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Abstract

We propose a numerical method for a family of two-dimensional dispersive shallow water systems with
topography. The considered models consist in shallow water approximations – without the hydrostatic
assumption – of the incompressible Euler system with free surface. Hence, the studied models appear as
extensions of the classical shallow water system enriched with dispersive terms. The model formulation
motivates us to use a prediction-correction scheme for its numerical approximation. The prediction part
leads to solving a classical shallow water system with topography while the correction part leads to
solving an elliptic-type problem. The numerical approximation of the considered dispersive models in
the two-dimensional case over unstructured meshes is described, it requires to combine finite volume and
finite element techniques. A special emphasis is given to the formulation and the numerical resolution of
the correction step (variational formulation, inf-sup condition, boundary conditions,. . . ). The numerical
procedure is confronted with analytical and experimental test cases. Finally, an application to a real
tsunami case is given.

Keywords: shallow water flows, dispersive effects, prediction-correction scheme, combined finite vol-
ume / finite element technique, dispersive wave propagation, tsunami propagation

Math. classification. 65M12; 74S10; 76M12; 35L65; 35Q30; 35Q35; 76D05.

1 Introduction

Mathematical models for free surface flows are widely studied but their analysis and numerical approxi-
mation remain a challenging issue. The incompressible Navier-Stokes system with free surface being very
difficult to study, it is often replaced by the classical shallow water equations [9]. But these equations
rely on the hydrostatic assumption and hence when the vertical acceleration of the fluid can no longer
be neglected, the shallow water system fails to represent dispersive effects e.g. in the context of wave
propagation [33, 10].

Many shallow water type models taking into consideration the dispersive effects are available, see [35,
11, 12, 48, 47, 20, 19], the list being non-exhaustive. In this paper, we introduce a family of dispersive
models depending on a parameter and where only first order derivatives appear. For a given value of the
parameter we obtain the dispersive model proposed by some of the authors [19, 2] and for another value
of the parameter the studied model corresponds to the Green-Naghdi model [35, 4, 13, 21, 25] up to some
small error terms involving the bathymetry gradient.

The non linear shallow water model with topography is an hyperbolic system with source term, which
has been extensively studied and the literature provides efficient algorithms for this model, see [16, 45, 46]
for analysis results and [34, 44, 15, 6, 7] for numerical methods. Since non-hydrostatic models are no longer
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hyperbolic, it is necessary to propose new numerical algorithms and there is a strong need for methods able
to capture dispersion with a good accuracy and able to deal with real situations. Several approaches have
been proposed to solve these models, especially in one dimension or in two dimensions with a structured
grid (see [23, 13, 21, 28, 43]). A discretization with a discontinuous Galerkin method has been proposed in
[25] to treat the dispersive part, and more recently, A. Duran and F. Marche designed an hybrid method
[26] for the two-dimensional Green-Naghdi model. The same model is considered in [30] with a combined
finite volume / finite element method on unstructured meshes for its numerical approximation. In [31], the
authors use a contravariant formulation of the model and a high order WENO discretization scheme.

Compared to most of existing techniques where the non-hydrostatic part of the pressure is eliminated –
leading to third order derivative terms – we consider a formulation with only first order derivatives as
initially proposed in [19]. This strategy leads to a non-hydrostatic pressure governed by an elliptic type
equation as in the Chorin-Teman decomposition technique applied for the classical incompressible Euler
system [50]. More precisely, the elliptic part of the system has the form of a Sturm-Liouville type equation
and admits several formulations depending on the boundary conditions to be applied. A similar approach
is used in [30] but the numerical analysis of the correction step, especially the study of the inf − sup
condition – that is important e.g. for the treatment of wet dry interfaces – is not carried out.

The aim of this paper is to provide, for this family of two-dimensional dispersive models, a stable and
robust numerical method coupling finite volume and finite element strategies and able to simulate real cases
where the topography can be complex. Therefore, the space discretization is performed over unstructured
meshes.

The strong points of the paper are

• a model formulation with only first order derivatives and with a duality relation between the pressure
gradient and the divergence free condition similar to the one available for the classical incompressible
Euler system,

• the numerical analysis of the elliptic equations governing the non-hydrostatic pressure (inf-sup con-
dition),

• a numerical scheme able to deal with wet/dry interfaces,

• the numerical treatment of the boundary conditions facilitated by the model structure and the time
splitting,

• the convergence order of the method evaluated using several analytical solutions,

• the numerical procedure confronted with several test cases of wave propagation including a tsunami
propagation.

The paper is organized as follows. In the next section, we present the family of dispersive models and
its justification from the full Euler system. Section 3 is devoted to the formulation of the Chorin-Temam
approach (prediction-correction scheme) in the studied context, we mainly focus on the correction step con-
sisting in the resolution of a mixed problem (velocity-pressure). In Section 4, we propose two approximation
spaces (P1/P1 and P1-isoP2/P1) for the finite element scheme applied to the mixed problem. In Section 5,
details about the complete numerical scheme are given. Finally in Section 6, we validate the approach using
comparisons with analytical solutions and experimental data, and then we apply the numerical scheme to
an earthquake generated tsunami and compare the simulation results to field measurements.

2 A class of dispersive models

In this section, the family of 2d shallow water dispersive models studied in this paper is presented. First
its formulation where only first order derivatives appear is given, it corresponds to an extension to the 2d
case of previous works of some of the authors [19]. Then we propose a justification of the family of models
by the means of a depth averaging of the incompressible Euler system with free surface and a suitable
choice for the velocity and pressure fields. Finally a rewriting of the model, more suitable for numerical
approximation is presented.
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2.1 Model formulation

We consider the family of 2d shallow water dispersive models written under the form

∂H

∂t
+
∂(Hu)

∂x
+
∂(Hv)

∂y
= 0, (1)

∂(Hu)

∂t
+

∂

∂x

(
Hu2 +

g

2
H2 +Hp

)
+
∂(Huv)

∂y
= −(gH + δp)

∂zb
∂x

, (2)

∂(Hv)

∂t
+
∂(Huv)

∂x
+

∂

∂y

(
Hv2 +

g

2
H2 +Hp

)
= −(gH + δp)

∂zb
∂y

, (3)

∂(Hw)

∂t
+
∂(Huw)

∂x
+
∂(Hvw)

∂y
= δp, (4)

2w = −H∂u

∂x
+ δu

∂zb
∂x
−H∂v

∂y
+ δv

∂zb
∂y

, (5)

where u = (u, v, w)T is the velocity of the fluid, p is the non-hydrostatic part of the fluid pressure, the total
pressure is given by ptot = gH/2 + p and g represents the gravity acceleration. δ ∈ R is a parameter, its
value will be discussed below especially in paragraph 2.3.

We consider the model (1)-(5) is written for a two-dimensional domain Ω ⊂ R2 delimited by the
boundary Γ = Γin ∪ Γout ∪ Γs as described in Fig. 1-(a). We denote x = (x, y). The topography profile is
zb(x) and the free surface is defined by

η(x, t) := H(x, t) + zb(x), (6)

where H(x, t) is the water depth, see Fig. 1-(b).
For smooth solutions, the system (1)-(5) satisfies the following energy balance

∂E

∂t
+∇0.

(
u(E +

g

2
H2 +Hp)

)
= 0, (7)

with E = H(u2 + v2 + 2w2/δ)/2 + g(η2 − z2
b )/2 and the operator ∇0 = ( ∂

∂x ,
∂
∂y , 0)T .

Compared to the classical formulation of the Green-Naghdi system, the formulation (1)-(5) has two
main advantages

• the writing of the model exhibits a structure that is very similar to the full incompressible Euler
system with free surface. Hence, Eq. (1) stands for the mass conservation, Eqs. (2)-(4) are a vertically
averaged version of the momentum equations along x, y and z of the full Euler system and Eq. (5)
is a shallow water version of the divergence free condition. These similarities allow to adapt for the
dispersive shallow water model numerical techniques initially proposed for the full Euler system.

• The system (1)-(5) contains only first order derivatives and their numerical treatment is easier than
third order derivatives appearing in most of the dispersive shallow water models studied in the litter-
ature (Peregrine [48], Nwogu [47], BBM [12], Green-Naghdi [35]. . . ).

2.2 The boundary conditions

The set of equations (1)-(5) is completed with the following boundary conditions. We are considering a
channel with an inlet Γin and an outlet Γout and we impose specific conditions on each of them. The inflow
is imposed by a given discharge qg on Γin, and a water depth hg is imposed on Γout. Finally, we prescribe
slip boundary conditions for the velocity at the walls of the channel Γs. Hence we have

Hu(x, t) = qg(x, t), on Γin, (8)

H(x, t) = hg(x, t), on Γout, (9)

u(x, t) · n = 0, on Γs. (10)
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Notice that we can replace the prescribed water depth at the outflow by a free outflow consisting in imposing
a Neumann boundary condition over the elevation

∇0H · n = 0, on Γout,

where the vector n = (nx, ny, 0)T is the outward unit normal vector to the boundary Γ, see Fig. 1.

x

y

ΩΓin Γout

Γs

Γs

nn

z

n

uxy(t, x, y)

Γin Γout

η(t, x, y)

zb(x, y)

h(t, x, y)

x

(a) (b)

Figure 1: Model domain and notations, (a) view from above and (b) vertical cross section, uxy is the
horizontal part of the velocity vector i.e. uxy = (u, v)T .

2.3 A justification of the model

In this paragraph, we propose a unified approach consisting in an approximation of the depth averaged Euler
system and allowing to recover various dispersive shallow water models, see especially paragraph 2.3.2 and
remark 2.3. But it is important to notice that the approximation process of the Euler system we propose
is an a posteriori justification of the model (1)-(5) and cannot be considered as a modeling strategy.

2.3.1 The Euler system

The three-dimensional incompressible Euler system describing a free surface gravitational flow moving over
a bottom topography zb(x) writes

∇.V = 0, (11)

∂V

∂t
+∇.(V ⊗V) +∇p̃ = −g, (12)

where V = (u1, u2, u3)T is the velocity, p̃ is the fluid pressure and g = (0, 0, g)T represents the gravity

forces. The operator ∇ denotes ∇ =
(
∂
∂x ,

∂
∂y ,

∂
∂z

)T
.

