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Abstract

This article presents a study of primal and dual Steklov-Poincaré approaches for the identi�cation of

unknown boundary conditions of elliptic problems. After giving elementary properties of the discretized

operators, we investigate the numerical solution with Krylov solvers. Di�erent preconditioning and acceler-

ation strategies are evaluated. We show that costless �ltering of the solution is possible by post-processing

Ritz elements. Assessments are provided on a 3D mechanical problem.

Keywords: boundary data completion, inverse problem, KMF and Steklov-Poincaré algorithms

1 Introduction

Inverse problems play an important role in mechanical engineering since they are associated to many non-
destructive control techniques. We focus on the problem of missing boundary values in static linear elasticity:
we suppose that the geometry and constituents of a structure are perfectly known, whereas a part of the
boundary conditions is missing. To compensate this lack of knowledge, another part of the boundary is over-
speci�ed in the sense that both Dirichlet's and Neumann's are known. The challenge is thus to propagate this
extra information till the unknown boundary.

Mathematically speaking this data completion problem is a Cauchy problem on an elliptic partial di�erential
equation. Under compatibility assumptions on the data, there exists a unique solution to this problem. Anyhow,
the problem is ill-posed in the sense of Hadamard, meaning that the solution is very sensitive to variations in
the inputs (which is a practical problem because inputs are issued from measurements). For further discussion
about the ill-posedness of this problem, the reader may refer to [8, 4].

Because of this instability regularization is more than often necessary to �nd a practical solution. For
instance, in [25], the boundary element method is combined to Tykhonov regularization. Another possibility is
to weaken the veri�cation of the boundary conditions and set the problem in terms of the minimization of an
error-like functional, see [22] for model updating and [1] for the Cauchy problem. In [9] a minimization coupled
with an iterative regularization method was proposed. Also, it is possible to set the problem in a stochastic
framework, which enables to recover well-posedness at the very expensive price of identifying a probability
density function [18].

In this paper, we study a speci�c class of method, the Kozlov-Maz'ya-Formin (KMF) and Steklov-Poincaré
(SP) methods [21, 3, 19]. These methods consist in formulating the Cauchy problem as the equality of the
solutions of two direct problems involving respectively the Dirichlet and the Neumann data (without weakening).
This equality results in a compact problem which can be solved either by truncated SVD techniques [15] or
more simply by an iterative solver with adapted stopping criterion.

The aim of this paper is to confront some variants of the standard Krylov solvers to the Cauchy problem.
In particular, preconditioning, acceleration and �ltering techniques are investigated in order to accelerate the
resolution and make it more accurate.

The paper is organized as follows: in section 2 the discrete linear systems associated with the Cauchy
problem are presented. In section 3, the variants of the linear solver are presented and assessed on an academic
example. Finally, in section 4, a numerical 3D example is addressed in order to illustrate the stability of the
proposed method.
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2 Systems associated with the data completion problem

2.1 Notations and hypothesis

Let Ω ⊂ Rd (d = 2 or 3) be a domain where we wish to solve a linear elasticity problem under the hypothesis of
small deformation. Thanks to the linearity of the problem, we consider the variation of the system around an
equilibrated con�guration, which enables us to remove the external loads. Let u be the unknown displacement
�eld, ε the symmetric gradient operator, H the Hooke's tensor, σ the Cauchy stress tensor and n the outward
normal vector.

Figure 1: Notations for the boundary data completion problem.

We consider Figure 1. The boundary is split into four parts: ∂dΩ is submitted to Dirichlet's conditions,
∂nΩ is submitted to Neumann's conditions, ∂mΩ is the part of the boundary where data is missing � neither
the displacement um nor the traction fm are known � and ∂rΩ is the part of the boundary with redundant
information � both Dirichlet's and Neumann's conditions, respectively ûr and f̂r, are known. The equations of
the Cauchy problem are thus:

σ = H : ε(u)

div(σ) = 0

}
in Ω,

u = 0 on ∂dΩ

σ · n = 0 on ∂nΩ

}
,

u = ûr

σ · n = f̂r

}
on ∂rΩ (1)

We suppose that meas(∂dΩ) > 0, so that all the forward problems considered afterwards will be well-posed.
Note that this hypothesis can easily be lifted by using the techniques of the FETI domain decomposition method
for �oating substructures [11], this is brie�y described in section 2.3.3.

We use a classical Finite Element approximation of the problem, using Lagrange elements to discretize
the displacement �eld, and we note u the vector of nodal displacement. We assume Dirichlet conditions were
eliminated so that the sti�ness matrix K is sparse symmetric de�nite positive. We note with subscript i the
degrees of freedom inside the domain and on the Neumann's boundary; with subscript r the redundant degrees
of freedom where both displacement degrees of freedom ûr and nodal reactions f̂r are known, with subscript m
the missing degrees of freedom where neither the displacement um nor the nodal reaction fm are known. We
use the counting measure notation for the number of degrees of freedom, e.g. |m| is the number of degrees of
freedom of type m.

