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This article presents a study of primal and dual Steklov-Poincaré approaches for the identication of unknown boundary conditions of elliptic problems. After giving elementary properties of the discretized operators, we investigate the numerical solution with Krylov solvers. Dierent preconditioning and acceleration strategies are evaluated. We show that costless ltering of the solution is possible by post-processing Ritz elements. Assessments are provided on a 3D mechanical problem.

Introduction

Inverse problems play an important role in mechanical engineering since they are associated to many nondestructive control techniques. We focus on the problem of missing boundary values in static linear elasticity: we suppose that the geometry and constituents of a structure are perfectly known, whereas a part of the boundary conditions is missing. To compensate this lack of knowledge, another part of the boundary is overspecied in the sense that both Dirichlet's and Neumann's are known. The challenge is thus to propagate this extra information till the unknown boundary.

Mathematically speaking this data completion problem is a Cauchy problem on an elliptic partial dierential equation. Under compatibility assumptions on the data, there exists a unique solution to this problem. Anyhow, the problem is ill-posed in the sense of Hadamard, meaning that the solution is very sensitive to variations in the inputs (which is a practical problem because inputs are issued from measurements). For further discussion about the ill-posedness of this problem, the reader may refer to [START_REF] Jt Chen | Analytical study and numerical experiments for Laplace equation with overspecied boundary conditions[END_REF][START_REF] Faker | Why is the Cauchy problem severely ill-posed?[END_REF].

Because of this instability regularization is more than often necessary to nd a practical solution. For instance, in [START_REF] Marin | Regularized boundary element solution for an inverse boundary value problem in linear elasticity[END_REF], the boundary element method is combined to Tykhonov regularization. Another possibility is to weaken the verication of the boundary conditions and set the problem in terms of the minimization of an error-like functional, see [START_REF] Ladeveze | Parametric correction of nite element models using modal tests[END_REF] for model updating and [START_REF] Andrieux | Solving Cauchy problems by minimizing an energy-like functional[END_REF] for the Cauchy problem. In [START_REF] Cimetiere | Solution of the Cauchy problem using iterated Tikhonov regularization[END_REF] a minimization coupled with an iterative regularization method was proposed. Also, it is possible to set the problem in a stochastic framework, which enables to recover well-posedness at the very expensive price of identifying a probability density function [START_REF] Jin | A bayesian inference approach to the ill-posed cauchy problem of steady-state heat conduction[END_REF].

In this paper, we study a specic class of method, the Kozlov-Maz'ya-Formin (KMF) and Steklov-Poincaré (SP) methods [START_REF] Arkad | An iterative method for solving the Cauchy problem for elliptic equations[END_REF][START_REF] Azaiez | On Cauchy's problem: II. A variational Steklov Poincaré theory[END_REF][START_REF] Larbi Kadri | Identication of internal cracks in a three-dimensional solid body via SteklovPoincaré approaches[END_REF]. These methods consist in formulating the Cauchy problem as the equality of the solutions of two direct problems involving respectively the Dirichlet and the Neumann data (without weakening). This equality results in a compact problem which can be solved either by truncated SVD techniques [START_REF] Per | The truncatedsvd as a method for regularization[END_REF] or more simply by an iterative solver with adapted stopping criterion.

The aim of this paper is to confront some variants of the standard Krylov solvers to the Cauchy problem.

In particular, preconditioning, acceleration and ltering techniques are investigated in order to accelerate the resolution and make it more accurate.

The paper is organized as follows: in section 2 the discrete linear systems associated with the Cauchy problem are presented. In section 3, the variants of the linear solver are presented and assessed on an academic example. Finally, in section 4, a numerical 3D example is addressed in order to illustrate the stability of the proposed method. 1 2 Systems associated with the data completion problem

Notations and hypothesis

Let Ω ⊂ R d (d = 2 or 3) be a domain where we wish to solve a linear elasticity problem under the hypothesis of small deformation. Thanks to the linearity of the problem, we consider the variation of the system around an equilibrated conguration, which enables us to remove the external loads. Let u be the unknown displacement eld, ε the symmetric gradient operator, H the Hooke's tensor, σ the Cauchy stress tensor and n the outward normal vector. 

σ = H : ε(u) div(σ) = 0 in Ω, u = 0 on ∂ d Ω σ • n = 0 on ∂ n Ω , u = ûr σ • n = fr on ∂ r Ω (1) 
We suppose that meas(∂ d Ω) > 0, so that all the forward problems considered afterwards will be well-posed.

Note that this hypothesis can easily be lifted by using the techniques of the FETI domain decomposition method for oating substructures [START_REF] Farhat | A method of nite element tearing and interconnecting and its parallel solution algorithm[END_REF], this is briey described in section 2.3.3.