Since we consider a free surface flow, the definition (6) and the system (11)-(12) is completed with the
following boundary conditions. At the free surface, the kinematic boundary condition is

∂η

∂t
+ u1,s

∂η

∂x
+ u2,s

∂η

∂y
− u3,s = 0, (13)

whereas at the bottom we have the non-penetration condition

u1,b
∂zb
∂x

+ u2,b
∂zb
∂y
− u3,b = 0, (14)

where the subscript s (resp. b) denotes the value of the considered quantity at the free surface (resp. at
the bottom).
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The dynamic boundary condition at the free surface is given by

p̃s = p̃(x, η(x, t), t) = pa(x, t), (15)

where pa is given mimics the role of the atmospheric pressure. Throughout this paper, we assume pa(x, t) =
pa0 = cst.

For the incompressible Euler system (11)-(12), a crucial point is the duality relation between the gradient
and divergence operators which writes∫

Ω×[zb,η]
p̃∇.Vdxdz =

∫
∂(Ω×[zb,η])

p̃V.nds−
∫

Ω×[zb,η]
V.∇p̃dxdz. (16)

The previous duality relation is mandatory to set an energy balance. Notice that in Eq. (16), n is the unit
outward normal to the domain Ω× [zb, η].

2.3.2 An approximation of the Euler system

For free surface flows, the vertical direction plays a particular role since it corresponds to the direction of the
gravity. Moreover the fluid domain, in our case, is thin in this direction. It is easy to see (cf. [32, Lemma 2.1])
that a depth averaging of the Euler system (11)-(12) completed with the boundary conditions (13)-(15)
leads to

∂H

∂t
+∇x,y.

∫ η

zb

vdz = 0, (17)

∂

∂t

∫ η

zb

vdz +∇x,y.
∫ η

zb

v ⊗ vdz +∇x,y
∫ η

zb

p̃dz = p̃(x, zb(x), t)∇x,yzb, (18)

∂

∂t

∫ η

zb

u3dz +∇x,y.
∫ η

zb

u3vdz = p̃(x, zb(x), t)− gH, (19)

with v = (u1, u2) and ∇x,y = ( ∂
∂x ,

∂
∂y )T , completed with (11).

And the following proposition holds.

Proposition 2.1 The model (1)-(5) is obtained by a depth averaging of the incompressible Euler system
with free surface (11)-(15) completed with the following assumption concerning the variations along the
vertical axis of the velocity field V and of the pressure p̃

u1(x, z, t) = u(x, t), u2(x, z, t) = v(x, t), (20)

u3(x, z, t) = ϕδ

(
η − z
H

)
w(x, t), (21)

p̃(x, z, t) = pa0 + g(η − z) + ψδ

(
η − z
H

)
p(x, t), (22)

where the two families of real valued functions ψδ = ψδ(z) and ϕδ = ϕδ(z) satisfy
∫ 1

0 ψδ(z)dz =
∫ 1

0 ϕδ(z)dz = 1
2

∫ 1
0 ϕδ(z)ψ

′
δ(z)dz = ϕδ(1) = 1,

ψδ(1) = δ,
ψδ(0) = 0.

(23)

Proof of prop. 2.1 In order to be consistent with the shallow water assumption, the choice (20) is natural
since it consists in assimilating the horizontal velocity field with its vertical mean.

It remains to justify the approximations for the velocity u3 and for the pressure p̃. The chosen expres-
sion (22) means that ψδ

(
(η − z)/H

)
p(x, t) corresponds to the non-hydrostatic part of the pressure.

Obviously, Eq. (17) with the choice (20) gives (1). Likewise Eq. (2) is derived from Eq. (18) with
the choices (20),(22) using the constraints (23). Notice that the definition (22) coupled with (23) implies
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that the boundary condition (15) is satisfied. Equation (4) is obtained from Eq. (19) using the defini-
tions (20),(21),(22) and the constraints (23).

The duality relation (16) is a guideline for the definition of the shallow water version of the divergence
free condition (11). Using expression (22), the left hand side of (16) involving the non-hydrostatic part of
the pressure becomes∫

Ω×[zb,η]
pψδ

(
η − z
H

)
∇.Vdxdz =

∫
Ω
p

(∫ η

zb

ψδ

(
η − z
H

)
∇.Vdz

)
dx,

and using (11),(14),(20),(21),(23), we remark that

0 =

∫ η

zb

ψδ

(
η − z
H

)
∇.Vdz =

∫ η

zb

ψδ

(
η − z
H

)
∂u

∂x
dz +

∫ η

zb

ψδ

(
η − z
H

)
∂v

∂y
dz

+

[
u3ψδ

(
η − z
H

)]η
zb

−
∫ η

zb

wϕδ

(
η − z
H

)
∂

∂z
ψδ

(
η − z
H

)
dz,

leading to Eq. (5) that completes the proof.
Among all the possible choices for ψδ and ϕδ, we exhibit two possible choices for ψδ, namely

ψ1
δ (z) = 3(δ − 2)z2 + 2(3− δ)z for δ ∈ R,

ψ2
δ (z) = δzδ−1, for δ ≥ 1,

and for ϕδ, possible choice are ϕiδ(z) = 2
δ + 1 − 2

δψ
i
δ(z) with i = 1, 2. Figure 2 illustrates the shape of the

functions ψδ and ϕδ for two typical values of δ namely δ = 2 (corresponding to advection dominating flows)
and δ = 3/2 (adapted to a wave propagation phenomenon). It appears that the functions ψδ and ϕδ do not
significantly differ when δ = 2 or when δ = 3/2, the choice δ = 2 corresponding to a linear profile. Notice
that for δ = 2, ψ1

2(z) = ψ2
2(z) and ϕ1

2(z) = ϕ2
2(z). �

(a) (b)

Figure 2: Shape of the functions ψδ and ϕδ for two typical values of δ. Notice that z = 0 corresponds to
the free surface and z = 1 to the bottom.

Remark 2.1 Instead of considering the approximation (20) where the horizontal velocity is supposed to be
constant along the vertical axis, a piecewise constant approximation along the vertical axis can be considered
(see [29]), leading to another set of 2d equations approximating the 3d Euler system with free surface.

2.4 Rewriting of the model

2.4.1 New formulation

We now propose a modified formulation of the model (1)-(5), resulting from a simple change of variable.
The two formulations are obviously equivalent, whatever the given formulation.
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A simple change of variable, namely w = γŵ/2 with γ2 = 2δ, in the system (1)-(5) leads to the model

∂H

∂t
+
∂(Hu)

∂x
+
∂(Hv)

∂y
= 0, (24)

∂(Hu)

∂t
+

∂

∂x

(
Hu2 +

g

2
H2 +Hp

)
+
∂(Huv)

∂y
= −(gH +

γ2

2
p)
∂zb
∂x

, (25)

∂(Hv)

∂t
+
∂(Huv)

∂x
+

∂

∂y

(
Hv2 +

g

2
H2 +Hp

)
= −(gH +

γ2

2
p)
∂zb
∂y

, (26)

∂(Hw)

∂t
+
∂(Huw)

∂x
+
∂(Hvw)

∂y
= γp, (27)

γw = −H∂u

∂x
+
γ2

2
u
∂zb
∂x
−H∂v

∂y
+
γ2

2
v
∂zb
∂y

, (28)

where theˆfor the variable w has been omitted. The system (24)-(28) defines a family {Mγ} of dispersive
models written in the more condensed form

∂H

∂t
+∇0 · (Hu) = 0, (29)

∂(Hu)

∂t
+∇0 · (Hu⊗ u) +∇0(

g

2
H2) +∇γsw p = −gH∇0(zb), (30)

divγsw (u) = 0, (31)

where the shallow water versions of the gradient and divergence operators are defined by

∇γsw f =

H ∂f
∂x + f ∂ζ∂x

H ∂f
∂y + f ∂ζ∂y
−γf

 , (32)

divγsw (w) =
∂(Hw1)

∂x
+
∂(Hw2)

∂y
− w1

∂ζ

∂x
− w2

∂ζ

∂y
+ γw3, (33)

for w = (w1, w2, w3)T and

ζ = H +
γ2

2
zb. (34)

Whereas ζ depends on γ, for the sake of simplicity, we have adopted a simplified notation and ζγ is replaced
by ζ.

The following proposition holds.

Proposition 2.2 Whatever the value of γ, the operators divγsw and ∇γsw satisfy the duality relation∫
Ω
∇γsw (f) ·wdx = −

∫
Ω

divγsw (w)fdx +

∫
Γ
Hfw · nds. (35)

In Eq. (35), f and w belong to suitable function spaces that will be precised later.
The duality relation (35) between the gradient and divergence operator is analogous to relation (16) for

the full incompressible Euler system. The property (35) is crucial for the method presented in the following
since we will consider a mixed formulation of the discrete problem in velocity/pressure (see Section 3.4),
which will lead to having an operator for the pressure and its adjoint for the velocity.

Remark 2.2 It is important to point out that in the model (1)-(5), it is not possible to define a shallow
water version of the gradient and divergence operators satisfying a duality relation analogous to (35) unless
δ = 2 (corresponding to γ = 2 in (35)) in which case the models (1)-(5) and (24)-(28) coincide.
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2.4.2 The value of γ

Dispersive models are often obtained using an asymptotic expansion of the Euler or Navier-Stokes system
coupled with physical assumptions concerning the hydrodynamic regime. For shallow water flows, dispersive
models are extensions of the classical shallow water system [32].

Particular choices of the parameter γ correspond to two dispersive models studied in the literature.
More precisely, γ =

√
3 leads to the Green-Naghdi model [35] whereas γ = 2 leads to the model described

in [19]. The complexity of the Euler system, able to represent many regimes from wave propagation to
advection dominated flows, explains why many dispersive shallow water models have been proposed, see
the references given in Section 1.

For γ =
√

3, the model (24)-(28) – or equivalently for δ = 3/2, the model (1)-(5) – corresponds, up to
small error terms, to the Green-Naghdi model [35] studied e.g. in [14, 41], this equivalence is proved in
Appendix A. In the context of wave propagation i.e. with flat bottom and assuming the water depth has
the form H = H0 + f(kx− ωt) with H0 = cst and |f(.)| � H0, it is easy to see that the linear dispersion
relation of the model Mγ is given by

ω

k
=
√
gH0

(
1 +

(kH0)2

γ2

)−1/2

,

corresponding for γ =
√

3 in the context of large wavelength (kH0 � 1) and up to O((kH0)4) terms, to
the classical Airy wave dispersion relation [1].

