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Abstract

We propose a numerical method for a family of two-dimensional dispersive shallow
water systems with topography. The considered models consist in shallow water ap-
proximations – without the hydrostatic assumption – of the incompressible Euler system
with free surface. Hence, the studied models appear as extensions of the classical shallow
water system enriched with dispersive terms. The model formulation motivates to use a
prediction-correction scheme for its numerical approximation. The prediction part leads
to solving a classical shallow water system with topography while the correction part
leads to solving an elliptic-type problem. The numerical approximation of the considered
dispersive models in the two-dimensional case over unstructured meshes is described, it
requires to combine finite volume and finite element techniques. A special emphasis is
given to the formulation and the numerical resolution of the correction step (variational
formulation, inf-sup condition, boundary conditions,. . . ). The numerical procedure is
confronted with analytical and experimental test cases. Finally, an application to a real
tsunami case is given.

Keywords: shallow water flows, dispersive effects, prediction-correction scheme, combined
finite volume / finite element technique, dispersive wave propagation, tsunami propagation
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1 Introduction

Mathematical models for free surface flows are widely studied but their analysis and numerical
approximation remains a challenging issue. The incompressible Navier-Stokes system with
free surface being very difficult to study, it is often replaced by the classical shallow water
equations [9]. But these equations rely on the hydrostatic assumption and hence when the
vertical acceleration of the fluid can no longer be neglected, the shallow water system fails to
represent dispersive effects e.g. in the context of wave propagation [32, 10].

Many shallow water type models taking into consideration the dispersive effects are avail-
able, see [34, 11, 12, 47, 46, 20, 19], the list being non-exhaustive. In this paper, we introduce
a family of dispersive models depending on a parameter and where only first order derivatives
appear. For a given value of the parameter we obtain the dispersive model proposed by some
of the authors [19, 2] and for another value of the parameter the studied model corresponds
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to the Green-Naghdi model [34, 4, 13, 21, 25] up to some small error terms involving the
bathymetry gradient.

The non linear shallow water model with topography is an hyperbolic system with source
term, which has been extensively studied and the literature provides efficient algorithms for this
model, see [16, 44, 45] for analysis results and [33, 43, 15, 6, 7] for numerical methods. Since
non-hydrostatic models are no longer hyperbolic, it is necessary to propose new numerical
algorithms and there is a strong need for methods able to capture dispersion with a good
accuracy and able to deal with real situations. Several approaches have been proposed to
solve these models, especially in one dimension or in two dimensions with a structured grid
(see [23, 13, 21, 28, 42]). A discretization with a discontinuous Galerkin method has been
proposed in [25] to treat the dispersive part, and more recently, A. Duran and F. Marche
performed an hybrid method [26] for the two-dimensional Green-Naghdi model. The same
model is considered in [30] with combined finite volume / finite element on unstructured
meshes.

Compared to most of existing techniques where the non-hydrostatic part of the pressure is
eliminated – leading to third order derivative terms – we consider a formulation with only first
order derivatives as initially proposed in [19]. This strategy leads to a non-hydrostatic pressure
governed by an elliptic type equation as in the Chorin-Teman decomposition technique applied
for the classical incompressible Euler system [49]. More precisely, the elliptic part of the system
has the form of a Sturm-Liouville type equation and admits several formulations depending
on the boundary conditions to be applied.

The aim of this paper is to provide, for this family of two-dimensional dispersive models,
a stable and robust numerical method coupling finite volume and finite element strategies
and able to simulate real cases where the topography can be complex. Therefore, the space
discretization is performed over unstructured meshes.

The strong points of the paper are

• to consider a model formulation with only first order derivatives and with a duality
relation between the pressure gradient and the divergence free condition similar to the
one available for the classical incompressible Euler system,

• the numerical analysis of the elliptic equations governing the non-hydrostatic pressure
(inf-sup condition),

• to propose a numerical scheme able to deal with wet/dry interfaces,

• the numerical treatment of the boundary conditions facilitated by the model structure
and the time splitting,

• the convergence order of the method evaluated using several analytical solutions,

• the numerical procedure confronted with several test cases of wave propagation including
a tsunami propagation.

The paper is organized as follows. In the next section, we present the family of dispersive
models and its derivation from the full Euler system. Section 3 is devoted to the formulation
of the Chorin-Temam approach (prediction-correction scheme) in the studied context, we
mainly focus on the correction step consisting in the resolution of a mixed problem (velocity-
pressure). In Section 4, we propose two approximation spaces (P1/P1 and P1-isoP2/P1) for the
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finite element scheme applied to the mixed problem. Finally, we validate the implementations
using comparisons with analytical solutions, and then we apply the method to an earthquake
generated tsunami and compare the simulation results to field measurements.

2 A class of dispersive models

In this section, the family of 2d shallow water dispersive models studied in this paper is
presented. First its formulation where only first order derivatives appear is given then we
propose a justification of the family of models by the means of a depth averaging of the
incompressible Euler with free surface and a suitable choice for the velocity and pressure
fields.