We use a classical Finite Element approximation of the problem, using Lagrange elements to discretize the displacement eld, and we note u the vector of nodal displacement. We assume Dirichlet conditions were eliminated so that the stiness matrix K is sparse symmetric denite positive. We note with subscript i the degrees of freedom inside the domain and on the Neumann's boundary; with subscript r the redundant degrees of freedom where both displacement degrees of freedom ûr and nodal reactions fr are known, with subscript m the missing degrees of freedom where neither the displacement u m nor the nodal reaction f m are known. We use the counting measure notation for the number of degrees of freedom, e.g. |m| is the number of degrees of freedom of type m.

The discrete equivalent to (1) can then be written as:

(û r , fr ) being known, nd (u i , u m , f m ) s.t.   K ii K ir K im K ri K rr K rm K mi K mr K mm     u i ûr u m   =   0 fr f m   (2) 
In order to simplify our study, we assume that there is no element bearing both redundant and missing degrees of freedom. Note that is always possible to comply to this assumption by forgetting a redundant data (typically the Dirichlet part) which converts a degree of freedom of type r into a degree of freedom of type i.

This assumption results in K rm = 0.

First condensation

As classically done in domain decomposition methods, we can eliminate the internal degrees of freedom and condense the problem on the missing and redundant degrees of freedom: We recall that the Schur complements inherit several properties from the original matrix [START_REF] Zhang | The Schur Complement and Its Applications, volume 4 of Numerical Methods and Algorithms[END_REF]. In particular, in the case we consider, they are symmetric denite positive. Moreover, we have the relation:

u i = -K -1 ii (K ir ûr + K im u m ) Z d C rm C T rm S d ûr u m = fr f m with S d = K mm -K mi K -1 ii K im Z d = K rr -K ri K -1 ii K ir C rm = -K ri K -1 ii K im (3) S d
u m S d = u K where u =   K -1 ii K im u m 0 r u m   (4) 
in words, the norm associated with S d is the energy norm of the eld obtained by discrete harmonic lifting (assuming zero Dirichlet boundary condition on Redundant degrees of freedom). Note that for a regular problem (typically a domain with regular shape and good aspect ratio, enough Dirichlet boundary conditions, moderate heterogeneities) with not too ne discretization, the Schur complements can be considered to be well conditioned matrices, in particular compared to the other operators that will be encountered in the rest of the paper.

In the following, we consider various strategies to solve the equation (2) or equivalently (3).

Remark 1. An important class of methods relaxes the satisfaction of the measurements, which particularly makes sense in the presence of noisy data. This is typically what is done in the modied error in constitutive relation [START_REF] Ladevèze | Updating of nite element models using vibration tests[END_REF]. In the fading regularization method [START_REF] Cimetiere | Une méthode inverse à régularisation évanescente[END_REF], the identied eld is the limit of the sequence indexed by j (a well suited norm shall be used for each term in the functional to minimize):

minimize u j r -ûr 2 + f j r -fr 2 + u j m,r -u j-1 m,r 2 + f j m,r -f j-1 m,r 2 
under the constraint

Z d C rm C T rm S d u j r u j m = f j r f j m (5) 
In the following, we investigate strategies where the measures are not relaxed. Trying to enforce them all is highly unstable and thus we will use an iterative method in order to nd a good approximation of the solution to (3) while controlling its regularity.

Two-eld approach

A rst expression is worth mentioning. From (3), we directly obtain:

S d -I C rm 0 u m f m = C T rm ûr fr -Z d ûr (6)
This is a rectangular formulation with m+r rows and 2m columns. The problem is under-determined if |r| < |m|, that is to say when there is less measurements than data to identify; in that case the solution is not unique. The problem is overdetermined if |r| > |m|; in that case the well-posedness condition is ( fr -Z d ûr ) ∈ range(C rm ), which means that measurements must be coherent for the solution to exist or it should be sought in a minimal residual sense.

In the following we present two classical ways to obtain square systems.

Steklov-Poincaré's formulations

In this approach, we deduce from (3) two classical forward problems by alternatively forgetting one redundant information, which enables us to link u m and f m .

• If we assume Dirichlet condition on ∂ r Ω, we have:

S d u m = f m -C T rm ûr (7) 
and we note b d = -C T rm ûr .

• If we assume Neumann condition on ∂ r Ω, we have:

u m = 0 I Z d C rm C T rm S d -1 fr f m (8) 
which can be written as, using classical block inverse formula:

u m = S -1 n (f m + b n ) with S n = S d -C T rm Z -1 d C rm b n = -C T rm Z -1 d fr (9) 
Remark 

S n = K mm -K mi 0 K ii K ir K ri K rr -1 K im 0 b n = -K mi 0 K ii K ir K ri K rr -1 0 fr (10) 

Primal approach

The primal Steklov-Poincaré formulation simply consists in eliminating the unknown traction f m from equations [START_REF] Bridson | A multipreconditioned conjugate gradient algorithm[END_REF][START_REF] Cimetiere | Solution of the Cauchy problem using iterated Tikhonov regularization[END_REF], resulting in the following system:

(S d -S n ) u m = b d -b n (11) 
We also directly obtain the following expressions:

S d -S n = C T rm Z -1 d C rm b d -b n = C T rm Z -1 d Z d ûr -fr (12) 
from which we deduce the following property:

Proposition 1. (S d -S n ) is a symmetric positive matrix of size |m| and rank min(|m|, |r|).