The discrete equivalent to (1) can then be written as:

(ûr, f̂r) being known, �nd (ui,um, fm) s.t.

Kii Kir Kim

Kri Krr Krm

Kmi Kmr Kmm

 ui
ûr
um

 =

 0

f̂r
fm

 (2)

In order to simplify our study, we assume that there is no element bearing both redundant and missing
degrees of freedom. Note that is always possible to comply to this assumption by �forgetting� a redundant data
(typically the Dirichlet part) which converts a degree of freedom of type r into a degree of freedom of type i.
This assumption results in Krm = 0.
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2.2 First condensation

As classically done in domain decomposition methods, we can eliminate the internal degrees of freedom and
condense the problem on the missing and redundant degrees of freedom:

ui = −K−1ii (Kirûr + Kimum)(
Zd Crm

CT
rm Sd

)(
ûr
um

)
=

(
f̂r
fm

)
with

Sd = Kmm −KmiK
−1
ii Kim

Zd = Krr −KriK
−1
ii Kir

Crm = −KriK
−1
ii Kim

(3)

Sd is the Schur complement of the structure of the Missing degrees of freedom considering Dirichlet boundary
conditions of the Redundant part. Zd is the Schur complement of the structure on the Redundant part (assuming
Dirichlet boundary conditions of the Missing part). Crm is the coupling between the Missing and the Redundant
part realized through the Interior degrees of freedom; note that except in very pathological cases without
practical interest (typically if |i| < |r| or |i| < |m|), it is a full rank matrix.

We recall that the Schur complements inherit several properties from the original matrix [30]. In particular,
in the case we consider, they are symmetric de�nite positive. Moreover, we have the relation:

‖um‖Sd
= ‖u‖K where u =

K−1ii Kimum
0r
um

 (4)

in words, the norm associated with Sd is the energy norm of the �eld obtained by discrete harmonic lifting
(assuming zero Dirichlet boundary condition on Redundant degrees of freedom). Note that for a regular problem
(typically a domain with regular shape and good aspect ratio, enough Dirichlet boundary conditions, moderate
heterogeneities) with not too �ne discretization, the Schur complements can be considered to be well conditioned
matrices, in particular compared to the other operators that will be encountered in the rest of the paper.

In the following, we consider various strategies to solve the equation (2) or equivalently (3).

Remark 1. An important class of methods relaxes the satisfaction of the measurements, which particularly
makes sense in the presence of noisy data. This is typically what is done in the modi�ed error in constitutive
relation [23]. In the fading regularization method [10], the identi�ed �eld is the limit of the sequence indexed
by j (a well suited norm shall be used for each term in the functional to minimize):

minimize ‖ujr − ûr‖2 + ‖f jr − f̂r‖2 + ‖ujm,r − uj−1m,r‖2 + ‖f jm,r − f j−1m,r ‖2

under the constraint

(
Zd Crm

CT
rm Sd

)(
ujr
ujm

)
=

(
f jr
f jm

)
(5)

In the following, we investigate strategies where the measures are not relaxed. Trying to enforce them all is
highly unstable and thus we will use an iterative method in order to �nd a good approximation of the solution
to (3) while controlling its regularity.

Two-�eld approach

A �rst expression is worth mentioning. From (3), we directly obtain:(
Sd −I
Crm 0

)(
um
fm

)
=

(
CT
rmûr

f̂r − Zdûr

)
(6)

This is a rectangular formulation withm+r rows and 2m columns. The problem is under-determined if |r| < |m|,
that is to say when there is less measurements than data to identify; in that case the solution is not unique. The
problem is overdetermined if |r| > |m|; in that case the well-posedness condition is (f̂r − Zdûr) ∈ range(Crm),
which means that measurements must be coherent for the solution to exist � or it should be sought in a minimal
residual sense.

In the following we present two classical ways to obtain square systems.
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2.3 Steklov-Poincaré's formulations

In this approach, we deduce from (3) two classical forward problems by alternatively �forgetting� one redundant
information, which enables us to link um and fm.

• If we assume Dirichlet condition on ∂rΩ, we have:

Sdum = fm −CT
rmûr (7)

and we note bd = −CT
rmûr.

