to stress [112]. Similarly, in C. elegans, TORC2
phosphorylates and activates the YPK2 homolog SGK1
[113!!,114!!]. This finding is supported by the obser-
vation that mTORC2 phosphorylates the hydrophobic
motif of mammalian SGK1 in response to insulin [115!!].
In D. melanogaster, TORC2 phosphorylates the hydro-
phobic motif in AKT, thereby activating AKT and med-
iating AKT-dependent inhibition of the forkhead
transcription factor FOXO [116]. This activation of
AKT is also found in D. discoideum, where TORC2
phosphorylates the AKT homolog PKBR1 in response
to a chemoattractant.

Phosphorylation of the hydrophobic motif is not the only
way that TORC2 regulates AGC kinases. TORC2 also
phosphorylates another conserved AGC kinase region
known as the turn motif. In D. melanogaster and in mam-
mals, SIN1 knockout decreases phosphorylation of the
turn motif in AKT [117]. Similar to AKT, it has been
shown in S. cerevisiae and mammals that a TORC2
deficiency reduces phosphorylation of the turn motif in

PKC [117]. This suggests conservation of a TORC2–PKC
signaling pathway at least in yeast and mammals. In
mammals, TORC2-dependent phosphorylation of the
PKCa turn motif regulates PKC stability [117,118]. All
together, these data support the notion that TORC2 is a
master regulator of AGC kinases, including AKT, PKC,
and YPK2/GAD8/SGK1 (Figure 2) [111].

TORC2 was originally identified as a regulator of actin
cytoskeleton organization in yeast and mammals and was
later shown to have a similar role in D. discoideum [4]. This
function was recently shown to be conserved in the
protozoan parasite T. brucei where TORC2 controls actin
polarization and cytokinesis [9!]. In yeast and mammals,
TORC2 regulates the actin cytoskeleton via Rho-type
small GTPases [4]. This mechanism is likely conserved
in D. discoideum, as the TORC2 substrate PKBR1
regulates GACQ, a RHO-GTPase activating protein
[108!!]. Recently, it was shown in S. cerevisiae that
TORC2 controls RHO1 via two independent effector
pathways. One is mediated by AVO1 and the other by
AVO2 and SLM1/2 [119]. Furthermore, the recent find-
ing that TORC2 colocalizes and genetically interacts
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Figure 2

TORC2 signaling in different invertebrates. The upstream regulators of TORC2 are largely unknown. In Schizosaccharomyces pombe, TORC2 is
activated by different stresses, including acute nitrogen starvation, heat, and osmotic stress. In Dictyostelium discoideum, TORC2 is activated by
chemoattractant through the activation of G-protein-coupled receptors (GPCR-cAR1) and G protein signaling. It is unknown if PI3K is upstream of
TORC2 in Drosophila melanogaster. Known or assumed direct phosphorylation substrates of TORC2 in different organisms are shown. YPK2 in
Saccharomyces cerevisiae, GAD8 in S. pombe, and SGK1 in C. elegans are all SGK1 homologs. AKT in C. elegans and D. melanogaster and PKBA and
PKBR1 in D. discoideum are all AKT/PKB homologs. Also indicated are downstream processes controlled by TORC2.
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with the endocytic pathway, which relies on the actin
cytoskeleton, suggests that TORC2 may directly
regulate endocytosis in S. cerevisiae [22].

TORC2 regulates lipid metabolism in several organ-
isms. Sphingolipids, glycerolphospholipids, and sterols
are the major lipids in eukaryotic membranes whose
concentrations are tightly controlled. For a long time,
there were hints suggesting the involvement of TORC2
in sphingolipid metabolism in S. cerevisiae, first genetic
evidence [120] and later through the discovery of
SLM1/2 as a TORC2 substrate [121–123]. More
recently, the temperature sensitive avo3-30 mutation,
a new TORC2 mutant allele defective in AVO3,
allowed the analysis of sphingolipid content in S. cer-
evisiae and revealed that TORC2 mediates de novo
ceramide synthesis. The avo3-30 mutant displays a
strong reduction in the major yeast ceramide (phyto-
sphingosine), because of reduced ceramide synthase
activity. TORC2 controls ceramide synthase via phos-
phorylation of YPK2. Furthermore, previous reports
suggested that calcineurin antagonizes TORC2
[121,124], and it was shown recently that inhibition
of calcineurin, by deletion of its regulatory subunit
CNB1, restores ceramide levels in the avo3-30 mutant.
The regulation of ceramide synthase is a novel function
of TORC2 signaling, separate from TORC2-dependent
actin polarization [125!!]. The link between TORC2
and lipid metabolism is conserved in multicellular
organisms. In C. elegans, mutants defective in RICTOR
accumulate triacylglycerol (fat mass), and show devel-
opmental delay, small body size, smaller brood size, and
abnormal feeding behavior. These observed pheno-
types are due mainly to a defect in TORC2–SGK1
signaling rather than to a defect in TORC2-mediated
activation of AKT or PKC. Only the fat mass phenotype
of the RICTOR mutant could be attributed to a defect
in AKT (and SGK1) activation. Thus, SGK1 appears to
be the major downstream effector of TORC2. However,
TORC2 clearly regulates more than SGK1 in C. elegans,
since an SGK1-active allele cannot suppress the phe-
notypes of a strong RICTOR mutant [113!!,114!!].
TORC2 also regulates SGK1 in mammals [115!!], but
it remains to be determined whether mTORC2 controls
lipid synthesis.

Finally, while TORC2 is essential in yeasts and mam-
mals, flies lacking the TORC2 component RICTOR or
SIN1 are viable and show only minor growth phenotypes
despite a severe reduction in phosphorylation of the
hydrophobic motif in AKT [126]. However, similar to
what is observed in a mouse model for prostate cancer,
TORC2 in flies becomes essential for hyperplasia caused
by a high level of PI3K signaling [126,127]. This suggests
that the importance of TORC2 in cell growth regulation
differs depending on the organism and physiological
context.

Future directions
Although research on TOR signaling in invertebrates
continues to make important contributions, many ques-
tions remain unanswered. The observation that both
TORC1 and TORC2 are at multiple locations in the cell
suggests that there are functionally different subpopu-
lations of each TORC. It would be of interest to assign
location-specific functions to the TORCs. The different
localizations of the TOR complexes, together with the
many different biological processes regulated by TORC1
and TORC2, also suggest that there are many direct
substrates remaining to be identified. The identification
of these substrates either by targeted or by proteomic
approaches, will likely be a major goal in the future.
Furthermore, mechanisms that determine localization
of the TORCs, possibly in response to growth conditions,
would also be of interest. Another important, understu-
died aspect of TOR signaling is how and where TOR
complexes are assembled and if this biogenesis is
regulated.

While biological readouts of TORC1 are relatively well
established, the exact mechanism by which nutrients act
on TORC1 and the direct substrates of TORC1 are
largely unknown. In Drosophila (and mammals), how do
amino acids feed into the RAG proteins and MAP4K3 to
regulate TORC1? What is the molecular mechanism by
which signals are relayed to TORC1, particularly in S.
cerevisiae, worms and plants where the TSC1/2-RHEB
axis does not exist or is incomplete? The upstream
regulators and direct substrates of TORC2 are even less
well known. Thus, research on TOR signaling in invert-
ebrates should remain an active area in the coming years.
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