The choice γ = 2 corresponds to the model proposed and studied in 1d by some of the authors in [19, 2].
The model M2 is more adapted to advection dominated flows. Indeed we can exhibit analytical solutions
for the full Euler system that are also solutions of the model Mγ only for γ = 2, see remark 6.1. Thus the
model M2 shares common analytical solutions with the full Euler system.

But for the numerical analysis part that is the core of this paper, it is not necessary to single out one
value of γ or another since the proposed framework is valid for the whole family of models.

Remark 2.3 Notice that some approximations and/or linearizations in the dispersive terms of Mγ allow
to recover other dispersive models such as Peregrine’s model [48].

Indeed, considering a linearized version of M√3 (where H = H0 + h, H0 = cst, h � H0, uv � 1,
uw � 1) and a flat bottom gives

∂H

∂t
+
∂(Hu)

∂x
+
∂(Hv)

∂y
= 0, (36)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂H

∂x
+
∂p

∂x
= 0, (37)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂H

∂y
+
∂p

∂y
= 0, (38)

H0
∂w

∂t
=
√

3p, (39)

√
3w = −H0

∂u

∂x
−H0

∂v

∂y
. (40)

Then, substituting Eq. (40) in Eq. (39) gives the expression of the pressure p. And inserting the obtained
expression for p in Eqs.(37),(38) gives the Peregrine model [48].

3 Time and space discretizations

This section is devoted to the numerical approximation of the dispersive model given by (29)-(31).
The main ingredient of the numerical strategy consists in a time splitting based on a Chorin-Temam

projection-correction scheme (see [22, 50, 36, 37]). The space discretizations are first presented in this
section. Then the correction step is studied.
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3.1 Prediction - correction scheme

The prediction-correction method widely used to approximate the Navier-Stokes equations and based on a
time-splitting scheme is applied to the problem (29)-(31). At each time step, the problem is decomposed
into two steps. In the first one, we solve the hyperbolic part leading to a predicted state which does not
satisfy the divergence free constraint. During the second step, we update the predicted state so that the
divergence free constraint (31) is satisfied.

Let us introduce the notations

X =


H
Hu
Hv
Hw

 , F (X) =


Hu Hv

Hu2 + g
2H

2 Huv
Huv Hv2 + g

2H
2

Huw Hvw

 , S(X) =


0

−gH ∂zb
∂x

−gH ∂zb
∂y

0

 , R =

(
0
∇γsw p

)
.

Then, the system (29)-(31) can be written under the form

∂X

∂t
+∇x,y · F (X) +R = S(X),

divγsw (u) = 0.

We set t0 the initial time and tn+1 = tn + ∆tn where ∆tn satisfies a stability condition (CFL) precised
later, the state Xn will denote an approximation of X(tn). For each time step, we consider an intermediate
state which will be denoted with the superscript n+1/2. So the first step leads to solving the hyperbolic
system with the topography source term – that is exactly the classical shallow water system – in order to
get the state Xn+1/2 = (Hn+1/2, (Hu)n+1/2, (Hv)n+1/2, (Hw)n+1/2)T . The semi-discretization in time can
be summarized in the following steps

Xn+1/2 = Xn −∆tn∇x,y.F (Xn) + ∆tnS(Xn), (41)

Xn+1 = Xn+1/2 −∆tnRn+1, (42)

divγsw un+1 = 0. (43)

The equation (42) allows us to correct the predicted value Xn+1/2 in order to obtain a state which satisfies
the divergence free condition (43). The equation satisfied by the pressure is then an elliptic equation which
is obtained by applying the shallow water divergence operator divγsw to Eq. (42) and reads

divγsw

(
∇γsw pn+1

Hn+1

)
=

1

∆tn
divγsw

(
(Hu)n+1/2

Hn+1/2

)
. (44)

Once the pressure has been determined by the elliptic equation (44), the correction step (42) gives the final
step Xn+1.

Remark 3.1 For the initial conditions, at time t0, the initial state X0 is prescribed. Since the pressure is
obtained from (44), it is not necessary to impose any initial condition for the pressure.

In this paper, we briefly describe the step (41) in paragraph 3.3 but we will focus on the second step of
the scheme, namely Eqs. (42)-(43) discretized by a finite element method. Therefore, we will consider the

state Xn+1/2 as a given state and the state Xn+1 as the unknown. The operator divγsw

(
∇γsw
H

)
is a shallow

water version of the Laplacian operator and is denoted by ∆γ
sw , using (32),(33) its expression is given by

∆γ
sw p = ∇x,y.(H∇x,yp) +

(
∆x,yζ −

1

H

((
∂ζ

∂x

)2

+

(
∂ζ

∂y

)2

+ γ2

))
p, (45)

with ∆x,yf = ∇x,y.(∇x,yf) and ζ defined by (34). Therefore, the operator ∆γ
sw can be written under the

form of a Sturm-Liouville operator.

9
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Figure 3: Representation of the dual mesh

3.2 Space discretization

Concerning the space discretization, each step – prediction step and correction step – is solved with its own
scheme. The method relies on a combination between a finite volume scheme for the hyperbolic part (41)
and a finite element scheme for the elliptic part (42)-(43). The idea is to start with a primal mesh which
is triangular, then a dual mesh is built by the finite volume cells centered on the vertices.

Let us consider Ω the computational domain with boundary Γ, which is assumed to be polygonal. Let
T be a triangulation of Ω. We denote by Sh the set of the vertices of the mesh

Sh = {si = (xi, yi) ∈ T }. (46)

We recall here the general formalism of finite volumes on unstructured meshes, and the finite element
method we use for the correction part will be detailed in Section 4.
Let us define the finite volume cell Ci associated to the vertex si. The cells Ci are built by joining the
centers of mass of the triangles surrounding each vertex si. We use the following notations (see Figure 3)

• |Ci|, area of Ci,

• Γij , boundary edge between the cells Ci and Cj ,

• Lij , length of Γij ,

• nij , unit normal to Γij , outward to Ci (nji = −nij),

• Ki the set of nodes connected to the node si.

Remark 3.2 The variables H,Hu are estimated first as constant mean values on the cells Ci by the finite
volume scheme, which gives the intermediate state Xn+1/2. For the finite element scheme, the state Xn+1

is approximated at the vertices of the triangles, and for the required value of Xn+1/2 at the node si, we use
the constant mean value computed on the cell Ci. Similarly, for the finite volume step, the required mean
value Xn+1 at cell Ci is given by the value at node si. Therefore, combining the finite volume and the finite
element approximations, we will denote by Xi both the constant mean value on cell Ci and the value at
node si.

3.3 Finite volume scheme for the prediction part

We denote by Xn
i the approximation of X(tn) on a finite volume cell Ci, the state Xn

i is the approximation
of the cell average of X(x, tn)

Xn
i '

1

mes(Ci)

∫
Ci

X(x, tn)dx. (47)

10



Then, the approximation of the prediction step (41) can be summarized as follows

H
n+1/2
i = Hn

i −
∑
j∈Ki

σijFH(X∗,ni , X∗,nj )− σiFH(Xn
i , X

n
e,i), (48)

(Hu)
n+1/2
i = (Hu)ni −

∑
j∈Ki

σijFHu(X∗,ni , X∗,nj ) +
∑
j∈Ki

σijS(Xn
i , X

∗,n
i )− σiFHu(Xn

i , X
n
e,i), (49)

where the quantity σij depends on mes(Ci), on ∆tn and on the length of the cells edges. Similarly, σi
.
= σii

is computed for the boundary cells of the domain and Xn
e,i is a fictive state associated to a cell Ci at the

boundary of the domain (see [18]). The fluxes FH (resp. FHu) are the numerical fluxes corresponding to
H (resp. Hu). We do not give details on these fluxes. The hydrostatic reconstruction (HR) technique
ensures the well-balancing of the scheme (see [6]). Hence the term S in Eq. (49) is an adapted discretization
of the topography source term S in Eq. (41). Notice also that in Eqs. (48),(49), the superscript ∗ means
that the considered variable is reconstructued according to the HR technique [6]. For the numerical results
presented in this paper, the numerical fluxes are computed by a kinetic solver coupled with a hydrostatic
reconstruction technique (see [7]) but other choices are possible. In Eq. (49), the boundary conditions (8)-
(10) are treated as a Riemann problem at the interface (see [18, 3] for more details about the treatment of
the boundary conditions for the shallow water system).

For the third component of Eq. (49), we consider

(Hw)
n+1/2
i = (Hw)ni −

∑
j∈Ki

σijFH(Xn
i , X

n
j )
(
wni 1FH(Xn

i ,X
n
j )≥0 + wnj 1FH(Xn

i ,X
n
j )≤0

)
− σiFH(Xn

i , X
n
e,i)
(
wni 1FH(Xn

i ,X
n
e,i)≥0 + wne,i1FH(Xn

i ,X
n
e,i)≤0

)
. (50)

Classically, ∆tn satisfies a CFL condition ensuring the stability of the scheme (mainly domain invariant).
Notice that the resolution of the correction step (42)-(43) is implicit and does not add any constraint over
∆tn.

3.4 The mixed problem

Considering now Xn+1/2 is given by Eq. (41), we study the mixed problem corresponding to the correction
step, that is to say the system (42)-(43), and we give a variational formulation of the problem together with
an appropriate treatment of the boundary conditions at the continuous level in order to be compatible with
the hyperbolic part. This will make it possible to construct the finite element scheme for this problem. To
do so, we consider the domain Ω depicted over Fig. 1 with the boundary conditions (8),(10). The correction
step consists in computing the shallow water pressure p in order to satisfy the shallow water divergence
free condition (43). Notice that the water depth H computed by Eq. (41) is not modified by the correction
step which reads

Hn+1 = Hn+1/2, (51)

(Hu)n+1 + ∆tn
(
Hn+1∂p

n+1

∂x
+ pn+1∂ζ

n+1

∂x

)
= (Hu)n+1/2, (52)

(Hv)n+1 + ∆tn
(
Hn+1∂p

n+1

∂y
+ pn+1∂ζ

n+1

∂y

)
= (Hv)n+1/2, (53)

(Hw)n+1 − γ∆tn pn+1 = (Hw)n+1/2, (54)

completed with the divergence free condition (43) and the boundary conditions discretized from (8),(10).
From now on, we drop the superscript n+1 and note ∆t for ∆tn, thus the system (52)-(54) and (43) is
written

Hu + ∆t∇γsw p = Hun+1/2, (55)

divγsw (u) = 0, (56)
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where H denotes the water depth Hn+1 = Hn+1/2. This mixed problem in velocity/pressure leads to solving
the pressure equation (44), and then to update the velocity with the equation (55). Equations (55)-(56) are
the ”grad-div” formulation of the problem. The boundary conditions for the system (55)-(56) need to be
detailed since they have to be consistent with the prediction part. This is done in the following paragraph.