• If we assume Neumann condition on ∂rΩ, we have:

um =
(
0 I

)( Zd Crm

CT
rm Sd

)−1(
f̂r
fm

)
(8)

which can be written as, using classical block inverse formula:

um = S−1n (fm + bn) with
Sn = Sd −CT

rmZ−1d Crm

bn = −CT
rmZ−1d f̂r

(9)

Remark 2. Sn is the Schur complement of the structure on the Missing degrees of freedom considering Neumann
boundary conditions of the Redundant part. Using the quotient formula we have equivalent expressions for Sn
and bn:

Sn = Kmm −
(
Kmi 0

)(Kii Kir

Kri Krr

)−1(
Kim

0

)
bn = −

(
Kmi 0

)(Kii Kir

Kri Krr

)−1(
0

f̂r

) (10)

2.3.1 Primal approach

The primal Steklov-Poincaré formulation simply consists in eliminating the unknown traction fm from equa-
tions (7,9), resulting in the following system:

(Sd − Sn)um = bd − bn (11)

We also directly obtain the following expressions:

Sd − Sn = CT
rmZ−1d Crm

bd − bn = CT
rmZ−1d

(
Zdûr − f̂r

) (12)

from which we deduce the following property:

Proposition 1. (Sd − Sn) is a symmetric positive matrix of size |m| and rank min(|m|, |r|).

We can recognize an equivalent minimization problem:

um = arg min ‖Crmum − (Zdûr − f̂r)‖Z−1
d

(13)

This equation enables us to understand the hidden choice made when using the primal Steklov-Poincaré ap-
proach: we recognize the second line of (6) taken in a least-energy sense. The �rst line can be used to post-process
the nodal reactions.

In order to fully understand the system, one property inherited from the continuous formulation studied in
[2] must be mentioned:

Proposition 2. (Sd − Sn) is the discrete analogue of a symmetric de�nite positive compact operator in the
adapted displacement trace space of ∂mΩ.

This implies that (Sd − Sn), even in the case where it is strictly de�nite, tends to possess very small positive
eigenvalues.
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From this property and equation (12), we can deduce that Matrix Crm possesses very small singular values.
Mechanically speaking this matrix represents the nodal reaction on the clamped ∂rΩ resulting from a given
displacement �eld on ∂mΩ; small singular values correspond to unit norm displacement on ∂mΩ resulting in
negligible e�ects on the faraway boundary ∂rΩ.

Remark 3. We expected the expressions in the right hand side of (12) to be less sensitive to cancellation error
than their classical form on the left. In practice we never observed such a property, so that we preferred the
classical form which makes it possible to use sparse solvers.

2.3.2 Dual approach

The Steklov-Poincaré dual formulation simply consists in eliminating the unknown displacement um from equa-
tions (7,9), resulting in the following system:(

S−1n − S−1d
)
fm = S−1d bd − S−1n bn (14)

We also directly obtain the following expressions using Shermann-Morrisson formula on the expression of
Sn (9):

S−1n − S−1d = S−1d CT
rmZ−1n CrmS−1d

S−1d bd − S−1n bn = S−1d CT
rm

(
ûr − Z−1n f̂r

) (15)

where Zn = Zd − CrmS−1d CT
rm is the Schur complement of the structure on the boundary ∂rΩ assuming

Neumann conditions on ∂mΩ.
The dual formula satisfy equivalent properties to the primal approach.

Proposition 3.
(
S−1n − S−1d

)
is a symmetric positive matrix of size |m| and rank min(|m|, |r|).

We can also recognize an equivalent minimization problem:

fm = arg min ‖CrmS−1d fm − (f̂r − Znûr)‖Z−1
n

(16)

This equation enables us to see that the dual Steklov-Poincaré can also be derived from (6) by taking the second
line in a least-energy sense (with a measure of the energy slightly di�erent from the primal approach) and using
the �rst line in order to replace displacement by e�orts.

2.3.3 Dual approach in the absence of Dirichlet conditions

In the absence of Dirichlet conditions (∂dΩ = ∅), the operator Sn is not invertible. This is the equivalent
situation to �oating subdomains in domain decomposition methods. In that case, we let S†n be a pseudo-inverse
of Sn and R be a basis of the rigid body motions of the whole structure. Rm is the restriction of R on ∂mΩ;
we have SnRm = 0.

Formula (9) expressing the solution to a full Neumann problem must be adapted:

um = S†n(fm + bn) + Rmα

0 = RT
m(fm + bn)

(17)

in the �rst line, the displacement is de�ned up to a rigid body motion characterized by the amplitude α; the
second line corresponds to the well-posedness condition of the Neumann problem.