2.1 Model formulation

We consider the family of 2d shallow water dispersive models written under the form

∂H

∂t
+
∂(Hu)

∂x
+
∂(Hv)

∂y
= 0, (1)

∂(Hu)

∂t
+

∂

∂x

(
Hu2 +

g

2
H2 +Hp

)
+
∂(Huv)

∂y
= −(gH + γp)

∂zb
∂x

, (2)

∂(Hv)

∂t
+
∂(Huv)

∂x
+

∂

∂y

(
Hv2 +

g

2
H2 +Hp

)
= −(gH + γp)

∂zb
∂y

, (3)

∂(Hw)

∂t
+
∂(Huw)

∂x
+
∂(Hvw)

∂y
= γp, (4)

γw = −H∂u

∂x
+ γu

∂zb
∂x
−H∂v

∂y
+ γv

∂zb
∂y

, (5)

where u(x, t) = (u, v, w)T is the velocity of the fluid, p is the non-hydrostatic part of the
fluid pressure, the total pressure is given by ptot = gH/2 + p and g represents the gravity
acceleration. γ ∈ R is a parameter, its value will be discussed in paragraph 2.3.

We consider the model (1)-(5) is written for a two-dimensional domain Ω ⊂ R2 delimited
by the boundary Γ = Γin ∪ Γout ∪ Γs as described in Fig. 1a. We denote x = (x, y). The
topography profile is zb(x) and the free surface is defined by

η(x, t) := H(x, t) + zb(x),

H(x, t) being the water depth.
For smooth solutions, the system (1)-(5) satisfies the following energy balance

∂E

∂t
+∇0.

(
U(E +

g

2
H2 +Hp)

)
= 0, (6)

with ∇0 = ( ∂
∂x
, ∂
∂y
, 0)T and E = H|u|2/2 + g(η2 − z2

b )/2.

Compared to the classical formulation of the Green-Naghdi system, the formulation (1)-(5)
has two main advantages
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• the writing of the model exhibits a structure that is very similar to the full incompressible
Euler system with free surface. Hence, Eq. (1) stands for the mass conservation, Eqs. (2)-
(4) are a vertically averaged version of the momentum equations along x, y and z of
the full Euler system and Eq. (5) is a shallow water version of the divergence free
condition. These similarities allow to adapt for the dispersive shallow water model
numerical techniques initially proposed for the full Euler system.

• The system (1)-(5) contains only first order derivatives and their numerical treatment is
easier than third order derivatives appearing in most of the dispersive shallow water mod-
els studied in the litterature Peregrine [47], Nwogu [46], BBM [12], Green-Naghdi [34]. . .

The system (1)-(5) defines a family {Mγ} of dispersive models written in the more con-
densed form

∂H

∂t
+∇0 · (Hu) = 0, (7)

∂(Hu)

∂t
+∇0 · (Hu⊗ u) +∇0(

g

2
H2) +∇γ

sw p = −gH∇0(zb), (8)

divγsw (u) = 0, (9)

where

∇γ
sw f =

H ∂f
∂x

+ f ∂ζ
∂x

H ∂f
∂y

+ f ∂ζ
∂y

−γf

 , (10)

divγsw (w) =
∂(Hw1)

∂x
+
∂(Hw2)

∂y
− w1

∂ζ

∂x
− w2

∂ζ

∂y
+ γw3, (11)

for w = (w1, w2, w3)T and

ζ = H + γzb. (12)

Whereas ζ depends on γ, for the sake of simplicity, we have adopted a simplified notation and
ζγ is replaced by ζ.

A key point is that the operators divγsw and ∇γ
sw satisfy the duality relation (analogous to

the duality relation between the gradient and divergence operator for the full incompressible
Euler system, see Eq. (29))∫

Ω

∇γ
sw (f) ·wdx = −

∫
Ω

divγsw (w)fdx +

∫
Γ

Hfw · nds, (13)

where f and w belong to suitable function spaces that will be precised later and n =
(nx, ny, 0)T is the outward unit normal vector to the boundary Γ, see Fig. 1. This property
is crucial for the algorithm presented in the following since we will consider a mixed problem
in velocity/pressure (see Section 3.4), which will lead, at the numerical level, to having an
operator for the pressure and its adjoint for the velocity.
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2.2 The boundary conditions

The set of equations (7)-(9) is completed with the following boundary conditions. We are
considering a channel with an inlet Γin and an outlet Γout and we impose specific conditions
on each of them. The inflow is imposed by a given discharge qg(x, t) on Γin, and a water depth
hg(x, t) is imposed on Γout. Finally, we prescribe slip boundary conditions for the velocity at
the walls of the channel Γs. Hence we have

Hu(x, t) = qg(x, t), on Γin, (14)

H(x, t) = hg(x, t), on Γout, (15)

u(x, t) · n = 0, on Γs. (16)

Notice that we can replace the prescribed water depth at the outflow by a free outflow con-
sisting in imposing a Neumann boundary condition over the elevation

∇0H · n = 0, on Γout.

x

y

ΩΓin Γout

Γs

Γs

nn

(a) View from above.

z

n

u(x, y, t)

Γin Γout

η(x, y, t)

zb(x, y)

H(x, y, t)

x

(b) Vertical cross section.

Figure 1: Model domain and notations.

2.3 A justification of the model

Dispersive models are often obtained using an asymptotic expansion of the Euler or Navier-
Stokes system coupled with physical assumptions concerning the hydrodynamic regime. For
shallow water flows, dispersive models are extensions of the classical shallow water system [31].

Particular choices of the parameter γ correspond to two dispersive models studied in the
literature. More precisely, γ = 3/2 leads to the Green-Naghdi model [34] whereas γ = 2 leads
to the model described in [19]. The complexity of the Euler system, able to represent many
regimes from wave propagation to advection dominated flows, explains why many dispersive
shallow water models have been proposed, see the references given in Section 1.