3.4.1 Compatible boundary conditions

In geophysical models such as the shallow water model, it is usual to impose an inflow condition on the
inlet Γin, namely Hu, and the water depth at the outflow or a free outflow, as defined by (8) and (9).

For the hyperbolic step, this choice depends on the Froude number Fr = |u|√
gH

which characterizes the

flow (fluvial or torrential). In this part, we apply compatible boundary conditions on the mixed system
depending on the regime chosen for the corresponding Saint-Venant problem at the prediction step. The
mixed formulation will allow us to impose boundary conditions on the velocity or the pressure.

Inflow /outflow Let us take the two-dimensional inflow Qe = ((Hu)
n+1/2
e , (Hv)

n+1/2
e )T which is imposed

at the hyperbolic part; the vertical velocity we will be treated independently, see Eq. (50). Many strategies
can be applied to satisfy compatible boundary conditions. As can be seen in the equations (52)-(53), a
natural choice is to keep Qe the same as in the hyperbolic part, then we will impose a condition on the
inlet velocity u · n = (ue, ve, we)

T · n on Γin.
Considering the pressure equation (44) and following the procedure detailed in [2], we can deduce that

this corresponds to apply a shallow water version of a Neumann boundary condition for the pressure i.e.

∇γsw p · n = 0 on Γin. (57)

In contrast, for the outflow, we impose the water depth in the hyperbolic step and recommend a Dirichlet
boundary condition for the pressure in order to let the discharge free at the outlet, namely p|Γout = pa = cst.

3.4.2 Slip boundary conditions

For the wall of the channel represented by Γs in Fig. 1, we assume a slip condition for the hyperbolic part
un+1/2 · n|Γs = 0 with a Neumann boundary condition for H (see [18]) and we maintain this condition in
the dispersive part, namely u · n|Γs = 0. Still from the pressure equation (44) and in the same spirit as
in [2], we deduce that this leads to having ∇γsw p · n|Γs = 0. Since ∂H

∂x |Γs = 0, it gives a Neumann-type

boundary condition for the pressure ∂p
∂n = 0 on Γs.

3.4.3 The variationnal formulation

First of all, we assume ∇ζ ∈ (L∞(Ω))2, p0 ∈ H−1/2(Γ) and we assume H ∈ L∞(Ω) is bounded below and
above

α1 < H < α2, α1, α2 > 0. (58)

In this section we give the variationnal formulation of the mixed problem (55)-(56) completed with appro-
priate boundary conditions

u · n = un+1/2 · n on Γin, u · n = 0 on Γs, (59)

p = p0 on Γout. (60)

In (60), to give a general formulation, we have considered a non-homogeneous Dirichlet boundary condition
for the pressure.

Now we distinguish two variationnal formulations using the shallow water divergence or gradient op-
erator and we explain how to choose the most judicious one in practice. Notice that we switch from one
formulation to the other using the relation (35).
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Formulation using the shallow water divergence operator In this section, we will propose a strong
treatment of the boundary condition for the velocity, we introduce the spaces

V = {v ∈ L2(Ω)3, divγsw (u) ∈ L2(Ω)}, (61)

W = {w ∈ V, w · n = 0 on Γin ∪ Γs}. (62)

The Hilbert space W is equipped with inner product (., .)W and induced norm ||.||W = ||.||(L2(Ω))3 +
||divγsw (.)||L2(Ω). For this variationnal formulation, we assume a homogeneous boundary condition for the
velocity, namely, in (59) we take u · n = 0 on Γin.
Then the problem (55)-(56) reads
Find u ∈W, p ∈ L2(Ω) such that, ∀v ∈W∫

Ω
Hu · v dx−∆t

∫
Ω

divγsw (v) p dx =

∫
Ω
Hun+1/2 · v dx− < Hv · n , p0 >Γout , (63)∫

Ω
divγsw (u)q dx = 0, ∀q ∈ L2(Ω), (64)

where we assume p0 ∈ H−1/2(Γout) and < ·, · >Γout represents the duality between H−1/2(Γout) and
H1/2(Γout) and un+1/2 ∈W. We introduce the bilinear forms

a(u,v) =

∫
Ω
Hu · vdx, ∀u,v ∈ V, (65)

bγ(v, q) = −
∫

Ω
divγsw (v) q dx, ∀v ∈W , ∀q ∈ L2(Ω). (66)

The problem reads
Find u ∈W, p ∈ L2(Ω) such that

a(u,v)−∆t bγ(v, p) = a(Hun+1/2,v)− < Hv · n , p0 >Γout , ∀v ∈W, (67)

bγ(u, q) = 0, ∀q ∈ L2(Ω). (68)

To impose a non-homogeneous boundary condition on Γs for the velocity u, we choose u− ū0 ∈W where
ū0 is defined on Ω̄ such that ū0|Γs = un+1/2|Γs .
In practice, this formulation requires to choose basis functions satisfying the slip condition in (62). There-
fore, if we want to have a domain with a specific boundary, we will prefer the formulation using the shallow
water gradient operator, which is described in the following.

Formulation using the shallow water gradient operator We define the spaces

Q = {q ∈ L2(Ω),∇γsw q ∈ L2(Ω)3}, Q0 = {q ∈ Q , q|Γout = 0}.

Using the duality relation (35), we have∫
Ω
∇γsw (q) · u dx−

∫
Γ
qHu · n ds = 0, ∀q ∈ Q,

then writing ∫
Γ
qHu · n ds =

∫
Γin

qHu · n ds+

∫
Γs

qHu · n ds+

∫
Γout

qHu · n ds, (69)

and, using the boundary conditions (59)-(60), we have∫
Γ
qHu · n ds =

∫
Γin

qHun+1/2 · n ds,

where the slip boundary condition is imposed in the following weak form
∫

Γs
qHu · n = 0, ∀q ∈ Q. We

apply the procedure proposed for the Navier-Stokes equations in [38] and we assume there exists p̄0 ∈ Q
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a given pressure such that p0 = p̄0|Γout ∈ H1/2(Γout). Therefore, the problem (55)-(56) completed with
(59)-(60) reads
Find p̃ = p− p̄0 ∈ Q0, p ∈ Q , u ∈ (L2(Ω))3 such that,∫

Ω
(Hu + ∆t∇γsw p̃) · v dx =

∫
Ω
Hun+1/2 · v dx, ∀v ∈ (L2(Ω))3,∫

Ω
∇γsw (q).u dx =

∫
Γin

qHun+1/2 · n ds, ∀q ∈ Q0.

Finally, we consider the following problem
Find u ∈ (L2(Ω))3, p ∈ Q such that, ∀v ∈ (L2(Ω))3,∫

Ω
(Hu + ∆t∇γsw p) · v dx =

∫
Ω
Hun+1/2 · v dx−∆t

∫
Ω
∇γsw p̄0 · v dx, (70)∫

Ω
∇γsw (q).u dx =

∫
Γin

qHun+1/2 · n ds, ∀q ∈ Q0.

As already mentioned, notice that we can use this formulation with the shallow water gradient operator
instead of divergence in order to avoid choosing basis functions satisfying the slip boundary condition.

The pressure equation Following the procedure of the one-dimensional problem in [2], we set v =
∇γsw (q)
H in (70) and take homogeneous boundary conditions for the pressure on Γ, it leads to a variationnal

formulation of the problem in the form

(∆γ
sw p, q) =

1

∆tn

(
divγsw (un+1/2), q

)
, ∀q ∈ Q0,sw, (71)

where

Qsw = {q ∈ Q, |divγsw

(
∇γsw q
H

)
∈ L2(Ω)}, Q0,sw = {q ∈ Qsw, q|Γ = 0},

and the operator ∆γ
sw is the Laplacian operator defined by (44).

3.4.4 The inf-sup condition

We want to establish the inf-sup condition at the continuous level to ensure the problem is well-posed. The
so-called inf-sup condition was introduced by Ladyzhenskaya, Babuska and Brezzi in [8, 17, 39] to ensure
the well-posedness of mixed problems for incompressible flows and has been studied for the finite element
method for instance in [27]. We consider the variational problem with Dirichlet boundary conditions for
the pressure (60). The problem (67)-(68) is under the form
Find u ∈W, p ∈ L2(Ω) such that

a(u,v)−∆t bγ(v, p) = a(f ,v)− < Hv · n , p0 >Γout , ∀v ∈W,

bγ(u, q) = 0, ∀q ∈ L2(Ω),

where f ∈W is a given vector. For all v ∈W0 = {v ∈W , divγsw (v) = 0}, the problem becomes
Find u ∈W0 such that

a(u,v) = a(f ,v)− < Hv · n , p0 >Γout , ∀v ∈W0.

Under the assumption (58), it is obvious that the bilinear form a is coercive, i.e. for all v ∈W0

a(v,v) ≥ α1||v||2L2(Ω), α1 > 0.

In addition, bγ is bilinear. With the assumption (58), and q ∈ L2(Ω) given, if we choose

v = (0, 0, q)T , (72)
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then

bγ(v, q)

||q||L2(Ω)
= γ||q||L2(Ω). (73)

Using now classial results (see e.g. [17]), this implies the existence and uniqueness of the solution of
(63)-(64). For the formulation with the operator ∇γsw , we can use a similar argument and take v = ∇γsw (q).

4 Finite element approximations for the mixed problem

In this part, we apply a finite element approximation for the correction part (55)-(56), which is suitable to
solve the elliptic problem for the pressure. We need two discrete spaces, one for the velocity and one for
the approximation of the pressure.

Sketch of a possible choice. In practice, the choice of the formulation should be done in function of
the boundary conditions. We can summarize the idea by the following

• Unless for very specific cases, it is usual to impose a homogeneous boundary condition for the pressure
since we don’t know the value of the pressure in real geophysical situations, then the formulations
using the gradient or the divergence shallow water operator are both appropriate.

• The choice will also concern the boundary conditions for the velocity, and more precisely for u · n.
Using the shallow water divergence operator, it is necessary to build a discrete space with basis
functions satisfying slip boundary conditions. In addition, if a discharge is imposed, a lifting of the
boundary condition should be applied.

• Besides, we look for a couple of spaces such that the inf-sup condition is satisfied.