This leads to the following constrained system:((
S†n − S−1d

)
Rm

RT
m 0

)(
fm
α

)
=

(
S−1d bd − S†nb

n

−RT
mbn

)
(18)

which is typically solved using a convenient initialization/projection algorithm [12].
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3 Solving the Steklov-Poincaré systems

In this section, we consider iterative algorithms to solve the Stecklov-Poincaré formulations. Indeed using
iterative solvers with adapted stopping criteria is a common way not to let small singular values perturb the
solution, in particular we will make use of the L-curve [14] in order to stop the iterations. The systems being
symmetric de�nite positive, we use the Conjugate Gradient (CG) algorithm, as was proposed in [5]. We propose
and compare various preconditioning strategies and other acceleration techniques and we propose a low cost
regularization of the solution based on Ritz eigencomponents. Note that we also tried algorithms based on the
minimization of the residual (and harmonic Ritz eigencomponents) without signi�cant di�erence.

This section brie�y recalls the algorithms used, then investigates preconditioning, acceleration and �ltering
strategies. The methods are compared on a simple example in the last subsection.

3.1 Quick reminder

3.1.1 Preconditioned Conjugate gradient (PCG)

Conjugate Gradient is a classical Krylov solver for symmetric positive de�nite systems. We use the following
notations: we solve Ax = b, where A is a symmetric positive de�nite matrix, xi is the approximation at
iteration i > 0, x0 is the chosen initialization, the residual is ri = b−Axi. We use a symmetric positive de�nite
preconditioner M (in practice, only the inverse of M is used), so that we in fact solve the equivalent symmetric
system L−1AL−T (LTx) = L−1b where M = LLT .

We note zi = M−1ri the preconditioned residual and we de�ne the Krylov subspace at the iteration i > 0:

Ki(M−1A, z0) = span(z0,M
−1Az0, . . . , (M

−1A)i−1z0) (19)

The Conjugate Gradient satis�es the following search principle expressed either in terms of orthogonality or
in terms of optimality:

xi ∈ x0 +Ki(M−1A, z0), xi = arg min ‖x− xi‖A ⇔ ri ⊥ Ki(M−1A, z0) (20)

In our case A possesses very small eigenvalues resulting in the incapacity to correctly evaluate the error com-
mitted in the associated directions.

Algorithm 1 recalls the Conjugate Gradient algorithm. The comments aligned on the right recall how to
compute Ritz eigencomponents (see below). Note that the algorithm is written in a form suitable for multiple
right-hand sides (aka Block CG), that is to say b and x0 may have N > 1 columns. In this case δi and γi are
N ×N symmetric non-negative matrices, δ−1i is the matrix inverse (or pseudo-inverse for more generality) and
γ−1/2 is the matrix square root. Ample details can be found in the dedicated literature [27]. The formulas for
the block computation of Ritz components are adapted from [29].

3.1.2 Discussion on the under-determined case

In the case |m| > |r|, the matrix Crm has a right-kernel and thus A is rank-de�cient. Let R be a basis of the
kernel of A. Let x be a solution to Ax = b, then for all vector α, (x + Rα) is also a solution.

The conjugate gradient will search the solution in the Krylov subspace. Note that, even if A is rank-
de�cient, we still have z0 ∈ Range(M−1A) and thus Ki(M−1A, z0) ⊂ Range(M−1A). The conjugate gradient
thus converges to the intersection between (x+Rα) and Range(M−1A), which we note x̄. Simple computation
leads to:

x̄ = (I−R(RTMR)−1RTM)x (21)

x̄ is the projection of x on Range(M−1A) parallel to RangeR. It can also be characterized as:

x̄ = arg min
y∈Range(M−1A)

‖x− y‖A ⇒ x̄ = M−1A(AM−1AM−1A)†AM−1Ax (22)

In the case of synthetic experiments where data are numerically generated from a given x. If there are less
measurements than missing data, the true error during the iterations must then be evaluated with respect to x̄
instead of x.

In the practical case, once a good approximation of x̄ was found, one still has the opportunity to improve
the solution by adding a term of the form Rα with α chosen out of mechanical considerations.

Remark 4. The over-determined case is naturally dealt with by the Stecklov-Poincaré formulation (because of
the equivalent minimization problem). It has no interaction with the solver.
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3.1.3 Ritz values and vectors

We assume the solver converged in m iterations. We note with capital letters the concatenation of vectors stored
during the resolution: e.g. Pm = (p0, . . . ,pm−1).

Ritz vectors Vm form a speci�c basis of the Krylov subspace, which can be computed at no extra cost, and
which satis�es the following relations:

VT
mAVm = diag(θi) , VT

mMVm = I (23)

(θi) are the Ritz values, they are approximations of the generalized eigenvalues of the pair formed by the
operator A and the preconditioner M. We assume they are stored in decreasing order. The following remark
brie�y recall how they can be processed at nearly no cost.