In this paragraph, we propose a unified approach consisting in an approximation of the
depth averaged Euler system and allowing to recover various dispersive shallow water models,
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see especially paragraph 2.3.2 and remark 2.2. But it is important to notice that the approx-
imation process of the Euler system we propose is an a posteriori justification of the models
Mγ and cannot be considered as a modeling strategy.

2.3.1 The Euler system

The three-dimensional incompressible Euler system describing a free surface gravitational flow
moving over a bottom topography zb(x) writes

∇.V = 0, (17)

∂V

∂t
+∇.(V ⊗V) +∇p̃ = −g, (18)

where V(x, y, z, t) = (u1, u2, u3)T is the velocity, p̃ is the fluid pressure and g = (0, 0, g)T

represents the gravity forces. The quantity ∇ denotes ∇ =
(
∂
∂x
, ∂
∂y
, ∂
∂z

)T
.

We consider a free surface flow, therefore we assume

zb(x) ≤ z ≤ η(x, t) := H(x, t) + zb(x).

The system (17)-(18) is completed with boundary conditions.
At the free surface, the kinematic boundary condition is

∂η

∂t
+ u1,s

∂η

∂x
+ u2,s

∂η

∂y
− u3,s = 0, (19)

whereas at the bottom we have the non-penetration condition

u1,b
∂zb
∂x

+ u2,b
∂zb
∂y
− u3,b = 0, (20)

where the subscript s (resp. b) denotes the value of the considered quantity at the free surface
(resp. at the bottom).

The dynamic boundary condition at the free surface is given by

p̃s = p̃(x, η, t) = pa(x, t), (21)

where pa mimics the role of the atmospheric pressure. Throughout this paper, we assume
pa(x, t) = pa0 = cst.

2.3.2 An approximation of the Euler system

For free surface flows, the vertical direction plays a particular role since it corresponds to
the direction of the gravity. Moreover the fluid domain is thin in this direction. It is easy
to see that a depth averaging of the Euler system (17)-(18) completed with the boundary
conditions (19)-(21) leads to (see [31, Lemma 2.1])

∂H

∂t
+∇x,y.

∫ η

zb

vdz = 0, (22)

∂

∂t

∫ η

zb

vdz +∇x,y.

∫ η

zb

v ⊗ vdz +∇x,y

∫ η

zb

p̃dz = p̃(x, zb(x), t)∇x,yzb, (23)
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∂

∂t

∫ η

zb

u3dz +∇x,y.

∫ η

zb

u3vdz = p̃(x, zb(x), t)− gH, (24)

completed with (17) and with v = (u1, u2).
And the following proposition holds.

Proposition 2.1 A depth averaging of the incompressible Euler system with free surface (17)-
(21) completed with a suitable approximation of the velocity field V and of the pressure p̃ in
Eqs. (22)-(24) gives the model (1)-(5).

Proof of prop. 2.1 Considering Eqs. (17),(22)-(24) it remains to choose the approximations
for the variables V and p̃. In order to be consistent with the shallow water assumption we
choose for the horizontal velocities

u1(x, z, t) = u(x, t), u2(x, z, t) = v(x, t). (25)

It remains to choose approximations for the velocity u3 and for the pressure p̃.
Let us consider two families of functions ψγ = ψγ(z) and ϕγ = ϕγ(z) satisfying∫ 1

0

ψγ(z)dz = 1,

ψγ(1) = γ,

ψγ(0) = 0, (26)∫ 1

0

ϕγ(z)
∂ψγ
∂z

dz = γ.

Many choices are possible for ψγ and ϕγ, we exhibit two possible choices for ψγ, namely

ψγ(z) = 3(γ − 2)z2 + 2(3− γ)z for γ ∈ R,

ψγ(z) = γzγ−1, for γ ≥ 1,

and for ϕγ a possible choice is

ϕγ(z) = 1− µγ

2
+ µψγ(z).

for any µ ∈ R. Now we define

p̃(x, z, t) = pa0 + g(η − z) + ψγ

(
η − z
H

)
p(x, t), (27)

u3(x, z, t) = ϕγ

(
η − z
H

)
w(x, t), (28)

meaning ψγ
(
(η−z)/H

)
p(x, t) corresponds to the non-hydrostatic part of the pressure. Because

of the chosen approximation for p̃ coupled with (26), the boundary condition (21) is satisfied.
And with the choices (25)-(28), Eqs. (2)-(4) exactly correspond to (23)-(24).
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For the incompressible Euler system (17)-(18), the duality relation between the velocity V
and the pressure p̃ given by∫

Ω×[zb,η]

V.∇p̃dωdz =

∫
∂(Ω×[zb,η])

p̃V.nds−
∫

Ω×[zb,η]

p̃∇.Vdωdz, (29)

is a crucial point (notice that in Eq. (29), n is the unit outward normal to the domain Ω ×
[zb, η]). Because of the choices (25)-(28), it comes∫

Ω×[zb,η]

p̃∇.Vdωdz =

∫
Ω×[zb,η]

pψγ

(
η − z
H

)
∇.Vdωdz,

and we remark that ∫ η

zb

ψγ

(
η − z
H

)
∇.Vdz = 0,

corresponds to Eq. (5). Notice that because of the properties of ψγ and ϕγ an analogous version
of the duality relation (29) holds for the model (1)-(4), see Eq. (13). �

Remark 2.1 Instead of considering the approximation (25) where the velocities is supposed
to be constant along the vertical axis, a piecewise constant approximation along the vertical
axis can be considered (see [29]) and leading to a set of 2d equations approximating the 3d
Euler system with free surface.