In the numerical method presented below, we use the divergence shallow water formulation (see para-
graph 3.4.3), with two examples of implementation such that the inf-sup condition is satisfied. Indeed for
this formulation, it is straightforward to find spaces such that this condition is verified. Using the same ar-
gument as for the continuous problem, we choose spaces such that the conditions (72) and (73) are verified
at the discrete level.

The two proposed implementations are, first the P1/P1 spaces and then the P1-isoP2/P1 spaces. As
usual, Pk denotes the space of polynomials of two variables of degree ≤ k, and Pj/Pi denotes the pair
of approximation spaces where Pj is related to the velocity and Pi is related to the pressure. For the
pair P1/P1, the velocity w is approximated in the same approximation space as the pressure, and for the
pair P1-isoP2/P1, the approximation space of w contains the approximation space of the pressure (see
paragraph 4.2). For both, we give the discrete formulation and we provide a comparison of the numerical
results (see Section 6.1) in order to choose the most accurate solution. Since, in this paper, we intend
to present simple cases, we will treat numerical applications on domains (rectangles) where the condition
u · n = 0 reduces to u = 0 or v = 0 (otherwise see [38]).

It is possible to define other function spaces satisfying the inf-sup condition but we have singled out
strategies where reduced stencils arise especially due to the difficulties coming from the numerical treatment
of the boundary conditions.

4.1 The P1/P1 approximation

For this first implementation, we choose a P1/P1 finite element approximation (see [49, 27]) on the primal
mesh T introduced in paragraph 3.2, on which we approximate the variables at the nodes of the triangles
(see Fig. 3). We give the discrete problem with the following boundary conditions

p = 0, on Γout, (74)

u · n = 0, on Γs ∪ Γin. (75)

Let us introduce the discrete spaces of approximation:

Vh = {vh ∈ C0(Ωh), vh|T ∈ P1, ∀ T ∈ T },

15



Qh = {qh ∈ C0(Ωh), qh|T ∈ P1, ∀ T ∈ T },

with the dimensions dim(Qh) = M , dim(Vh) = N . We denote Vh = (Vh)3. Because of the P1/P1

approximation, Vh and Qh coincide but we keep two distinct notations in order to be consistent with the
notations that will be used in the P1-isoP2/P1 context, see paragraph 4.2.

We use a strong treatment of the boundary condition for the velocity. Therefore, we take

uh ∈Wh = {vh ∈ Vh, vh · n|Γs = 0},

and ph ∈ Qh the piecewise linear approximations of u, p on the triangles of T . Notice that the normal
components are evaluated by mean for each boundary nodes in order to impose the slip boundary conditions
vh · n|Γs = 0. In addition, we assume Hh ∈ Vh, ζh ∈ Vh, so we introduce

ph(x) =
∑
j∈JM

pjϕj(x), Hh(x) =
∑
i∈IN

Hiϕi(x), (76)

(Hu)h(x) =
∑
i∈IN

(Hu)iϕi(x), ζh(x) =
∑
i∈IN

ζiϕi, (77)

where IN (resp. JM ) is the set of indices of the space Vh (resp. Qh) and {ϕj}j∈JM (resp. {ϕi}i∈IN ) are
the basis functions of Qh (resp. Vh) and

uh(x) =
∑
i∈IN

uiϕi(x), (78)

ui =

 ui
vi
wi

 =
1

Hi

 (Hu)i
(Hv)i
(Hw)i

 . (79)

Remark 4.1 Notice that the differences between the two set of indices IN and JM are due to the type of
boundary conditions prescribed to the nodes.

We use the definitions (79) in accordance with the finite volume approximation (48)-(49) (see Remark
3.2) and we will use mass lumping in the integrals to be consistent with these definitions.

The discrete formulation of problem (63)-(64) reads
Find uh ∈Wh, ph ∈ Qh such that∫

Ω
Hhuh · vh dx + ∆t

∫
Ω

divγsw (vh)ph dx =

∫
Ω
Hhu

n+1/2
h · vh dx, ∀vh ∈Wh, (80)∫

Ω
divγsw (uh)qh dx = 0 ∀qh ∈ Qh. (81)

In order to describe the method, we introduce the following notations

• Sh = {si = (xi, yi) ∈ T }: the vertices of the triangular mesh (see (46)),

• Kh,i = {T ∈ T |si ∈ T}: the triangles connected to a vertex si.

Using the definitions (76)-(79), Eq. (80)-(81) become∑
i∈IN

(∫
Ω
Hiuiϕi(x) · vh(x) dx

)
−
∑
j∈JM

∆t

(∫
Ω

divγsw (vh(x))ϕj(x) dx

)
pj

=
∑
i∈IN

(∫
Ω
Hiu

n+1/2
i ϕi(x) · vh(x) dx

)
, ∀vh ∈Wh, (82)

completed with the divergence free condition

−
∑
i∈IN

(∫
Ω

divγsw (ϕi) qh ui dx

)
= 0, ∀qh ∈ Qh. (83)
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We introduce the pressure vector P = (pj)1≤j≤M and the velocity vector U = (U1, U2, U3)T , with U1 =
(ui)1≤i≤N , U2 = (vi)1≤i≤N , and U3 = (wi)1≤i≤N . Then the problem (82)-(83) can be written as

AHU + ∆tBT
γ P = AHU

n+1/2, (84)

BγU = 0, (85)

with the classical notations (see [49]) for the mass matrix AH , the divergence operator matrix Bγ . The
matrix AH depends on the water depth H and is composed of the three diagonal matrices MH

AH =

 MH 0 0
0 MH 0
0 0 MH

 ,

with MHji the approximation of
∑

T∈Kh,i
∫
T Hiϕiϕjdx. More precisely, using mass lumping we obtain

MHji =
∑

T∈Kh,i

mes(T )

3
Hiδij . (86)

We have denoted by Bγ the shallow water divergence operator defined by (83) with Bγ = (Bγ,1, Bγ,2, Bγ,3)
and using the definition of divγsw in (33), we obtain

Bγ,1 ji = −
∑

T∈Kh,i

∫
T

∂Hhϕi
∂x

ϕjdx +
∑

T∈Kh,i

∫
T
ϕiϕj

∂ζh
∂x

dx,

Bγ,2 ji = −
∑

T∈Kh,i

∫
T

∂Hhϕi
∂y

ϕjdx +
∑

T∈Kh,i

∫
T
ϕiϕj

∂ζh
∂y

dx, Bγ,3 ji = −γ
∑

T∈Kh,i

∫
T
ϕiϕjdx.

Finally, the linear system (84)-(85) reads
1

∆tMH 0 0 Bγ,1
0 1

∆tMH 0 Bγ,2
0 0 1

∆tMH Bγ,3
BT
γ,1 BT

γ,2 BT
γ,3 0




U1

U2

U3

P

 =
1

∆t


MH 0 0

0 MH 0
0 0 MH

0 0 0


 U

n+1/2
1

U
n+1/2
2

U
n+1/2
3

 .

By analogy with the continuous problem, applying the matrix Bγ to the equation (84), we obtain the
discrete elliptic equation for the pressure

BγA
−1
H BT

γ P = BγU
n+1/2, (87)

which is the discretization of the pressure equation (71). We now give some numerical approximations of
the integrals we use for each matrix. The matrix Bγ is computed with the following formulas

Bγ,1 ji = −
∑

T∈Kh,i

∂Hh

∂x

∣∣∣∣
T

∫
T
ϕiϕj dx−

∑
T∈Kh,i

∂ϕi
∂x

∣∣∣∣
T

∫
T
Hhϕj dx

+
∑

T∈Kh,i

∂ζh
∂x

∣∣∣∣
T

∫
T
ϕiϕj dx,

Bγ,2 ji = −
∑

T∈Kh,i

∂Hh

∂y

∣∣∣∣
T

∫
T
ϕiϕj dx−

∑
T∈Kh,i

∂ϕi
∂y

∣∣∣∣
T

∫
T
Hhϕj dx

+
∑

T∈Kh,i

∂ζh
∂y

∣∣∣∣
T

∫
T
ϕiϕj dx,

Bγ,3 ji = −γ
∑

T∈Kh,i

mes(T )

3
δij .
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In the first terms of Bγ,1 ji and Bγ,2 ji, we use definition (76) of Hh with mass lumping, and we obtain∫
T
Hhϕj dx =

∑
k

∫
T
Hkϕkϕj dx =

∫
T
Hiϕj dx =

mes(T )

3
Hi. (88)

The projection of the shallow water divergence on a vertex of the mesh is defined by ∀uh ∈Wh,∀j ∈ JM

divγsw (uh)|j =
3

supp(ϕj)

∑
i∈IN

∫
Ω

divγsw (ϕi(x))ϕj(x) dx ui, (89)

where supp(ϕj) is the area of the support of the function ϕj and is computed by supp(ϕj) =
∑

T∈Kh,j mes(T ).

Remark 4.2 Notice that mass lumping is chosen for the approximation of MH in order to be consistent
at the update step

AHU + ∆tBT
γ P = AHU

n+1/2,

since Un+1/2 is not written in the same approximation space in the finite volume part, it is more convenient
to have a diagonal matrix in practice.

4.2 A P1-isoP2/P1 approximation

In this part, we propose another approximation by finite elements, using the spaces P1-isoP2/P1 (see [49])
in which we define a coarse triangular mesh T2h and a fine mesh Th. The fine mesh corresponds to the
primal mesh introduced for the finite volume method 3.3. Unlike the previous approach, the velocity and
the pressure are defined in two different spaces. This allows us to approximate the pressure on a coarser
mesh than the velocity. Let us introduce the discrete spaces of approximation

Vh = {vh ∈ C0(Ωh), vh|τ ∈ P1, ∀ τ ∈ Th}, Qh = {qh ∈ C0(Ωh), qh|T ∈ P1, ∀ T ∈ T2h},

with the dimensions dim(Vh) = N and dim(Qh) = M. In addition, we assume Hh ∈ Vh. In practice, the
triangulation Th is obtained by subdividing each triangle T ∈ T2h into four triangles τ by joining the
middle of the edges, as shown in Fig. 4.

© ©

©

• •

•
T ∈ T2h

τ ∈ Th

• •

•

Figure 4: Representation of the triangulation. The velocity is evaluated on the black nodes, while the
pressure is evaluated on the circles.