Remark 5 (Computation of Ritz elements). If during the CG iterations, we compute the normalized vector

ẑi = (−1)izi/
√
zTi ri, then Ẑi is a basis of Ki+1 which satis�es:

ẐTi MẐi = I and ẐTi AẐi =: T

where T is a tridiagonal symmetric matrix whose eigenvalues are the Ritz values. The coe�cients of T can
be recovered from the coe�cients computations of the CG [29], even in the case of a block solver as given
in Algorithm 1. If we note U its orthonormal eigenvectors, then Vi = ẐiU are the Ritz vectors. We note
u the �rst row of Matrix U, which corresponds to the decomposition of z0 on the basis of Ritz vectors :
z0 = ‖r0‖M−1VuT = ‖r0‖M−1

∑m
i viui or equivalently ui = vTi r0/‖r0‖M−1 .

Algorithm 1 Block Conjugate Gradient with Ritz computation

x0 given
r0 = b−Ax0

z0 = M−1r0, p0 = z0 φ−1 = 0
for i = 0, 1, . . . ,m (convergence) do

qi = Api
δi = (pTi qi), γi = (zTi ri), αi = δ−1i γi ẑi = (−1)iziδ

−1/2
i

xi+1 = xi + piαi
ri+1 = ri − qiαi
zi+1 = M−1ri+1

φi = (qTi zi+1), βi = δ−1i φi Ti+1,i+1 = γ
−1/2
i (δi + φTi−1φi−1)γ

−1/2
i

pi+1 = zi+1 − piβi (i>0) Ti+1,i = Ti,i+1 = γ
−1/2
i−1 δi−1γ

−1
i−1γ

1/2
i

end for
(θi)i<m = Eigenvalues of T T is symmetric bloc tridiagonal
U = Eigenvectors of T,
Return: Solution xm+1, Ritz values (θi), Ritz vectors Vm = ẐmU

3.1.4 Stopping criterion based on the L-curve

Thanks to its embedded minimization principle, PCG is a robust solver (even if some extra care may be required
� like full reorthogonalization � to resist numerical errors). In our case, the quantity ‖x − xi‖A is decreased
at each iteration but because of the small eigenvalues of A this is often paid by an explosion of ‖xi‖2 and in
fact no convergence of ‖x− xi‖2. The L-curve, explained for example in [14] aims at stopping iterations before
the solution explodes by �nding the bottom-left �corner� of a curve of the type (log(‖ri‖), log(‖xi‖)) where ‖ri‖
shall be a computable measure of the error and ‖xi‖ a norm of the solution. The corner realizes a compromise,
but its detection (or even its existence) is not evident.

3.2 Illustration of the raw methods

We consider the test-case presented on Figure 2a. The structure is a rectangle of dimensions 5mm× 10mm. We
consider plane stress and linear elastic isotropic behavior. The Poisson ratio is 0.3; in the homogeneous case,
the Young modulus is E = 70000 MPa; in the heterogeneous case, each element is granted a random Young
modulus accordingly to an uniform probability law in [7000; 70000] MPa. The reference solution is built with
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Neumann conditions of the form: fmx
= f0 (1 + y/y0), f̂rx = f0 (1− y/y0) and f̂ry = fmy

= 0. With f0 = 1
N.mm−1 and y0 = 1 mm. We use a regular mesh with continuous piecewise linear triangle �nite element, there
is a total of 288 degrees of freedom, with |m| = 38, |r| = 40. This choice implies that the problem possesses
only positive eigenvalue but they may be very small.

The solution to the forward problem serves as a reference for the inverse computations. When noise is
injected, it takes the form of a Gaussian white noise: ûnr = (I + NlG)ûr with unr the noisy data, Nl the level
of noise, I the identity matrix and G a diagonal matrix of uncorrelated Gaussian random variables with mean
0 and covariance 1.

The reference for the homogeneous case is represented on Figure 2b; the evolution of the x-component of
the displacement on the right side urefmx

is plotted on Figure 2c.

Γd

Ω

Γd

Γd

Γr

Γm

x
y

(a) Geometry (b) Deformation (homoge-
neous case)

0 0.2 0.4 0.6 0.8 1

·10−3

0

5

10

umx
(mm)

y
(m

m
)

Homo. case
Hete. case

(c) Displacement on Γm

Figure 2: Reference problem and solution

In order to evaluate the quality of the solution u, we use the following error em = (urefm −um)/max |urefm |. In
order to illustrate the methods, we choose to plot L-curves with realistic measurements: abscissa is the Euclidean
norm of the residual ‖r‖2, ordinate is the Euclidean norm of the unknown vector ‖xm‖2 (displacement in primal
nodal traction in dual). Both quantities are normalized by their initial value.