2.3.3 The value of γ

For γ = 3/2, the model (1)-(5) corresponds, up to small error terms, to the Green-Naghdi
model [34] studied e.g. in [14, 40], this equivalence is proved in Appendix A. In the context
of wave propagation i.e. with flat bottom and assuming the water depth has the form

H = H0 + f(kx− ωt),

with H0 = cst, f(.)� H0, it is easy to see that the linear dispersion relation of the model Mγ

is given by

ω

k
=
√
gH0

(
1 +

(kH0)2

2γ

)−1/2

,

corresponding for γ = 3/2 in the context of large wavelength (H0k � 1) and up to O((H0k)4)
terms, to the classical Airy wave dispersion relation.

The choice γ = 2 corresponds to the model proposed and studied in 1d by some of the
authors in [19, 2]. The model M2 is more adapted to advection dominated flows. Indeed we
can exhibit analytical solutions for the full Euler system that are also solutions of the model
Mγ only for γ = 2, see remark 6.1. Thus the model Mγ for γ = 2 shares common analytical
solutions with the full Euler system.

But for the numerical analysis part that is the core of this paper, the authors do not want
to single out one value of γ or another but propose a framework valid for the whole family of
models.
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Remark 2.2 Notice that approximations and/or linearizations in the dispersive terms ofMγ

allow to recover other dispersive models such as Peregrine [47].
Indeed, considering a linearized version ofMγ with γ = 3/2 (where H = H0 +h, H0 = cst,

h� H0, uv � 1, uw � 1) and a flat bottom gives

∂H

∂t
+
∂(Hu)

∂x
+
∂(Hv)

∂y
= 0, (30)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂H

∂x
+
∂p

∂x
= 0, (31)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂H

∂y
+
∂p

∂y
= 0, (32)

H0
∂w

∂t
= γp, (33)

γw = −H0
∂u

∂x
−H0

∂v

∂y
. (34)

Then, substituting Eq. (34) in Eq. (33) gives the expression of the pressure p. And inserting
the obtained expression for p in Eqs.(31),(32) gives the Peregrine model [47].

3 Time and space discretizations

The time splitting strategy based on a Chorin-Temam projection-correction scheme (see [22,
49, 35, 36]) and the space discretization are first presented in this section. Then the correction
step is studied.

3.1 Prediction - correction scheme

The prediction-correction method is widely used to approximate the Navier-Stokes equations
and is based on a time-splitting scheme. At each time step, the problem is decomposed into
two steps. In the first one, we use a finite volume method to solve the hyperbolic part leading
to a predicted state which does not satisfy the divergence free constraint. During the second
step, we update the predicted state so that the divergence free constraint (9) is satisfied.

Let us introduce the notations

X =


H
Hu
Hv
Hw

 , F (X) =


Hu Hv

Hu2 + g
2
H2 Huv

Huv Hv2 + g
2
H2

Huw Hvw

 ,

and

S(X) =


0

−gH ∂zb
∂x

−gH ∂zb
∂y

0

 , R =

(
0
∇γ
sw p

)
.

Then, the system (7)-(9) can be written under the form

∂X

∂t
+∇x,y · F (X) +R = S(X), (35)
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divγsw (u) = 0, (36)

with ∇x,y = ( ∂
∂x
, ∂
∂y

)T .

We set t0 the initial time and tn+1 = tn + ∆tn where ∆tn satisfies a stability condi-
tion (CFL) precised later and the state Xn will denote an approximation of X(tn). For
each time step, we consider an intermediate state which will be denoted with the super-
script n+1/2. So the first step leads to solving the hyperbolic system with the topography
source term – that is exactly the classical shallow water system – in order to get the state
Xn+1/2 = (Hn+1/2, (Hu)n+1/2, (Hv)n+1/2, (Hw)n+1/2)T . Finally, the semi-discretization in time
can be summarized in the following steps

Xn+1/2 = Xn −∆tn∇x,y.F (Xn) + ∆tnS(Xn), (37)

Xn+1 = Xn+1/2 −∆tnRn+1, (38)

divγsw un+1 = 0. (39)

Equation (38) allows us to correct the predicted value Xn+1/2 in order to obtain a state which
satisfies the divergence free condition (39). The equation satisfied by the pressure is then an
elliptic equation which is obtained by applying the shallow water divergence operator divγsw
to Eq. (38) and reads

divγsw

(
∇γ
sw p

n+1

Hn+1

)
=

1

∆tn
divγsw

(
(Hu)n+1/2

Hn+1/2

)
. (40)

Once the pressure has been determined by the elliptic equation (40), the correction step (38)
gives the final step Xn+1.

In this paper, we briefly describe the step (37) in paragraph 3.3 but we will focus on
the second step of the scheme, namely Eqs. (38)-(39) discretized by a finite element method.
Therefore, we will consider the state Xn+1/2 as a given state and the state Xn+1 as the

unknown. The operator divγsw

(
∇γsw
H

)
is a shallow water version of the Laplacian operator and

is denoted by ∆γ
sw , using (10),(11) its expression is given by

∆γ
sw p = ∇x,y.(H∇x,yp) +

(
∆x,yζ −

1

H

((
∂ζ

∂x

)2

+

(
∂ζ

∂y

)2

+ γ2

))
p, (41)

with ∆x,yf = ∇x,y.(∇x,yf) and ζ defined by (12). Therefore, the operator ∆γ
sw can be written

under the form of a Sturm-Liouville operator.