We can recognize an equivalent minimization problem:

u m = arg min C rm u m -(Z d ûr -fr ) Z -1 d ( 13 
)
This equation enables us to understand the hidden choice made when using the primal Steklov-Poincaré approach: we recognize the second line of ( 6) taken in a least-energy sense. The rst line can be used to post-process the nodal reactions.

In order to fully understand the system, one property inherited from the continuous formulation studied in [START_REF] Azaiez | Revisiting the Dirichlet-to-Neumann solver for data completion and application to some inverse problems[END_REF] must be mentioned:

Proposition 2. (S d -S n ) is the discrete analogue of a symmetric denite positive compact operator in the adapted displacement trace space of ∂ m Ω. This implies that (S d -S n ), even in the case where it is strictly denite, tends to possess very small positive eigenvalues.

From this property and equation ( 12), we can deduce that Matrix C rm possesses very small singular values. Mechanically speaking this matrix represents the nodal reaction on the clamped ∂ r Ω resulting from a given displacement eld on ∂ m Ω; small singular values correspond to unit norm displacement on ∂ m Ω resulting in negligible eects on the faraway boundary ∂ r Ω.

Remark 3. We expected the expressions in the right hand side of ( 12) to be less sensitive to cancellation error than their classical form on the left. In practice we never observed such a property, so that we preferred the classical form which makes it possible to use sparse solvers.

Dual approach

The Steklov-Poincaré dual formulation simply consists in eliminating the unknown displacement u m from equations [START_REF] Bridson | A multipreconditioned conjugate gradient algorithm[END_REF][START_REF] Cimetiere | Solution of the Cauchy problem using iterated Tikhonov regularization[END_REF], resulting in the following system:

S -1 n -S -1 d f m = S -1 d b d -S -1 n b n (14) 
We also directly obtain the following expressions using Shermann-Morrisson formula on the expression of

S n (9): S -1 n -S -1 d = S -1 d C T rm Z -1 n C rm S -1 d S -1 d b d -S -1 n b n = S -1 d C T rm ûr -Z -1 n fr (15) 
where We can also recognize an equivalent minimization problem:

Z n = Z d -C rm S -1 d C T rm is
f m = arg min C rm S -1 d f m -( fr -Z n ûr ) Z -1 n (16) 
This equation enables us to see that the dual Steklov-Poincaré can also be derived from ( 6) by taking the second line in a least-energy sense (with a measure of the energy slightly dierent from the primal approach) and using the rst line in order to replace displacement by eorts.

Dual approach in the absence of Dirichlet conditions

In the absence of Dirichlet conditions (∂ d Ω = ∅), the operator S n is not invertible. This is the equivalent situation to oating subdomains in domain decomposition methods. In that case, we let S † n be a pseudo-inverse of S n and R be a basis of the rigid body motions of the whole structure. R m is the restriction of R on ∂ m Ω;

we have S n R m = 0.

Formula (9) expressing the solution to a full Neumann problem must be adapted:

u m = S † n (f m + b n ) + R m α 0 = R T m (f m + b n ) (17)
in the rst line, the displacement is dened up to a rigid body motion characterized by the amplitude α; the second line corresponds to the well-posedness condition of the Neumann problem.

This leads to the following constrained system:

S † n -S -1 d R m R T m 0 f m α = S -1 d b d -S † n b n -R T m b n (18) 
which is typically solved using a convenient initialization/projection algorithm [START_REF] Farhat | Implicit parallel processing in structural mechanics[END_REF].

3

Solving the Steklov-Poincaré systems

In this section, we consider iterative algorithms to solve the Stecklov-Poincaré formulations. Indeed using iterative solvers with adapted stopping criteria is a common way not to let small singular values perturb the solution, in particular we will make use of the L-curve [START_REF] Hansen | Analysis of discrete ill-posed problems by means of the L-curve[END_REF] in order to stop the iterations. The systems being symmetric denite positive, we use the Conjugate Gradient (CG) algorithm, as was proposed in [START_REF] Ben | A conjugate gradient type method for the Steklov-Poincaré formulation of the cauchypoisson problem[END_REF]. We propose and compare various preconditioning strategies and other acceleration techniques and we propose a low cost regularization of the solution based on Ritz eigencomponents. Note that we also tried algorithms based on the minimization of the residual (and harmonic Ritz eigencomponents) without signicant dierence.

This section briey recalls the algorithms used, then investigates preconditioning, acceleration and ltering strategies. The methods are compared on a simple example in the last subsection.