Figures 3a and 3b, 4a, 4b compare L-curves and distribution of error (at the corner iteration) for the basic
primal and dual approaches in either a noiseless heterogeneous case or a homogeneous situation with 10% noise.
It is worthy to notice that in the noiseless case (�gure 3b), both approach have well identi�ed corners in the
L-curves and the dual method gives way better results than the primal method. This agrees with [19]. On the
other hand, as the noise level increases (�gure 4b), the corners are much harder to detect and the superiority
of the dual method seems to vanish (as will be visible in table 1 in that case the primal method generates a
very small error even if the residual is rather large).

3.3 Preconditioners

Because of the compactness of the continuous system, the problem we solve is intrinsically not well posed, with
a lower part of the spectrum populated by many small eigenvalues. The interest of preconditioning is not as
clear as for well-posed problems. For instance in domain decomposition methods applied to forward (well posed)
problems, preconditioning enables to mitigate the e�ects of the discretization, of the decomposition and of the
bad properties of the system (large heterogeneities), leading to reasonable condition numbers on large class of
problems.

In the case of inverse problems, preconditioning can not cure the lower part of the spectrum which drives
the convergence. Thus solvers can be used �raw� (non-preconditioned). One may �nd, in [26] and the associated
references, the illustration of raw solvers successfully applied to compact systems. In the literature, Steklov-
Poincaré methods were also most often tried without preconditioner, with certain success [5, 19, 3].
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Figure 3: Primal and dual SP methods in the heterogeneous case without noise
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Figure 4: Primal and dual SP methods in the homogeneous case with 10% noise

In the following, we investigate preconditioning strategies. We focus on the primal approach even though
one could easily design the dual counterparts. Yet it appeared from our experiments that for these problems
primal and dual approaches strongly di�er and in fact, for now, we have no good preconditioning strategies for
the dual approach.

Table 1 gives a synthetic view of the performance of the methods we discuss in the following (for the noisy
homogeneous and noiseless heterogeneous cases respectively). For the di�erent methods, we compare the index
of the �corner iteration�, and for that iteration, the true error in Euclidean norm, the normalized residual (in
Euclidean norm) and the Euclidean norm of the displacement.

3.3.1 KMF preconditioner

The KMF preconditioner consists in preconditioning the primal formulation by S−1d . The resulting system clearly
has its spectrum inside the interval ]0, 1[ which makes it prone to stationary iterations. Stationary iterations
are slow to converge but they have the advantage to be more stable than Krylov iterations in particular in the
absence of complex eigenvalues [17].

The preconditioner being symmetric de�nite positive, its use can be interpreted as changing the orthogonality
properties in the Krylov solver. Moreover, as said in (4), the norm associated with Sd is equivalent to the energy
norm. These properties make the KMF preconditioner a regularization in itself since it tends to promote most
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Method Corner iteration ‖em‖2 ‖rm‖2/‖rm,0‖2 ‖um‖2
Noisy homogeneous case

Dual 4 1.91 10−4 1.09 10−4 0.00162
Primal 3 8.88 10−5 1.20 10−3 0.00160
Primal KMF 4 1.69 10−4 1.10 10−3 0.00161
Primal Sym. 4 2.10 10−4 4.97 10−4 0.00161
Primal MultiPrec 3 4.98 10−4 1.24 10−4 0.00166

Noiseless heterogeneous case
Dual 20 3.01 10−5 2.92 10−16 0.00317
Primal 24 4.52 10−4 4.22 10−15 0.00314
Primal KMF 22 6.07 10−5 3.17 10−15 0.00317
Primal Sym. 20 3.81 10−5 8.33 10−16 0.00318
Primal MultiPrec no corner 9.40 10−5 7.28 10−7 0.00317

Table 1: Synthetic view of the methods performance.

energetic modes. This role is particularly important in the cases where the Schur complement signi�cantly
di�ers from identity. This is typically the case of heterogeneous structures where energy often is not evenly
distributed where the true error with KMF preconditioner is 10 times smaller than for the raw primal approach.

3.3.2 Symmetric �à la dual� preconditioner

Since in general the dual method has a better behavior compared to the primal approach, we propose to build
a version of the primal approach as close to the dual approach as possible.

By the simple change of variable f̃m = Sdum, and pre-multiplying (12) by S−1d , we obtain:

S−1d CT
rmZ−1n CrmS−1d f̃m = S−1d CT

rm

(
ûr − Z−1n f̂r

)
(24)

compared to the dual formulation (15), Zd was replaced by Zn.
Since Zd > Zn (for the ordering of SPD matrices), and because the bad conditioning of the system is mostly

caused by the smallest eigenvalues, we can expect the dual approach to have a slightly better numerical behavior.
However, using Neumann formula, we can check that the two approaches are �rst order equivalent:

S−1n − S−1d = (Sd − (Sd − Sn))−1 − S−1d = S−1d (I− (Sd − Sn)S−1d )−1 − S−1d

= S−1d (I + (Sd − Sn)S−1d + o(Sd − Sn))− S−1d = S−1d (Sd − Sn)S−1d + o(Sd − Sn)
(25)

As expected, the experiments show that this method is almost equivalent to the dual approach.