3.2 Space discretization

Concerning the space discretization, each step – prediction step and correction step – is solved
with its own scheme. The method relies on a combination between a finite volume scheme for
the hyperbolic part (37) and a finite element scheme for the elliptic part (see the correction
step in Section 3.1). The idea is to start with a primal mesh which is triangular, then a dual
mesh is built by the finite volume cells centered on the vertices.

Let us consider Ω the computational domain with boundary Γ, which is assumed to be
polygonal. Let T be a triangulation of Ω. We denote by Sh the set of the vertices of the mesh

Sh = {si = (xi, yi) ∈ T }. (42)
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Figure 2: Representation of the dual mesh

We recall here the general formalism of finite volumes on unstructured meshes, and the finite
element method we use for the correction part will be detailed in Section 4.
Let us define the finite volume cell Ci associated to the vertex si. The cells Ci are built by
joining the centers of mass of the triangles surrounding each vertex si. We use the following
notations (see Figure 2)

• |Ci|, area of Ci,

• Γij, boundary edge between the cells Ci and Cj,

• Lij, length of Γij,

• nij, unit normal to Γij, outward to Ci (nji = −nij),

• Ki the set of nodes connected to the node si.

Remark 3.1 The variables H,Hu are estimated first as constant mean values on the cells Ci
by the finite volume scheme, which gives the intermediate state Xn+1/2. For the finite element
scheme, the state Xn+1 is approximated at the vertices of the triangles, and for the required
value of Xn+1/2 at the node si, we use the constant mean value computed on the cell Ci.
Similarly, for the finite volume step, the required value Xn+1 at cell Ci is given by the value
at node si. Therefore, combining the finite volume and the finite element approximations, we
will denote by Xi both the constant mean value on cell Ci and the value at node si.

3.3 Finite volume scheme for the prediction part

We denote by Xn
i the approximation of X(tn) on a finite volume cell Ci, the state Xn

i is the
approximation of the cell average of X(x, tn)

Xn
i '

1

mes(Ci)

∫
Ci

X(x, tn)dx. (43)

Then, the approximation of the prediction step (37) can be summarized as follows

H
n+1/2
i = Hn

i −
∑
j∈Ki

σijFH(Xn
i , X

n
j )− σiFH(Xn

i , X
n
e,i), (44)
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(Hu)
n+1/2
i = (Hu)ni −

∑
j∈Ki

σijFHu(Xn
i , X

n
j )− σiFHu(Xn

i , X
n
e,i), (45)

where the quantity σij depends on mes(Ci), on ∆tn and on the length of the edges of
cells.Similarly, σi = σii is computed for the boundary cells of the domain and Xn

e,i is a fictive
state associated to a cell Ci at the boundary of the domain (see [18]). The numerical fluxes
FH (resp. FHu) are the numerical fluxes corresponding to H (resp. Hu). We do not give
details on the flux F . For the numerical results presented in this paper, the numerical fluxes
are computed by a kinetic solver coupled with a hydrostatic reconstruction technique (see [7])
but other choices are possible. The hydrostatic reconstruction ensures the well-balancing of
the scheme (see [7]). In Eq. (45), the boundary conditions (14)-(16) are treated as a Riemann
problem at the interface (see [18, 3] for more details about the treatment of the boundary
conditions for the shallow water system).

For the third component of Eq. (45), we consider

(Hw)
n+1/2
i = (Hw)ni −

∑
j∈Ki

σijFH(Xn
i , X

n
j )
(
wni 1FH(Xn

i ,X
n
j )≥0 + wnj 1FH(Xn

i ,X
n
j )≤0

)
− σiFH(Xn

i , X
n
e,i)
(
wni 1FH(Xn

i ,X
n
e,i)≥0 + wne,i1FH(Xn

i ,X
n
e,i)≤0

)
. (46)

Classically, ∆tn satisfies a CFL condition ensuring the stability of the scheme (mainly domain
invariant). Since the resolution of the correction step is implicit, it does not add any constraint
over ∆tn.

3.4 The mixed problem

Considering now Xn+1/2 is given by Eq. (37), we study the mixed problem corresponding to
the correction step, that is to say the system (38)-(39), and we give a variational formulation
of the problem together with an appropriate treatment of the boundary conditions at the
continuous level in order to be compatible with the hyperbolic part. This will make it possible
to construct the finite element scheme for this problem. To do so, we consider the domain Ω
depicted over Fig. 1 with the boundary conditions (14),(16). The correction step consists in
computing the shallow water pressure p in order to satisfy the shallow water divergence free
condition (9). Notice that the water depth H computed by Eq. (44) is not modified by the
correction step. Therefore, Eq. (38) reads

Hn+1 = Hn+1/2, (47)

(Hu)n+1 + ∆tn
(
Hn+1∂p

n+1

∂x
+ pn+1∂ζ

n+1

∂x

)
= (Hu)n+1/2, (48)

(Hv)n+1 + ∆tn
(
Hn+1∂p

n+1

∂y
+ pn+1∂ζ

n+1

∂y

)
= (Hv)n+1/2, (49)

(Hw)n+1 − γ∆tn pn+1 = (Hw)n+1/2, (50)

completed with the divergence free condition (39) and the boundary conditions (14),(16).
From now on, we drop the superscript n+1 and note ∆t for ∆tn, thus the system (48)-(50)
and (39) is written

Hu + ∆t∇γ
sw p = Hun+1/2, (51)
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divγsw (u) = 0, (52)

where H denotes the water depth Hn+1 = Hn+1/2. This mixed problem in velocity/pressure
leads to solving the pressure equation (40), and then to update the velocity with the equation
(51). Equations (51)-(52) are the ”grad-div” formulation of the problem. The boundary
conditions for the system (51)-(52) need to be detailed since they have to be consistent with
the prediction part. This is done in the following paragraph.