In these spaces of approximation, the velocity is evaluated with the same degrees of freedom as for the
P2 space on the coarse mesh.
In order to describe the method, we introduce the following notations

• Sh = {si = (xi, yi) ∈ Th}: the vertices of the fine mesh,

• S2h = {sj = (xj , yj) ∈ T2h}: the vertices of the coarse mesh,

• Kh,i = {τ ∈ Th|si ∈ τ}: the triangles of the fine mesh connected to node si,

• K2h,j = {T ∈ T2h|sj ∈ T}: the triangles of the coarse mesh connected to node sj .
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We take uh ∈Wh and ph ∈ Qh, with Wh = {vh ∈ Vh, vh · n|Γs = 0},

ph(x) =
∑
j∈JM

piφj(x), Hh =
∑
i∈IN

Hiϕi(x), (Hu)h =
∑
i∈IN

(Hu)iϕi(x),

where φj (resp. ϕi) are the basis functions of Qh (resp. Vh) and

uh(x) =
∑
i∈IN

uiϕi(x),

with ui defined as in (78). Then the matrix B is computed with the following formulas

Bγ,1 ji = −
∑

T∈K2h,i

∂φj
∂x

∣∣∣∣
T

∑
τ∈T

∫
τ
Hhϕi dx−

∑
T∈K2h,i

∂Hh

∂x

∣∣∣∣
T

∑
τ∈T

∫
τ
φjϕi dx

+
∑

T∈K2h,i

∑
τ∈T

∂ζh
∂x

∣∣∣∣
τ

∫
τ
ϕiφj dx,

Bγ,2 ji = −
∑

T∈K2h,i

∂φj
∂y

∣∣∣∣
T

∑
τ∈T

∫
τ
Hhϕi dx−

∑
T∈K2h,i

∂Hh

∂y

∣∣∣∣
T

∑
τ∈T

∫
τ
φjϕi dx

+
∑

T∈K2h,i

∑
τ∈T

∂ζh
∂y

∣∣∣∣
τ

∫
τ
ϕiφj dx,

Bγ,3 ji = −γ
∑

T∈K2h,i

∑
τ∈T

∫
τ
ϕiφjdx.

As for (88), we choose Hh and zbh linear on each triangle τ ∈ Th and we use mass lumping∫
τ
Hhϕidx = Hi

mes(τ)

3
, and

∫
τ
ϕiφjdx =

mes(τ)

3

∑
x∈s̄(τ)

ϕi(x)φj(x),

where s(τ) = {v0, v1, v2} are the three vertices of the triangle τ . Finally, the discrete version of the shallow
water divergence operator is defined for each vertex of the coarse mesh by ∀uh ∈Wh, ∀j ∈ JM

divγsw (uh)|j =
3

supp(φj)

∑
i∈IN

∫
Ω

divγsw (ϕi(x))φj(x) dx ui. (90)

This definition is used numerically and can be seen as a diagonal preconditioner to solve Eq. (87).

5 Numerical algorithm

In this section, we give details about the procedure we use to combine the finite volume method and the finite
element method. For the sake of clarity, we just give an overview of the steps of the algorithm. Assuming
we know Hn, Hun, the combined finite volume/finite element method (41)-(43) can be summarized by the
following steps

• Solve the hyperbolic part (41) with the finite volume scheme (48)-(49) and get (H,Hu)n+1/2. Because
of Eq. (51), we obtain Hn+1 as well.

• Solve the elliptic problem (87) to obtain pn+1. We use the iterative method described below.

• Update the velocity un+1 in the correction step (84) using ∇γsw pn+1.
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5.1 Iterative methods

The linear problem (84)-(85) leading to (87), is solved in practice with iterative methods. Several algorithms
allow us to solve the classical mixed problem (55)-(56) in the divergence form. This is usually applied to
the finite element method for the Navier-Stokes equations, see [49, 38]. We describe here the Conjugate
Gradient method (CG) and the Uzawa algorithm (see [42, 49]) which use the duality property of the
operators. In practice, to take the boundary conditions into account, the matrix consists in two blocks in
which one part contains the elements of BγA

−1
H BT

γ for all the nodes that have to be solved and another
diagonal part which is the identity and corresponds to impose Dirichlet conditions for the pressure. Then
the contribution of the matrix Bγ associated with the given pressure is affected on the right hand side. The
linear problem can be written (

A 0
0 Id

)
P =

(
1

∆tD −AGPG
PG

)
, (91)

where A is the matrix extracted from BγA
−1
H BT

γ corresponding to the fact that we restrict to the nodes
of unknowns, respectively AG to the nodes of the given pressure PG. The matrix D is the shallow water
divergence vector of the velocity at the unknown nodes at the prediction part. This reduces the size of
the problem and allows us to apply the Conjugate Gradient algorithm. The initialization is done with the
state (Hu,Hv,Hw)n+1/2 computed at the hyperbolic step. For the sake of clarity, we drop the superscripts
n+1/2 and we denote with the superscript (k) the index iteration of the iterative method. In addition, we
use the notation f = 1

∆tD −AGPG. Then the CG algorithm can be summarized as
Initialization

U (0), P (0) given,

r(0) = f −AP (0),

d(0) = r(0).

For k > 0

ρ =
(r(k), d(k))

(d(k),Ad(k))
,

P (k+1) = P (k) + ρd[k),

r(k+1) = r(k) − ρAd(k),

δ(k+1) =
||r(k+1)||2

||r(k)||2
,

d(k+1) = r(k+1) + δ(k+1)d(k).

Then, the correction is applied to the velocity.
For the description of the Uzawa method, let us now use the duality between the operators (44) and

(33), keeping the notations

U (0), P (0) given,

P (k+1) = P (k) + αBγU
(k),

AHU
(k+1) = AHU

n+1/2 −∆tBT
γ P

(k+1),

with α chosen such that 0 < α < 2
maxλi

with λi the eigenvalues of BγA
−1
H BT

γ . The CG algorithm adapted
for problem (84)-(85) in the form of the Uzawa algorithm reads
Initialization

U0 = Un+1/2,

d(0) = r(0) = BγU
(0),
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k > 0

α(k) =
(r(k), dk)

(BT
γ d

(k), A−1
H BT

γ d
(k))

,

P (k+1) = P (k) + α(k)d(k),

Z = AHU
n+1/2 −∆tBT

γ P
(k+1).

Solve the system AHU
(k+1) = Z (we recall that the matrix AH is diagonal since we have used mass

lumping).
Compute BγU

r(k+1) = BγU
(k+1),

δ(k+1) =
||r(k+1)||2

||r(k)||2
,

d(k+1) = r(k+1) + δ(k+1)d(k).

In accordance with Eqs. (89),(90), the norm ||.|| used in the above iterative algorithms takes into account
the normalization of the operators by the basis function support area.

5.2 Wet-dry interface

As one can see, the method presented above requires the water depth does not vanish since the resolution
of the pressure equation (44) requires dividing the shallow water gradient by H. At the discrete level, this
difficulty arises in the mass matrix (86). But in practice, it is necessary that the model be able to capture
dry/wet interfaces e.g. when considering wave propagation over obstacles like islands or reaching a coast
line.

In practice, we introduce a small parameter ε such that the pressure equation (44) returns p = 0 when
H tends to zero. This can be viewed as a Dirichlet condition on the dry zone of the domain, such that the
pressure equation is solved only on the wet domain. In the iterative solver, this leads to testing the value
of the water depth for each node sj of the mesh (or for the coarse mesh if the P1-isoP2/P1 approximation
is used). However, in order to avoid selecting a list of dry nodes at each time step, which would require
significant computation time, we solve the whole problem and we introduce a threshold

ε� 1, (92)

under which the water depth is redefined by ε, namely Hε = max(H, ε). Since the mass matrix MH is
weighted with H and needs to be inverted in the correction step, to avoid having singularities, the matrix
is redefined with respect to Hε as

MHεji =
∑

T∈Kh,i

∫
T
Hεϕiϕjdx.

Then, at the correction step, the shallow water gradient is redefined by

∇γ,εswp|i =
1Hi>Hε

supp(ϕi)

∑
j

∫
Ω
∇γsw (ϕj) · ϕidx pj , (93)

so the velocity is not updated at these nodes by step (42). In Eq. (93), the function ϕj is replaced by φj if
we use P1-isoP2/P1 space approximation. Notice that introducing Hε does not change the result since it
appears only in the terms of degree zero for the derivative of the pressure. It only prevents from redefining
wet/dry zones at each iteration. With these definitions, the Laplacian operator written in (45) becomes

∆γ,ε
swp = divγsw

(∇γsw
Hε

p
)

= ∇x,y.(H∇x,yp) +

(
∆ζ − 1

Hε

((
∂ζ

∂x

)2

+

(
∂ζ

∂y

)2

+ γ2

)
p

)
. (94)
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5.3 An improved time scheme

The numerical methods presented in the previous sections can be improved if we apply a Heun scheme,
which is based on a Runge-Kutta method, to the Saint-Venant model and the correction part. This
improvement has been detailed for the one-dimensional problem in [2] and can be straightforwardly applied
to the two-dimensional case. The Heun scheme is slightly modified so that the stability (CFL) condition
remains valid. For this system, our scheme is second order accurate in time and, if we use a MUSCL like
extension based on limited reconstructed values at interfaces (see [7]) in the hyperbolic step, it is formally
second order accurate in space (see [7]). However, with the correction step, the resulting scheme is no
longer of order two, but introducing the Heun scheme and the reconstruction in the hyperbolic step can
improve the global accuracy of the scheme. This will be illustrated in the next section.

6 Numerical validation

In this section, we confront the numerical procedure with several test cases. First, we present convergence
curves for two time dependent analytical solutions allowing to validate the numerical resolution. Then
comparisons with experimental data and in the situation of an earthquake-generated tsunami are performed
enforcing the validity of the model. From some of the analytical and experimental test cases, we investigate
the influence of the chosen value for the parameter γ.

6.1 A solitary wave

The solitary wave is a one-dimensional non-stationary analytical solution of the model. This solution has
been proposed to validate the one-dimensional model in [2] and has the form

H = H0 + a

(
sech

(
x− c0t

l

))2

,

and we deduce

u = c0

(
1− d

H

)
, w = −c0d

γ

∂(lnH)

∂x
,

p = −c0dH

γ2

(
∂2(lnH)

∂x∂t
+ c0

(
1− d

H

)
∂2(lnH)

∂x2

)
,

with d, a,H0 ∈ R, H0 > 0, a > 0 and c0 = H0
d

√
g(H0 + a), l = 2H0

γ

√
H0
a + 1.