3.3.3 Multipreconditioning

In [28], one can �nd a physical interpretation of the classical preconditioners for FETI and BDD domain
decomposition method. This interpretation leads us to considering a preconditioner made out of weighted local
inverses of the operators:

(Sd − Sn)−1 ' 1

2
(S−1n − S−1d )

1

2
(26)

The factor 1/2 is the counterpart of the scaling operator of FETI and BDD[20] in the case of Schur complements
computed on the same domain. In the following, we show evidence that this preconditioner is not far from
optimal but in a sense which is not adapted to the problem we wish to solve.

Our investigation is based on the use of MultiPreconditioned Conjugate Gradient (MPCG) [7, 13, 6]. Starting
from a family of potential preconditioners, in our case (S−1d ,S−1n ), multipreconditioned Krylov solvers let the
solver �nd the optimal linear combination at each iteration for the underlying minimization problem (20).
Schematically, at the iteration i, the preconditioner takes the form (αni S

−1
n + αdiS

−1
d ) where αni and αdi are

computed thanks to optimality conditions.

Remark 6 (MPCG algorithm.). In order to apply multipreconditioning to Conjugate Gradient, one simply needs
to consider z,p,q as two-column matrices and to replace the preconditioning step by z = [S−1n r,S−1d r] (con-
catenation of two vectors); then pTq is a 2×2 matrix and α is a 2×1 vector. Note that full reorthogonalization
must be used because multipreconditioning breaks the short recurrence of CG.
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Figure 5 compares the iterations of CG and MPCG in terms of error (measured by ‖r‖2) and norm of
the error (measured by ‖e‖2) for the heterogeneous noiseless case. We observe that the initial convergence is
faster with the multipreconditioner, but a breakdown quickly occurs caused by the bad properties of the matrix
pTq = pTAp.
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Figure 5: Performance of multipreconditioned conjugate gradient in the heterogeneous noiseless case.

After little variations in the �rst iterations, it seems that the intuitive combination, corresponding to (26),
αn = −αd is quasi-optimal with respect to the solver minimization property. This can be viewed on �gure 5b.
Anyhow selecting αn = −αd means preconditioning a compact operator by another compact operator which is
clearly a bad idea from the stability point of view and leads to early breakdowns. Moreover, the post-�ltering
which will be presented in Section 3.5 is not as straightforward as for the classical KMF preconditioner.

3.4 Acceleration by multiple right-hand sides

Block solvers form a simple and e�cient family of methods to accelerate the iterations [27]: instead of solving
for a vector right hand side, we arti�cially add other columns. In our case where the right-hand side is the
di�erence of two vectors, we can solve the following system:

in primal: (Sd − Sn) [um, ũm] = [bd − bn,bd + bn]

in dual: (S−1n − S−1d )
[
fm, f̃m

]
=
[
S−1d bd − S−1n bn,S

−1
d bd + S−1n bn

] (27)

It is also possible, in particular in case of one of the two vectors [bd,bn] being null, to use random right-hand
side.

Block Krylov solvers involve block-operations whose implementation is highly optimized. They generate
larger Krylov subspaces. In our case, they usually converge in two times less iterations than regular CG.
Moreover, we can combine Block CG with any preconditioner, short recurrence still applies, and even Ritz
post-analysis is possible (see the next subsection).

3.5 A posteriori Ritz �ltering

The solution obtained by conjugate gradient can be improved thanks to Ritz vectors post-analysis. We assume
the solver converged in m iterations.

Once the Ritz elements were determined, a truncation can be applied in order to keep only the m′ 6 m
largest eigenvalues, the projected solution (written with subscript R) can be computed:

xR,m′ = x0 + ‖r0‖M−1

m′∑
i=0

ui
θi
vi where ui =

vTi r0
‖r0‖M−1

(28)
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We have:

‖x− xR,i‖2A = ‖x− x0‖2A − ‖r0‖2M−1

m′∑
i

u2i
θi

‖xR,i − x0‖2M = ‖r0‖2M−1

m′∑
i

u2i
θ2i

(29)

we see that the error (in the A norm) is decreasing with m′ whereas the norm of the solution (in the M norm) is
increasing. As soon as θi < 1, the growth of the norm is faster than the decrease of the error. These properties
ensure the possibility to de�ne a �corner� without ambiguity once a precision/norm compromise was chosen on
the L-curve indexed by the number of Ritz components (in the (‖ei‖A, ‖xi − x0‖M) frame). Unfortunately the
monotonicity properties are not insured in a more practical frame, like (‖r‖2, ‖x‖2), where the Ritz L-curve
could be compared to the classical CG L-curve, as on Figure 6a. Anyhow, we observe that the Ritz-L-curve is
below and on the left side of the classical CG-L-curve, leading to a better accuracy-norm compromise.