3.1 Quick reminder

Preconditioned Conjugate gradient (PCG)

Conjugate Gradient is a classical Krylov solver for symmetric positive denite systems. We use the following notations: we solve Ax = b, where A is a symmetric positive denite matrix, x i is the approximation at iteration i > 0, x 0 is the chosen initialization, the residual is r i = b -Ax i . We use a symmetric positive denite preconditioner M (in practice, only the inverse of M is used), so that we in fact solve the equivalent symmetric system L -1 AL -T (L T x) = L -1 b where M = LL T . We note z i = M -1 r i the preconditioned residual and we dene the Krylov subspace at the iteration i > 0:

K i (M -1 A, z 0 ) = span(z 0 , M -1 Az 0 , . . . , (M -1 A) i-1 z 0 ) (19) 
The Conjugate Gradient satises the following search principle expressed either in terms of orthogonality or in terms of optimality:

x i ∈ x 0 + K i (M -1 A, z 0 ), x i = arg min x -x i A ⇔ r i ⊥ K i (M -1 A, z 0 ) (20) 
In our case A possesses very small eigenvalues resulting in the incapacity to correctly evaluate the error committed in the associated directions.

Algorithm 1 recalls the Conjugate Gradient algorithm. The comments aligned on the right recall how to compute Ritz eigencomponents (see below). Note that the algorithm is written in a form suitable for multiple right-hand sides (aka Block CG), that is to say b and x 0 may have N 1 columns. In this case δ i and γ i are N × N symmetric non-negative matrices, δ -1 i is the matrix inverse (or pseudo-inverse for more generality) and γ -1/2 is the matrix square root. Ample details can be found in the dedicated literature [START_REF] Dianne | The block conjugate gradient algorithm and related methods[END_REF]. The formulas for the block computation of Ritz components are adapted from [START_REF] Saad | Iterative methods for sparse linear systems[END_REF].

Discussion on the under-determined case

In the case |m| > |r|, the matrix C rm has a right-kernel and thus A is rank-decient. Let R be a basis of the kernel of A. Let x be a solution to Ax = b, then for all vector α, (x + Rα) is also a solution.

The conjugate gradient will search the solution in the Krylov subspace. Note that, even if A is rankdecient, we still have z 0 ∈ Range(M -1 A) and thus K i (M -1 A, z 0 ) ⊂ Range(M -1 A). The conjugate gradient thus converges to the intersection between (x + Rα) and Range(M -1 A), which we note x. Simple computation leads to:

x = (I -R(R T MR) -1 R T M)x (21)
x is the projection of x on Range(M -1 A) parallel to Range R. It can also be characterized as:

x = arg min y∈Range(M -1 A) x -y A ⇒ x = M -1 A(AM -1 AM -1 A) † AM -1 Ax (22) 
In the case of synthetic experiments where data are numerically generated from a given x. If there are less measurements than missing data, the true error during the iterations must then be evaluated with respect to x instead of x.

In the practical case, once a good approximation of x was found, one still has the opportunity to improve the solution by adding a term of the form Rα with α chosen out of mechanical considerations. Remark 4. The over-determined case is naturally dealt with by the Stecklov-Poincaré formulation (because of the equivalent minimization problem). It has no interaction with the solver.

Ritz values and vectors

We assume the solver converged in m iterations. We note with capital letters the concatenation of vectors stored during the resolution: e.g. P m = (p 0 , . . . , p m-1 ).

Ritz vectors V m form a specic basis of the Krylov subspace, which can be computed at no extra cost, and which satises the following relations:

V T m AV m = diag(θ i ) , V T m MV m = I (23) 
(θ i ) are the Ritz values, they are approximations of the generalized eigenvalues of the pair formed by the operator A and the preconditioner M. We assume they are stored in decreasing order. The following remark briey recall how they can be processed at nearly no cost.

Remark 5 (Computation of Ritz elements). If during the CG iterations, we compute the normalized vector ẑi = (-1) i z i / z T i r i , then Ẑi is a basis of K i+1 which satises:

ẐT i M Ẑi = I and ẐT i A Ẑi =: T
where T is a tridiagonal symmetric matrix whose eigenvalues are the Ritz values. The coecients of T can be recovered from the coecients computations of the CG [START_REF] Saad | Iterative methods for sparse linear systems[END_REF], even in the case of a block solver as given in Algorithm 1. If we note U its orthonormal eigenvectors, then V i = Ẑi U are the Ritz vectors. We note u the rst row of Matrix U, which corresponds to the decomposition of z 0 on the basis of Ritz vectors :

z 0 = r 0 M -1 Vu T = r 0 M -1 m i v i u i or equivalently u i = v T i r 0 / r 0 M -1 .
Algorithm 1 Block Conjugate Gradient with Ritz computation

x 0 given r 0 = b -Ax 0 z 0 = M -1 r 0 , p 0 = z 0 φ -1 = 0 for i = 0, 1, . . . , m (convergence) do q i = Ap i δ i = (p T i q i ), γ i = (z T i r i ), α i = δ -1 i γ i ẑi = (-1) i z i δ -1/2 i x i+1 = x i + p i α i r i+1 = r i -q i α i z i+1 = M -1 r i+1 φ i = (q T i z i+1 ), β i = δ -1 i φ i T i+1,i+1 = γ -1/2 i (δ i + φ T i-1 φ i-1 )γ -1/2 i p i+1 = z i+1 -p i β i (i>0) T i+1,i = T i,i+1 = γ -1/2 i-1 δ i-1 γ -1 i-1 γ 1/2 i end for (θ i ) i<m = Eigenvalues of T T is symmetric bloc tridiagonal U = Eigenvectors of T, Return: Solution x m+1 , Ritz values (θ i ), Ritz vectors V m = Ẑm U 3.1.