This analytical solution is extended to two dimensions in a rectangular channel and the definition v = 0 is
added to the previous equations.
We consider a channel of dimension 30 m ×1 m, the water elevation H0 is set to 1 m with significant wave
amplitude a = 0.35m and d = 1m. On the model domain in Figure 1, we set a slip boundary condition for
Γs, a given discharge for the inlet (8) and a water elevation at the outlet (9) with a homogeneous Dirichlet
boundary condition for the pressure at the correction step. The test case is initialized with the analytical
solution in the domain and we observe the propagation of the wave over time.

In Fig. 5, we show the computed water depth (Fig. 5-(a)) and the computed and analytical pressures
(Fig. 5-(b)). Notice that the numerical results have been obtained for γ = 2 but since it is an analytical
solution, any other choice for γ would have given the same results. This has been obtained with the
P1-isoP2/P1 approximation and the wave has covered approximately one wavelength.

A numerical comparison of the P1/P1 and P1-isoP2/P1 approximations is proposed in order to choose
the most accurate one for practical applications. In Fig. 6, we compare the numerical solutions, computing
the P1/P1 solution on the fine mesh of the P1-isoP2/P1, here an unstructured mesh of 72770 nodes. After
a short time, the P1/P1 method provides a less accurate solution than the P1-isoP2/P1 approximation,
since we observe the amplitude of the wave obtained by the P1-isoP2/P1 method is closer to the analytical
solution than the P1/P1 approximation.
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(a) (b)

Figure 5: Illustration of the solitary wave propagation at t = 1.99 s, (a) computed water depth (lateral
view) and (b) non-hydrostatic pressure (top view), analytical solution at the top, numerical field below.
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(a) H at time t=0.444213 s
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(b) H at time t=0.665963 s
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(c) H at time t=0.888782 s

Figure 6: Comparison between the analytical water depth Han and the P1isoP2/P1 and the P1/P1 approx-
imations on the solitary wave propagation.
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Figure 7: Cross section at the center of the channel y = 0.5 m; water depth of the analytical solution at
initial time H0 = Han and computed solution H(ti), i = 1, ..., 4 with t0 = 0 s, t1 = 0.499805 s, t2 = 0.999871
s, t3 = 1.49983 s, t4 = 1.99993 s for the P1-isoP2/P1 approximation and the improved method (Heun
scheme).
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Figure 8: Convergence rate for the P1-isoP2/P1 approximation for the classical scheme (order 1 in time
and space) and the improved method (Heun scheme and reconstruction in the prediction step). The L2

error is computed at time t = 1.99s

Since the comparison gives better results with the P1-isoP2/P1 spaces, we opt for this approximation
to validate the method. We apply the “improved” method presented in paragraph 5.3 and obtain a good
approximation of the soliton during all the propagation (see Fig. 7), we observe that the solitary wave
conserves its amplitude over the time. The simulation shown in Fig. 7 was computed with 251330 nodes
for the fine mesh. We study the convergence rate of the computed solutions, computing the L2 error at
time t = 1.99 s for different meshes corresponding to a triangulation with mean edges h0 = 0.0493528
m, h1 = 0.0250468 m and h2 = 0.016781 m. Figure 8 shows the logarithm of the L2 error between the

analytical solution and the numerical solution with respect to log
(
h0
h

)
where h = hi, i = 0, 1, 2. We observe

a convergence rate close to 1 for the first order method, while with the improved scheme we still obtain
approximately a first order convergence rate, although the computed error is smaller.

Notice that the simulations have also been carried out when, at the initial instant, the soliton is outside
of the considered domain. The simulation results and the convergence curve are exactly the same, see [2].
It is a good indicator of the quality of the numerical treatment of the boundary conditions.
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6.2 A periodic analytical solution with wet-dry interfaces

In this section the objective is to validate the method with a non stationary analytical solution where the
free surface oscillates over the time. Such solutions have been introduced by Thacker in [52] for the shallow
water equations and can be obtained over a paraboloid topography with a velocity (u, v) varying only with
respect to time. In the following proposition, we extend the result proposed by Thacker to the case of the
non-hydrostatic model (29)-(31).

Proposition 6.1 Let H0 ∈ R+, (a, b) ∈ R2 with |ab| ≤ 1 and

ω2 =
ag

1− a2b2
.

Then the functions H,u, v, w, p, s defined by

H(x, y, t) = max
(

0, H0 −
a

2
(x− b cos(ωt))2 − a

2
(y − b sin(ωt))2

)
,

u(x, y, t) = −bω sin(ωt), v(x, y, t) = bω cos(ωt), w(x, y, t) = −abω(sin(ωt)x− cos(ωt)y),

p(x, y, t) =
b2aω2

2
H(x, y, t),

s(x, y, t) = abω2(sin(ωt)x− cos(ωt)y),

with the topography

zb(x, y) = a
x2 + y2

2
,

are solution of the model

∂H

∂t
+∇0 · (Hu) = 0,

∂(Hu)

∂t
+∇0 · (Hu⊗ u) +∇0(

g

2
H2) +∇γsw p = −gH∇0(zb) + S,

divγsw (u) = 0,

with S = (0, s)T corresponding to the model (29)-(31) with γ = 2 and where (30) is completed with the
source term S.

Proof of prop. 6.1 The proof relies on simple computations and is not detailed here. �

Remark 6.1 The proposition 6.1 is valid only for γ = 2, see also [19]. And it is worth noticing that, as
proved in [19], the solution proposed in prop. 6.1 is also an analytical solution for the full Euler system (11)-
(12),(13)-(15). Thus the model M2 shares common analytical solutions with the Euler system, this has
already been mentioned (see paragraph 2.4.2).

We run this test on a disc domain centered in (x, y) = (0, 0) with a radius of 5 m, with a = 0.3 m−1,
b = 1.6 m and H0 = 1.0 m as shown in Figure 9-(a). This case is simulated with 440746 nodes for the
fine mesh (and 220588 for the coarse mesh). We use the strategy proposed in paragraph 5.2 to treat the
wet-dry front with ε defined by (92), ε = 10−5 m and we impose a discharge equal to zero at the boundary
conditions (8) and a Dirichlet boundary condition for the pressure on Γ. In Fig. 9-(a), the representation of
the free surface oscillating in the bowl is shown for different time steps. Figure 9-(b) presents the profile of
the elevation in the cross-section y = 0 at different time steps compared with the analytical solution. This
is a crucial test case for the validation of the method since we test the dry/wet - wet/dry transitions and
strong variations of the free surface. We also compute the convergence rate with the same formula described
for the solitary case (see paragraph 6.1) for different meshes where h0 = 0.0551138 m, h1 = 0.0412458 m,
h2 = 0.0330043 m, h3 = 0.0274674 m, where hi, i = 0, . . . , 3 are the mean edges of the meshes. In Fig. 10,
we observe that the convergence rate is close to one for the water depth, the vertical discharge Hw and the
non-hydrostatic pressure p. These simulated results are computed with the improved method described
in 5.3 and as expected, we obtain a similar slope for Hw and p and a better convergence for H which is
not corrected in the second step of the scheme (42).
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Figure 9: (a) Simulation of the free surface oscillations in a paraboloid at different time steps and (b) cross
section of the free surface at y = 0 of the free surface H + zb compared with the analytical solution at
different times: t0 = 0.277222 s, t1 = 0.431123 s, t2 = 0.739382 s, t3 = 0.893419 s ans t4 = 1.20134 s.
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Figure 10: Convergence rate: (a) of the L2 error of the water depth and (b) of the vertical discharge and
the pressure.
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6.3 Dingemans experiments - effect of the choice of γ

The experiments carried out by Dingemans [24] at Delft Hydraulics deal with the wave propagation over
uneven bottoms. A small amplitude wave (0.02 m) is generated at the left boundary of a closed basin with
vertical shores. At rest, the water depth in the channel varies from 0.4 m to 0.1 m, see Fig. 11. Eight
sensors recording the free surface elevation are located at abscissa 2 m, 4 m, 10.5 m, 12.5 m, 13.5 m, 14.5 m,
15.7 m and 17.3 m.

Figure 11: Channel profile for the experiments and location of the sensors.

Since the studied model (29)-(31) depends on a parameter γ, we have tried to investigate the impact
of the parameter value. The value γ =

√
3 – corresponding to the Green-Naghdi model – and the value

γ = 2 – corresponding to the model proposed by some of the authors – have been tested and the simulations
results are depicted in Figs. 11.

(a) (b)

(c) (d)

Figure 12: Comparisons between the experimental data (solid line) and the simulations of the dispersive
model with γ =

√
3 (blue dashed line) and γ = 3/2 (red dashed-dotted line). Figs. (a), (b), (c) and (d)

respectively correspond to the results for the sensors 3, 4, 5 and 6.
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It appears over Figs. 12 that either for γ = 2 or for γ =
√

3, the simulation results are rather in good
agreement with the recorded data. Nevertheless, we can see over Figs. 12 that the Green-Naghdi model i.e.
when γ =

√
3 gives better results than the model for γ = 2. This is in accordance with the fact that the

Green-Naghdi model is well adapted for gravity waves propagation whereas for advection dominant flows,
the value γ = 2 can be singled out, see remark. 6.1.

Remark 6.2 The values γ = 2 and γ =
√

3 corresponding to existing models are mainly used. It is
important to notice that in the case of the Dingemans experiments, with values of γ very different from 2
and
√

3 e.g. γ =
√

5, the obtained results are worse but not significantly different, see Fig. 13.

(a) (b)

Figure 13: Comparisons between the experimental data (solid line) and the simulations of the dispersive
model with γ =

√
3 (blue dashed line) and γ =

√
5 (red dashed-dotted line). Figs. (a), (b) respectively

correspond to the results for the sensors 4 and 5.

6.4 Application to the 2014 Iquique earthquake, Chile

In this section we apply the depth-averaged model (29)-(31) to a real geophysical event i.e. an earthquake-
generated tsunami. On April 1, 2014 at 23:46:47 UTC, a 8.2 magnitude earthquake struck off the coast of
northern Chile and generated a tsunami. The earthquake was localized at 95km NW of Iquique (see Figure
14) and the elevation of the water depth was recorded by the Deep-ocean Assessment and Reporting of
Tsunamis (DART) buoys of the NOAA center for tsunami research [51]. The objective of this section is to
confront the results of the hydrostatic and non-hydrostatic shallow water models to the water wave mea-
surements of the DART buoys. To simulate the tsunami generated earthquake, we use a topography given
by the NOAA and two different sources, denoted by Source A and Source B, describing the displacement
of the topography during the earthquake (see Fig. 15). These sources have been chosen because of their
different spatial variability : source A is overall more symmetric and smoother than source B (Fig. 15).
As dispersive effects are expected to be more important for shorter wavelength spatial heterogenities, we
investigate here the relative importance of dispersive effects for these two sources. In particular, we com-
pare the simulations using both the hydrostatic and non-hydrostatic models on two gauges represented in
Figure 16-(a) and corresponding to the location of

• the closest DART buoy: DART-32401 localized at 260 NM West-Southwest of Arica, Chile at Lati-
tude/Longitude coordinates (-20.473, -73.429).