3.4.1 Compatible boundary conditions

In geophysical models such as the shallow water model, it is usual to impose an inflow con-
dition on the inlet Γin, namely Hu, and the water depth at the outflow or a free outflow, as
defined by (14) and (15). For the hyperbolic step, this choice depends on the Froude number

Fr = |u|√
gH

which characterizes the flow (fluvial or torrential). In this part, we apply com-
patible boundary conditions on the mixed system depending on the regime chosen for the
corresponding Saint-Venant problem at the prediction step. The mixed formulation will allow
us to impose boundary conditions on the velocity or the pressure.

Inflow /outflow Let us take the two-dimensional inflow Qe = ((Hu)
n+1/2
e , (Hv)

n+1/2
e )T

which is imposed at the hyperbolic part; the vertical velocity we will be treated independently,
see Eq. (46). Many strategies can be applied to satisfy compatible boundary conditions. As
can be seen in the equations (48)-(49), a natural choice is to keep Qe the same as in the
hyperbolic part, then we will impose a condition on the inlet velocity u · n = (ue, ve, we)

T · n
on Γin.

Considering the pressure equation (40) and following the procedure detailed in [2], we
can deduce that this corresponds to apply a shallow water version of a Neumann boundary
condition for the pressure i.e.

∇γ
sw p · n = 0 on Γin. (53)

In contrast, for the outflow, we impose the water depth in the hyperbolic step and recommend
a homogeneous Dirichlet boundary condition for the pressure in order to let the discharge free
at the outlet, namely p|Γout = pa = cst.

3.4.2 Slip boundary conditions

For the wall of the channel represented by Γs in Fig. 1, we assume a slip condition for the
hyperbolic part un+1/2 · n|Γs = 0 with a Neumann boundary condition for H (see [18]) and
we maintain this condition in the dispersive part, namely u · n|Γs = 0. Still from the pressure
equation (40) and in the same spirit as in [2], we deduce that this leads to having ∇γ

sw p ·n|Γs =
0. Since ∂H

∂x
|Γs = 0, it gives a Neumann-type boundary condition for the pressure ∂p

∂n
= 0 on

Γs.

3.4.3 The variationnal formulation

First of all, we assume ∇ζ ∈ (L∞(Ω))2, p0 ∈ H−1/2(Γ) and we assume H ∈ L∞(Ω) is bounded
below and above

α1 < H < α2, α1, α2 > 0. (54)
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In this section we give the variationnal formulation of the mixed problem (51)-(52) completed
with appropriate boundary conditions

u · n = un+1/2 · n on Γin, (55)

u · n = 0 on Γs, (56)

p = p0 on Γout. (57)

In (57), to give a general formulation, we have considered a non-homogeneous Dirichlet bound-
ary condition for the pressure.

Now we distinguish two variationnal formulations using the shallow water divergence or
gradient operator and we explain how to choose the most judicious one in practice. Notice
that we switch from one formulation to the other using the relation (13).

Formulation using the shallow water divergence operator In this section, we will
propose a strong treatment of the boundary condition for the velocity, we introduce the spaces

V = {v ∈ L2(Ω)3, divγsw (u) ∈ L2(Ω)}, (58)

W = {w ∈ V, w · n = 0 on Γin ∪ Γs}. (59)

The Hilbert space W is equipped with inner product (., .)W and induced norm ||.||W =
||.||(L2(Ω))3 + ||divγsw (.)||L2(Ω). For this variationnal formulation, we assume a homogeneous
boundary condition for the velocity, namely, in (55) we take u · n = 0 on Γin.
Then the problem (51)-(52) reads
Find u ∈W, p ∈ L2(Ω) such that, ∀v ∈W∫

Ω

Huv dx−∆t

∫
Ω

divγsw (v) p dx =

∫
Ω

Hun+1/2 · v dx− < Hv · n , p0 >Γout , (60)∫
Ω

divγsw (u)q dx = 0, ∀q ∈ L2(Ω), (61)

where we assume p0 ∈ H−1/2(Γout) and < ·, · >Γout represents the duality between H−1/2(Γout)
and H1/2(Γout) and un+1/2 ∈W. We introduce the bilinear forms

a(u,v) =

∫
Ω

Hu · vdx, ∀u,v ∈ V, (62)

bγ(v, q) = −
∫

Ω

divγsw (v) q dx, ∀v ∈W ,∀q ∈ L2(Ω). (63)

The problem reads
Find u ∈W, p ∈ L2(Ω) such that

a(u,v)−∆t bγ(v, p) = a(Hun+1/2,v)− < Hv · n , p0 >Γout , ∀v ∈W, (64)

bγ(u, q) = 0, ∀q ∈ L2(Ω). (65)