Stopping criterion based on the L-curve

Thanks to its embedded minimization principle, PCG is a robust solver (even if some extra care may be required like full reorthogonalization to resist numerical errors). In our case, the quantity xx i A is decreased at each iteration but because of the small eigenvalues of A this is often paid by an explosion of x i 2 and in fact no convergence of xx i 2 . The L-curve, explained for example in [START_REF] Hansen | Analysis of discrete ill-posed problems by means of the L-curve[END_REF] aims at stopping iterations before the solution explodes by nding the bottom-left corner of a curve of the type (log( r i ), log( x i )) where r i shall be a computable measure of the error and x i a norm of the solution. The corner realizes a compromise, but its detection (or even its existence) is not evident.

Illustration of the raw methods

We consider the test-case presented on Figure 2a. The structure is a rectangle of dimensions 5mm × 10mm. We consider plane stress and linear elastic isotropic behavior. The Poisson ratio is 0.3; in the homogeneous case, the Young modulus is E = 70000 MPa; in the heterogeneous case, each element is granted a random Young modulus accordingly to an uniform probability law in [7000; 70000] MPa. The reference solution is built with Neumann conditions of the form: f mx = f 0 (1 + y/y 0 ), frx = f 0 (1 -y/y 0 ) and fry = f my = 0. With f 0 = 1 N.mm -1 and y 0 = 1 mm. We use a regular mesh with continuous piecewise linear triangle nite element, there is a total of 288 degrees of freedom, with |m| = 38, |r| = 40. This choice implies that the problem possesses only positive eigenvalue but they may be very small. The solution to the forward problem serves as a reference for the inverse computations. When noise is injected, it takes the form of a Gaussian white noise: ûn r = (I + N l G)û r with u n r the noisy data, N l the level of noise, I the identity matrix and G a diagonal matrix of uncorrelated Gaussian random variables with mean 0 and covariance 1. Figures 3a and3b, 4a, 4b compare L-curves and distribution of error (at the corner iteration) for the basic primal and dual approaches in either a noiseless heterogeneous case or a homogeneous situation with 10% noise.

It is worthy to notice that in the noiseless case (gure 3b), both approach have well identied corners in the L-curves and the dual method gives way better results than the primal method. This agrees with [START_REF] Larbi Kadri | Identication of internal cracks in a three-dimensional solid body via SteklovPoincaré approaches[END_REF]. On the other hand, as the noise level increases (gure 4b), the corners are much harder to detect and the superiority of the dual method seems to vanish (as will be visible in table 1 in that case the primal method generates a very small error even if the residual is rather large).

Preconditioners

Because of the compactness of the continuous system, the problem we solve is intrinsically not well posed, with a lower part of the spectrum populated by many small eigenvalues. The interest of preconditioning is not as clear as for well-posed problems. For instance in domain decomposition methods applied to forward (well posed) problems, preconditioning enables to mitigate the eects of the discretization, of the decomposition and of the bad properties of the system (large heterogeneities), leading to reasonable condition numbers on large class of problems.

In the case of inverse problems, preconditioning can not cure the lower part of the spectrum which drives the convergence. Thus solvers can be used raw (non-preconditioned). One may nd, in [START_REF] Novati | Some properties of the arnoldi-based methods for linear ill-posed problems[END_REF] and the associated references, the illustration of raw solvers successfully applied to compact systems. In the literature, Steklov-Poincaré methods were also most often tried without preconditioner, with certain success [START_REF] Ben | A conjugate gradient type method for the Steklov-Poincaré formulation of the cauchypoisson problem[END_REF][START_REF] Larbi Kadri | Identication of internal cracks in a three-dimensional solid body via SteklovPoincaré approaches[END_REF][START_REF] Azaiez | On Cauchy's problem: II. A variational Steklov Poincaré theory[END_REF]. In the following, we investigate preconditioning strategies. We focus on the primal approach even though one could easily design the dual counterparts. Yet it appeared from our experiments that for these problems primal and dual approaches strongly dier and in fact, for now, we have no good preconditioning strategies for the dual approach.

Table 1 gives a synthetic view of the performance of the methods we discuss in the following (for the noisy homogeneous and noiseless heterogeneous cases respectively). For the dierent methods, we compare the index of the corner iteration, and for that iteration, the true error in Euclidean norm, the normalized residual (in Euclidean norm) and the Euclidean norm of the displacement.