The explosion of the norm is controlled as long as the (ui) coe�cients decrease faster than the eigenvalues,
which is the classical Picard condition and which o�ers a quantitative alternative to the L-curve in order to
stop the iterations.

On Figure 6b, an analogous to the Picard plot [16] is done: the Ritz values are plotted on the same graph
as the coe�cients of the projection of the right hand side on the Ritz basis, and the projection of the solution
coe�cient on the Ritz basis. Similarly to [24], one can propose as an alternative to the L-curve, to stop the
reconstruction when solution components start to increase. Indeed, the increase of the components can be
attributed to the e�ects of the noise on the data. On the presented graph, for example, the discrete Picard
condition suggest to keep only the 5 �rst terms of the solution in the Ritz basis.
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Figure 6: Filtering of KMF iterations by Ritz analysis, 10% noise homogeneous case.

Note that the Ritz post-�ltering has of course strong similarities with the truncated SVD [15]. More precisely
since A is symmetric positive and M is symmetric positive de�nite, the Ritz values approximate the generalized
singular values of A for the norm associated to M.

Physically speaking, the Ritz �ltering makes particular sense when used with the KMF preconditioner since
in that case the Ritz modes are unit-energy modes on which the solution is decomposed.

4 Application on a 3D test-case

In this section, we propose to investigate a 3D test case by the non-preconditioned dual Steklov-Poincaré method
and the KMF-primal approach. The results are �ltered by the a posteriori Ritz analysis.
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The geometry of the direct problem is described on the �gure 7a: a cuboid is clamped on its four lateral
faces. It is subjected to Neumann boundary conditions on the upper and on the lower faces. On the upper
face, Γm, the support of the Neumann conditions are two ellipses; the lower face Γr is not loaded. The goal
of the inverse problem is to recover the displacement on the upper face Γm from redundant data on the lower
boundary Γr. In total, there are 1669 degrees of freedom of which 447 are with missing data and 444 are with
redundant data.

We use the following heuristic as a stopping criterion: we consider the curve of the �solution components� in
the Ritz basis, we �lter out the small scale undulation by removing the local minima, then we use a polynomial
interpolation and stop the selection when the interpolation curve is minimal (that is to say before it begins to
increase). The reference solution and the results of the identi�cation are illustrated on the �gures 7 and 9.

First, we solve this problem with noiseless data on the redundant boundary. The Picard graph 8a suggests
to project the problem on all the computed modes as the coe�cients of the solution decrease on average.

(a) Geometry of the domain (b) Reference solution (c) Relative error (in displacement) for
the dual approach without noise

Figure 7: Illustration of the 3D problem

In the case when multiplicative Gaussian white noise is applied, the Picard plots of the �gures 8b and 8c
suggest to stop the iterations earlier as the amplitude of the noise increases.

On the table 2, the optimal number of modes and the error resulting from the process are presented. As the
system is underdetermined, the error is measured with respect to the suitable ū, projection of the reference �eld.
We observe that the primal-KMF approach tends to be stopped after less iterations than the dual approach,
but the approximation obtained is not as precise.

Method KMF KMF KMF Dual Dual Dual

Noise level 0% 1% 10% 0% 1% 10%
Nb of Ritz modes 50 30 15 50 35 20

error on um 0.015586 0.088206 0.13869 0.0097854 0.066349 0.11712

Table 2: Error and number of Ritz modes for the primal-KMF and the dual methods

5 Conclusion

In this work, the primal and dual Steklov-Poincaré methods for solving the Cauchy problem have been investi-
gated. First, we have studied preconditioning strategy for the primal approach: the KMF preconditioner which
tends to promote most energetic modes, the symmetric preconditioner which results in a system very similar to
the dual approach, and the one inspired by domain decomposition which leads to fast decrease of the error but
which is highly unstable. Second we propose to use a block solver to accelerate the iterations. Last we showed
that a post-�ltering based on the Ritz elements was easy to set up and performed well since it lead to better
L-curves and made it possible to derive a stopping criterion based on the Picard condition.

The block KMF-primal and dual algorithms were tested on a 3D identi�cation case in order to illustrate
their behavior on a larger problem.

The non-necessity of preconditioning the dual approach and its better behavior than the primal approach
are not fully elucidated yet. These issues will be the subject of future work as well as the estimation of the
in�uence of the �nite element discretization on the quality of the identi�cation.
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