To impose a non-homogeneous boundary condition on Γs for the velocity u, we choose u−ū0 ∈
W where ū0 is defined on Ω̄ such that ū0|Γs = ūn+1/2|Γs .
In practice, this formulation requires to choose basis functions satisfying the slip condition
in (59). Therefore, if we want to have a domain with a specific boundary, we will prefer the
formulation using the shallow water gradient operator, which is described in the following.
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Formulation using the shallow water gradient operator We define the spaces

Q = {q ∈ L2(Ω),∇γ
sw q ∈ L2(Ω)3}, (66)

Q0 = {q ∈ Q , q|Γout = 0}. (67)

Using the duality relation (13), we have∫
Ω

∇γ
sw (q) · u dx−

∫
Γ

qHu · n ds = 0, ∀q ∈ Q,

then writing∫
Γ

qHu · n ds =

∫
Γin

qHu · n ds+

∫
Γs

qHu · n ds+

∫
Γout

qHu · n ds, (68)

and, using the boundary conditions (55)-(57), we have∫
Γ

qHu · n ds =

∫
Γin

qHun+1/2 · n ds, (69)

where the slip boundary condition is imposed in the following weak form
∫

Γs
qHu ·n = 0, ∀q ∈

Q. We apply the procedure proposed for the Navier-Stokes equations in [37] and we assume
there exists p̄0 ∈ Q a given pressure such that p0 = p̄0|Γout ∈ H1/2(Γout). Therefore, the
problem (51)-(52) completed with (55)-(57) reads
Find p̃ = p− p̄0 ∈ Q0, p ∈ Q , u ∈ (L2(Ω))3 such that,∫

Ω

(Hu + ∆t∇swp̃) · v dx =

∫
Ω

Hun+1/2 · v dx, ∀v ∈ (L2(Ω))3, (70)∫
Ω

∇γ
sw (q) u dx =

∫
Γin

qHun+1/2 · n ds, ∀q ∈ Q0. (71)

Finally, we consider the following problem
Find u ∈ (L2(Ω))3, p ∈ Q such that, ∀v ∈ (L2(Ω))3,∫

Ω

(Hu + ∆t∇swp) · v dx =

∫
Ω

Hun+1/2 · v dx−∆t

∫
Ω

∇swp̄0 · v dx, (72)∫
Ω

∇γ
sw (q) u dx =

∫
Γin

qHun+1/2 · n ds, ∀q ∈ Q0. (73)

As already mentioned, notice that we can use this formulation with the shallow water gradient
operator instead of divergence in order to avoid choosing basis functions satisfying the slip
boundary condition.

The pressure equation Following the procedure of the one-dimensional problem in [2], we

set v = ∇γsw (q)
H

in (72) and take homogeneous boundary conditions for the pressure on Γ, it
leads to a variationnal formulation of the problem in the form

(∆γ
sw p, q) =

1

∆tn
(
divγsw (un+1/2), q

)
, ∀q ∈ Q0,sw, (74)

where

Qsw = {q ∈ Q, |divγsw

(
∇γ
sw q

H

)
∈ L2(Ω)},

Q0,sw = {q ∈ Qsw, q|Γ = 0},
and the operator ∆γ

sw is the Laplacian operator defined by (40).
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3.4.4 The inf-sup condition

We want to establish the inf-sup condition at the continuous level to ensure the problem is
well-posed. The so-called inf-sup condition was introduced by Ladyzhenskaya, Babuska and
Brezzi in [8, 17, 38] to ensure the well-posedness of mixed problems for incompressible flows
and has been studied for the finite element method for instance in [27]. We consider the
variational problem with Dirichlet boundary conditions for the pressure (57). The problem
(64)-(65) is under the form
Find u ∈W, p ∈ L2(Ω) such that

a(u,v)−∆t bγ(v, p) = a(f ,v)− < Hv · n , p0 >Γout , ∀v ∈W, (75)

bγ(u, q) = 0, ∀q ∈ L2(Ω), (76)

where f ∈ W is a given vector. For all v ∈ W0 = {v ∈ W , divγsw (v) = 0}, the problem
becomes
Find u ∈W0 such that

a(u,v) = a(f ,v)− < Hv · n , p0 >Γout , ∀v ∈W0. (77)

Under the assumption (54), it is obvious that the bilinear form a is coercive, i.e. for all v ∈W0

a(v,v) ≥ α1||v||2L2(Ω), α1 > 0. (78)

In addition, bγ is bilinear. With the assumption (54), and q ∈ L2(Ω) given, if we choose

v = (0, 0, q)T , (79)

then

bγ(v, q)

||q||L2(Ω)

= γ||q||L2(Ω). (80)

This implies the existence and uniqueness of the solution of (60)-(61). For the formulation
with the operator ∇γ

sw , we can use a similar argument and take v = ∇γ
sw (q).

4 Finite element approximations for the mixed problem

In this part, we apply a finite element approximation for the correction part (51)-(52), which
is suitable to solve the elliptic problem for the pressure. We need two discrete spaces, one for
the velocity and one for the approximation of the pressure.

Sketch of a possible choice. In practice, the choice of the formulation should be done
in function of the boundary conditions. We can summarize the idea by the following

• Unless for very specific cases, it is usual to impose a homogeneous boundary condition for
the pressure since we don’t know the value of the pressure in real geophysical situations,
then the formulations using the gradient or the divergence shallow water operator are
both appropriate.
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• The choice will also concern the boundary conditions for the velocity, and more precisely
for u ·n. Using the shallow water divergence operator, it is necessary to build a discrete
space with basis functions satisfying slip boundary conditions. In addition, if a discharge
is imposed, a lifting of the boundary condition should be applied.