KMF preconditioner

The KMF preconditioner consists in preconditioning the primal formulation by S -1 d . The resulting system clearly has its spectrum inside the interval ]0, 1[ which makes it prone to stationary iterations. Stationary iterations are slow to converge but they have the advantage to be more stable than Krylov iterations in particular in the absence of complex eigenvalues [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF].

The preconditioner being symmetric denite positive, its use can be interpreted as changing the orthogonality properties in the Krylov solver. Moreover, as said in ( 4), the norm associated with S d is equivalent to the energy norm. These properties make the KMF preconditioner a regularization in itself since it tends to promote most energetic modes. This role is particularly important in the cases where the Schur complement signicantly diers from identity. This is typically the case of heterogeneous structures where energy often is not evenly distributed where the true error with KMF preconditioner is 10 times smaller than for the raw primal approach.

Symmetric à la dual preconditioner

Since in general the dual method has a better behavior compared to the primal approach, we propose to build a version of the primal approach as close to the dual approach as possible.

By the simple change of variable fm = S d u m , and pre-multiplying ( 12) by S -1 d , we obtain:

S -1 d C T rm Z -1 n C rm S -1 d fm = S -1 d C T rm ûr -Z -1 n fr (24) 
compared to the dual formulation [START_REF] Per | The truncatedsvd as a method for regularization[END_REF], Z d was replaced by Z n . Since Z d Z n (for the ordering of SPD matrices), and because the bad conditioning of the system is mostly caused by the smallest eigenvalues, we can expect the dual approach to have a slightly better numerical behavior.

However, using Neumann formula, we can check that the two approaches are rst order equivalent:

S -1 n -S -1 d = (S d -(S d -S n )) -1 -S -1 d = S -1 d (I -(S d -S n )S -1 d ) -1 -S -1 d = S -1 d (I + (S d -S n )S -1 d + o(S d -S n )) -S -1 d = S -1 d (S d -S n )S -1 d + o(S d -S n ) (25) 
As expected, the experiments show that this method is almost equivalent to the dual approach.

Multipreconditioning

In [START_REF] Daniel | A simple and ecient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems[END_REF], one can nd a physical interpretation of the classical preconditioners for FETI and BDD domain decomposition method. This interpretation leads us to considering a preconditioner made out of weighted local inverses of the operators:

(S d -S n ) -1 1 2 (S -1 n -S -1 d ) 1 2 (26) 
The factor 1/2 is the counterpart of the scaling operator of FETI and BDD [START_REF] Klawonn | Feti and Neumann-Neumann iterative substructuring methods: Connections and new results[END_REF] in the case of Schur complements computed on the same domain. In the following, we show evidence that this preconditioner is not far from optimal but in a sense which is not adapted to the problem we wish to solve.

Our investigation is based on the use of MultiPreconditioned Conjugate Gradient (MPCG) [START_REF] Bridson | A multipreconditioned conjugate gradient algorithm[END_REF][START_REF] Gosselet | Simultaneous FETI and block FETI: Robust domain decomposition with multiple search directions[END_REF][START_REF] Bovet | Multipreconditioning for nonsymmetric problems: the case of orthomin and biCG[END_REF]. Starting from a family of potential preconditioners, in our case (S -1 d , S -1 n ), multipreconditioned Krylov solvers let the solver nd the optimal linear combination at each iteration for the underlying minimization problem [START_REF] Klawonn | Feti and Neumann-Neumann iterative substructuring methods: Connections and new results[END_REF].

Schematically, at the iteration i, the preconditioner takes the form (α n i S -1 n + α d i S -1 d ) where α n i and α d i are computed thanks to optimality conditions.

Remark 6 (MPCG algorithm.). In order to apply multipreconditioning to Conjugate Gradient, one simply needs to consider z, p, q as two-column matrices and to replace the preconditioning step by z = [S -1 n r, S -1 d r] (concatenation of two vectors); then p T q is a 2 × 2 matrix and α is a 2 × 1 vector. Note that full reorthogonalization must be used because multipreconditioning breaks the short recurrence of CG.

Figure 5 compares the iterations of CG and MPCG in terms of error (measured by r 2 ) and norm of the error (measured by e 2 ) for the heterogeneous noiseless case. We observe that the initial convergence is faster with the multipreconditioner, but a breakdown quickly occurs caused by the bad properties of the matrix p T q = p T Ap. After little variations in the rst iterations, it seems that the intuitive combination, corresponding to [START_REF] Novati | Some properties of the arnoldi-based methods for linear ill-posed problems[END_REF],

α n = -α d is quasi-optimal with respect to the solver minimization property. This can be viewed on gure 5b. Anyhow selecting α n = -α d means preconditioning a compact operator by another compact operator which is clearly a bad idea from the stability point of view and leads to early breakdowns. Moreover, the post-ltering which will be presented in Section 3.5 is not as straightforward as for the classical KMF preconditioner.