• a point denoted S, localized at coordinates (-21.98702, -71.14027), closer to the coast and next to the
trench where bathymetry variations are huge.

The simulation is made on a spatial domain covering an area of 800 km × 1200 km (Fig. 14 and 16). For
the initial conditions, we prescribe (i) a horizontal free surface for the water and (ii) the bathymetry before
the earthquake occurred (Fig. 16). The topography associated with the unstructured mesh is obtained by
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Figure 14: Map of the Chilean coast with localization of the simulated domain. Localization of the DART
buoy 32401 and the other reference DART buoys (see NOAA’s data).

a linear interpolation of the ETOPO1 Arc-Minute Global Relief Model [5]. According to the comments
in paragraph 2.4.2 and the results obtained in paragraph 6.3, the value γ = 2 has been chosen for the
simulations. Notice that with γ =

√
3, the simulation results are very similar in the sense that the

differences cannot be seen with the naked eye.
The initial instant of the simulation exactly corresponds to the trigger point of the seism. The earth-

quake is simulated by updating the bathymetry at the first time step. The imposed bottom displacement is
illustrated in Figure 15 for sources A and B. For the non-hydrostatic simulation, the fine mesh – on which
the velocity is computed – has 470174 nodes which gives a size of edge’s triangle of about 2.5 km, while the
coarse mesh - on which the pressure is computed - has 117088 nodes. The hydrostatic simulation has been
performed on the fine mesh. We use the improved order accuracy in time and space for both simulations.

Figure 17 shows that non hydrostatic effects generate waves with higher frequencies, as expected.
In Fig. 18-A, we compare the simulated water waves obtained with source A using the hydrostatic and
non-hydrostatic models with the waves recorded at the DART buoy 32401. The simulation pretty well
reproduces the first wave in terms of amplitude and phase. The higher frequency oscillation of the water
surface are not at all captured by the hydrostatic model (dashed line). These oscillations may result from
more complex effects like dispersion. The non-hydrostatic (DAE) model produces indeed higher frequencies
than the hydrostatic model. However these higher frequencies oscillations are very small compared to the
observed ones. As a result, in this case the dispersion effects do not seem to play a significant role.

In Fig. 18-B, we do the same comparison with simulations based on the more heterogeneous source B.
Although the simulated maximum amplitude and the phase of the first wave is further from the observation,
the differences between the hydrostatic and non-hydrostatic models are larger. In particular, the non-
hydrostatic model generates an oscillation at higher frequency (between times around 1.734 s and 1.737 s)
followed by smaller fluctuations. This oscillation bare some similarities with the oscillation that follows the
first wave in the observations (between times around 1.735 and 1.738 s), even though the phase is different
and the amplitude of the negative part is smaller than the recorded wave.

The ability of the DAE model to generate higher frequencies is illustrated on the waves simulated at
gauge S for the two sources (Fig. 19). At this location, there are strong gradients of the bathymetry (see
Fig. 16-(a)), that are expected to enhance non-hydrostatic effects. We observe indeed that at this location,
dispersive effects are more important for both sources and produce high frequency oscillations. Interestingly,
the two sources give very different high frequency waves, suggesting that detailed comparison between
simulation and observation in this frequency range may provide insight into the source heterogeneity,
providing non-hydrostatic effects are properly accounted for. Further investigation of the impact of detailed
source characteristics on high frequency waves would be very interesting but beyond the scope of this paper.
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Figure 15: Imposed displacement for (a) source A and (b) source B. The selected zone corresponds to the
source zone in red shown in Fig. 14.

Figure 16: (a) Topography and bathymetry of the simulation domain (Chile) and location of the earthquake
epicenter, the DART buoy 32401 and the gauge S. (b) Simulated free surface variation η of the tsunami
wave at time 666 s.
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(a) t = 666 s

(b) t = 999 s

Figure 17: Comparison of the wave front for the hydrostatic (left) and the non-hydrostatic (right) model
at time t = 666s and t = 999 s and using the source A. The coordinate (0,0) corresponds to the coordinate
(15.0 S, 70.0 W).
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Figure 18: Comparison between numerical results using both models (hydrostatic and non-hydrostatic)
and the data of the DART buoy 32401 for (a) source A and (b) source B.

A big issue is the numerical cost of such non-hydrostatic simulations making it difficult to perform sensitivity
analysis since a very fine mesh is required to obtain converged numerical solutions.

7 Conclusion

In this paper, we have presented a new method for a family of two-dimensional dispersive shallow water
systems, where we do not solve equations containing high order derivatives but a mixed problem in velocity
and pressure. This allows to apply the method with appropriate boundary conditions for the velocity and
the pressure, which is usually a difficult task when high order equations are solved. In addition, due to
the general framework of the method and the definition of the shallow water operators, i.e. the duality
property on which the method is based, the algorithm has been applied on unstructured meshes using
a combined finite volume / finite element method to solve a hyperbolic system on the one hand and an
elliptic equation on the other hand. The algorithm uses an iterative method of Uzawa type to solve the
elliptic problem. We provide a numerical validation with two analytical solutions. We have proved that our
model is applicable at the scale of geophysical events by simulating an earthquake generated tsunami in
Chile. Our simulations pretty well reproduce the recorded wave. Our results show that, in a real situation,
strong differences may be obtained between hydrostatic and non-hydrostatic simulations, depending on the
variability of the topography around the recorded gauge and on the source heterogeneity.

Compared to classical finite volume schemes for the approximation of the shallow water equations,
the proposed strategy for the resolution of these dispersive models only add the resolution of a linear
elliptic-type equation. Nevertheless, the iterative inversion of the elliptic operator significantly increases
the computational costs and an optimized technique e.g. using a preconditioning is required. Besides, the
proposed method can be extended to layer-averaged approximations of the 3d Euler system [29], this work
is in progress.
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A Equivalence with the Green-Naghdi system

In this section, we prove the equivalence up to some second order error terms between the formulation (1)-(5)
and the Green-Naghdi system described in [40, 14, 41] i.e. we generalize [43] (see also [19, paragraph 3.4])
to the 2d case and with a non flat topography.

Following the formulation given in [41, paragraph 2.1] (see also [14]), the Green-Naghdi system writes

∂H

∂t
+∇x,y.(HU) = 0, (95)

(1 + µT [H, zb])

(
∂U

∂t
+ (U.∇x,y)U

)
+ g∇x,y(H + zb) + µQ[H, zb]U = 0, (96)

with U = (u, v) and

T [h, z]W = R1[h, z](∇x,y.W ) + βR2[h, z](∇x,yz.W ),

Q[h, z]W = −2R1[h, z]
(
∂xW.∂yW

⊥ + (∇x,y.W )2
)

+ βR2[h, z]
(
W.(W.∇x,y)∇x,yz

)
,

where W⊥ = (−W2,W1)T if W = (W1,W2)T and

R1[h, z]f = − 1

3h
∇x,y(h3f)− βh

2
f∇x,yz,

R2[h, z]f =
1

2h
∇x,y(h2f) + βf∇x,yz. (97)

Notice that in the previous equations and as in [41, paragraph 2.1], the parameter µ corresponds to the
shallowness of the flow while β accounts for the amplitude of the topography variations.

The two models (1)-(5) and (95)-(96) correspond to shallow water flows and hence are mainly valid in
the context of µ, β � 1. The following proposition holds.

Proposition A.1 Up to O(µβ2) terms, the model (1)-(5) with δ = 3/2 (or the model (24)-(28) with
γ =
√

3) and the model (95)-(96) are equivalent.

Corollary A.1 Consider a modified Green-Naghdi model where the definition (97) of R2[h, z] is replaced
by

R̃2[h, z]f =
1

2h
∇x,y(h2f) +

3β

4
f∇x,yz,

then the model (1)-(5) with δ = 3/2 and the model (95)-(96) have exactly the same formulation.
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Proof of prop. A.1 The proof of the proposition is very simple in the sense that it only relies on simple
computations but these computations are very long.

The dispersive terms in the Green-Naghdi model (95)-(96) i.e. the complementary terms compared to
the classical shallow water system write

Pgn = µT [H, zb]

(
∂U

∂t
+ (U.∇x,y)U

)
+ µQ[H, zb]U,

whereas, for the model (1)-(5) their expression is given by (for δ = 3/2)

P = µ

(
∇x,y(Hp) +

3β

2
p∇x,yzb

)
, (98)

with p defined by

p =
2H

3

(
∂w

∂t
+ u.∇0w

)
, (99)

and w satisfies

2w = −H∇0.u +
3β

2
u.∇0zb. (100)

In order to prove the result it remains to insert the expression of w given by Eq. (100) into Eq. (99) then
to insert the obtained expression for p into Eq. (98) and finally to check that P −Pgn = O(µβ2) holds true.

Notice that in order to be consistent with the model formulation (95)-(96), in Eq. (98) the value of P
is multiplied by the shallowness parameter µ and the gradient of the topography ∇0zb is multiplied by β in
Eqs. (98),(100).

Since they can be easily carried out using any symbolic computation software, we do not reproduce the
details of the computations allowing to obtain the simplified expression for the quantity P−Pgn corresponding
to

P − Pgn =
µβ2

4

(
∇x,yzb.

(∂U
∂t

+ (U.∇x,y)U
))
∇x,yzb +

µβ2

4

(
U.(U.∇x,y)∇x,yzb

)
∇x,yzb. (101)

�

Proof of corollary. A.1 The proof is a direct consequence of the expression obtained for P − Pgn in
Eq. (101) since we can rewrite

P − Pgn = µβ(R2[H, zb]− R̃2[H, zb])

(
∇x,yzb.

(∂U
∂t

+ (U.∇x,y)U
))

+ µβ(R2[H, zb]− R̃2[H, zb]) (U.(U.∇x,y)∇x,yzb) .

�
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