Acceleration by multiple right-hand sides

Block solvers form a simple and ecient family of methods to accelerate the iterations [START_REF] Dianne | The block conjugate gradient algorithm and related methods[END_REF]: instead of solving for a vector right hand side, we articially add other columns. In our case where the right-hand side is the dierence of two vectors, we can solve the following system: in primal:

(S d -S n ) [u m , ũm ] = [b d -b n , b d + b n ]
in dual:

(S -1 n -S -1 d ) f m , fm = S -1 d b d -S -1 n b n , S -1 d b d + S -1 n b n (27) 
It is also possible, in particular in case of one of the two vectors [b d , b n ] being null, to use random right-hand side.

Block Krylov solvers involve block-operations whose implementation is highly optimized. They generate larger Krylov subspaces. In our case, they usually converge in two times less iterations than regular CG.

Moreover, we can combine Block CG with any preconditioner, short recurrence still applies, and even Ritz post-analysis is possible (see the next subsection).

A posteriori Ritz ltering

The solution obtained by conjugate gradient can be improved thanks to Ritz vectors post-analysis. We assume the solver converged in m iterations.

Once the Ritz elements were determined, a truncation can be applied in order to keep only the m m largest eigenvalues, the projected solution (written with subscript R) can be computed:

x R,m = x 0 + r 0 M -1 m i=0 u i θ i v i
where

u i = v T i r 0 r 0 M -1 (28)
We have:

x -x R,i 2 A = x -x 0 2 A -r 0 2 M -1 m i u 2 i θ i x R,i -x 0 2 M = r 0 2 M -1 m i u 2 i θ 2 i (29)
we see that the error (in the A norm) is decreasing with m whereas the norm of the solution (in the M norm) is increasing. As soon as θ i < 1, the growth of the norm is faster than the decrease of the error. These properties ensure the possibility to dene a corner without ambiguity once a precision/norm compromise was chosen on the L-curve indexed by the number of Ritz components (in the ( e i A , x i -x 0 M ) frame). Unfortunately the monotonicity properties are not insured in a more practical frame, like ( r 2 , x 2 ), where the Ritz L-curve could be compared to the classical CG L-curve, as on Figure 6a. Anyhow, we observe that the Ritz-L-curve is below and on the left side of the classical CG-L-curve, leading to a better accuracy-norm compromise.

The explosion of the norm is controlled as long as the (u i ) coecients decrease faster than the eigenvalues, which is the classical Picard condition and which oers a quantitative alternative to the L-curve in order to stop the iterations.

On Figure 6b, an analogous to the Picard plot [START_REF] Per | The discrete Picard condition for discrete ill-posed problems[END_REF] is done: the Ritz values are plotted on the same graph as the coecients of the projection of the right hand side on the Ritz basis, and the projection of the solution coecient on the Ritz basis. Similarly to [START_REF] Landi | A stopping criterion for iterative regularization methods[END_REF], one can propose as an alternative to the L-curve, to stop the reconstruction when solution components start to increase. Indeed, the increase of the components can be attributed to the eects of the noise on the data. On the presented graph, for example, the discrete Picard condition suggest to keep only the 5 rst terms of the solution in the Ritz basis. Note that the Ritz post-ltering has of course strong similarities with the truncated SVD [START_REF] Per | The truncatedsvd as a method for regularization[END_REF]. More precisely since A is symmetric positive and M is symmetric positive denite, the Ritz values approximate the generalized singular values of A for the norm associated to M.

Physically speaking, the Ritz ltering makes particular sense when used with the KMF preconditioner since in that case the Ritz modes are unit-energy modes on which the solution is decomposed.

Application on a 3D test-case

In this section, we propose to investigate a 3D test case by the non-preconditioned dual Steklov-Poincaré method and the KMF-primal approach. The results are ltered by the a posteriori Ritz analysis.

The geometry of the direct problem is described on the gure 7a: a cuboid is clamped on its four lateral faces. It is subjected to Neumann boundary conditions on the upper and on the lower faces. On the upper face, Γ m , the support of the Neumann conditions are two ellipses; the lower face Γ r is not loaded. The goal of the inverse problem is to recover the displacement on the upper face Γ m from redundant data on the lower boundary Γ r . In total, there are 1669 degrees of freedom of which 447 are with missing data and 444 are with redundant data.

We use the following heuristic as a stopping criterion: we consider the curve of the solution components in the Ritz basis, we lter out the small scale undulation by removing the local minima, then we use a polynomial interpolation and stop the selection when the interpolation curve is minimal (that is to say before it begins to increase). The reference solution and the results of the identication are illustrated on the gures 7 and 9.

First, we solve this problem with noiseless data on the redundant boundary. The Picard graph 8a suggests to project the problem on all the computed modes as the coecients of the solution decrease on average. In the case when multiplicative Gaussian white noise is applied, the Picard plots of the gures 8b and 8c suggest to stop the iterations earlier as the amplitude of the noise increases.

On the table 2, the optimal number of modes and the error resulting from the process are presented. As the system is underdetermined, the error is measured with respect to the suitable ū, projection of the reference eld.

We observe that the primal-KMF approach tends to be stopped after less iterations than the dual approach, but the approximation obtained is not as precise. 

Method

Conclusion

In this work, the primal and dual Steklov-Poincaré methods for solving the Cauchy problem have been investigated. First, we have studied preconditioning strategy for the primal approach: the KMF preconditioner which tends to promote most energetic modes, the symmetric preconditioner which results in a system very similar to the dual approach, and the one inspired by domain decomposition which leads to fast decrease of the error but which is highly unstable. Second we propose to use a block solver to accelerate the iterations. Last we showed that a post-ltering based on the Ritz elements was easy to set up and performed well since it lead to better L-curves and made it possible to derive a stopping criterion based on the Picard condition.

The block KMF-primal and dual algorithms were tested on a 3D identication case in order to illustrate their behavior on a larger problem.

The non-necessity of preconditioning the dual approach and its better behavior than the primal approach are not fully elucidated yet. These issues will be the subject of future work as well as the estimation of the inuence of the nite element discretization on the quality of the identication. 

Figure 1 :

 1 Figure 1: Notations for the boundary data completion problem.
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 1 the Schur complement of the structure on the boundary ∂ r Ω assuming Neumann conditions on ∂ m Ω. The dual formula satisfy equivalent properties to the primal approach. Proposition 3. S -1 n -S -is a symmetric positive matrix of size |m| and rank min(|m|, |r|).

  The reference for the homogeneous case is represented on Figure2b; the evolution of the x-component of the displacement on the right side u ref mx is plotted on Figure2c.
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 2 Figure 2: Reference problem and solution In order to evaluate the quality of the solution u, we use the following error e m = (u ref m -u m )/ max |u ref m |. In order to illustrate the methods, we choose to plot L-curves with realistic measurements: abscissa is the Euclidean norm of the residual r 2 , ordinate is the Euclidean norm of the unknown vector x m 2 (displacement in primal nodal traction in dual). Both quantities are normalized by their initial value.
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 3 Figure 3: Primal and dual SP methods in the heterogeneous case without noise
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 4 Figure 4: Primal and dual SP methods in the homogeneous case with 10% noise
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 5 Figure 5: Performance of multipreconditioned conjugate gradient in the heterogeneous noiseless case.

  L-curves for the KMF approach, obtained directly from CG or after Ritz ltering Picard plot: decomposition of the right-hand side and of the solution in the Ritz' basis
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 6 Figure 6: Filtering of KMF iterations by Ritz analysis, 10% noise homogeneous case.

  (a) Geometry of the domain (b) Reference solution (c) Relative error (in displacement) for the dual approach without noise
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 7 Figure 7: Illustration of the 3D problem
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Figure 8 :

 8 Figure 8: Picard plots for the 3D problem (with dual block solver) the vertical line highlights the last selected component.

  is the Schur complement of the structure of the Missing degrees of freedom considering Dirichlet boundary conditions of the Redundant part. Z d is the Schur complement of the structure on the Redundant part (assuming Dirichlet boundary conditions of the Missing part). C rm is the coupling between the Missing and the Redundant part realized through the Interior degrees of freedom; note that except in very pathological cases without practical interest (typically if |i| < |r| or |i| < |m|), it is a full rank matrix.

  2. S n is the Schur complement of the structure on the Missing degrees of freedom considering Neumann boundary conditions of the Redundant part. Using the quotient formula we have equivalent expressions for S n and b n :

Table 1 :

 1 Synthetic view of the methods performance.

	Method	Corner iteration	e m 2	r m 2 / r m,0 2	u m 2
		Noisy homogeneous case	
	Dual	4	1.91 10 -4	1.09 10 -4	0.00162
	Primal	3	8.88 10 -5	1.20 10 -3	0.00160
	Primal KMF	4	1.69 10 -4	1.10 10 -3	0.00161
	Primal Sym.	4	2.10 10 -4	4.97 10 -4	0.00161
	Primal MultiPrec	3	4.98 10 -4	1.24 10 -4	0.00166
		Noiseless heterogeneous case	
	Dual	20	3.01 10 -5	2.92 10 -16	0.00317
	Primal	24	4.52 10 -4	4.22 10 -15	0.00314
	Primal KMF	22	6.07 10 -5	3.17 10 -15	0.00317
	Primal Sym.	20	3.81 10 -5	8.33 10 -16	0.00318
	Primal MultiPrec	no corner	9.40 10 -5	7.28 10 -7	0.00317

Table 2 :

 2 Error and number of Ritz modes for the primal-KMF and the dual methods

		KMF	KMF	KMF	Dual	Dual	Dual
	Noise level	0%	1%	10%	0%	1%	10%
	Nb of Ritz modes	50	30	15	50	35	20
	error on u m	0.015586 0.088206 0.13869 0.0097854 0.066349 0.11712