• Besides, we look for a couple of spaces such that the inf-sup condition is satisfied.

In the numerical method presented below, we use the divergence shallow water formulation
(see paragraph 3.4.3), with two examples of implementation such that the inf-sup condition
is satisfied. Indeed for this formulation, it is straightforward to find spaces such that this
condition is verified. Using the same argument as for the continuous problem, we choose
spaces such that the conditions (79) and (80) are verified at the discrete level.

The two proposed implementations are, first the P1/P1 spaces and then the P1-isoP2/P1

spaces. As usual, Pk denotes the space of polynomials of two variables of degree ≤ k, and Pj/Pi
denotes the pair of approximation spaces where Pj is related to the velocity and Pi is related
to the pressure. For the pair P1/P1, the velocity w is approximated in the same approximation
space than the pressure, and for the pair P1-isoP2/P1, the approximation space of w contains
the approximation space of the pressure (see paragraph 4.2). For both, we give the discrete
formulation and we provide a comparison of the numerical results (see Section 6.1) in order
to choose the most accurate solution. Since, in this paper, we intend to present simple cases,
we will treat numerical applications on domains (rectangles) where the condition u · n = 0
reduces to u = 0 or v = 0 (otherwise see [37]).

It is possible to define other function spaces satisfying the inf-sup condition but we have
singled out strategies where reduced stencils arise especially due to the difficulties coming from
the numerical treatment of the boundary conditions.

4.1 The P1/P1 approximation

For this first implementation, we choose a P1/P1 finite element approximation (see [48, 27])
on the primal mesh T introduced in paragraph 3.2, on which we approximate the variables
at the nodes of the triangles (see Fig. 2). We give the discrete problem with the following
boundary conditions

p = 0, on Γout, (81)

u · n = 0, on Γs ∪ Γin. (82)

Let us introduce the discrete spaces of approximation:

Vh = {vh ∈ C0(Ωh), vh|T ∈ P1, ∀ T ∈ T },
Qh = {qh ∈ C0(Ωh), qh|T ∈ P1, ∀ T ∈ T },

with the dimensions dim(Qh) = M , dim(Vh) = N . We denote Vh = (Vh)
3. We use a strong

treatment of the boundary condition for the velocity. Therefore, we take

uh ∈Wh = {vh ∈ Vh, vh · n|Γs = 0},

and ph ∈ Qh the piecewise linear approximations of u, p on the triangles of T . Notice that
the normal components are evaluated by mean for each boundary nodes in order to impose
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the slip boundary conditions vh · n|Γs = 0. In addition, we assume Hh ∈ Vh, ζh ∈ Vh, so we
introduce

ph(x) =
∑
j∈JM

pjϕj(x), Hh(x) =
∑
i∈IN

Hiϕi(x), (83)

(Hu)h(x) =
∑
i∈IN

(Hu)iϕi(x), ζh(x) =
∑
i∈IN

ζiϕi, (84)

where IN (resp. JM) is the set of indices of the space Vh (resp. Qh) and {ϕj}j∈JM (resp.
{ϕi}i∈IN ) are the basis functions of Qh (resp. Vh) and

uh(x) =
∑
i∈IN

uiϕi(x), (85)

with

ui =

 ui
vi
wi

 =
1

Hi

 (Hu)i
(Hv)i
(Hw)i

 . (86)

Remark 4.1 Notice that the differences between the two set of indices IN and JM is due to
the type of boundary conditions prescribed to the nodes.

We use the definitions (86) in accordance with the finite volume approximation (44)-(45)
(see Remark 3.1) and we will use mass lumping in the integrals to be consistent with these
definitions.

The discrete formulation of problem (60)-(61) reads
Find uh ∈Wh, ph ∈ Qh such that∫

Ω

Hhuh · vh dx + ∆t

∫
Ω

divγsw (vh)ph dx =

∫
Ω

Hhu
n+1/2
h · vh dx, ∀vh ∈Wh, (87)∫

Ω

divγsw (uh)qh dx = 0 ∀qh ∈ Qh. (88)

In order to describe the method, we introduce the following notations

• Sh = {si = (xi, yi) ∈ T }: the vertices of the triangular mesh (see (42)),

• Kh,i = {T ∈ T |si ∈ T}: the triangles connected to a vertex si.

Using the definitions (83)-(86), Eq. (87)-(88) become∑
i∈IN

(∫
Ω

Hiuiϕi(x) · vh(x) dx

)
−
∑
j∈JM

∆t

(∫
Ω

divγsw (vh(x))ϕj(x) dx

)
pj

=
∑
i∈IN

(∫
Ω

Hiu
n+1/2
i ϕi(x) · vh(x) dx

)
, ∀vh ∈Wh, (89)

completed with the divergence free condition

−
∑
i∈IN

(∫
Ω

divγsw (ϕi) qh ui dx

)
= 0, ∀qh ∈ Qh. (90)

19



We introduce the pressure vector P = (pj)1≤j≤M and the velocity vector U = (U1, U2, U3)T ,
with U1 = (ui)1≤i≤N , U2 = (vi)1≤i≤N , and U3 = (wi)1≤i≤N . Then the problem (89)-(90) can
be written as

AHU + ∆tBT
γ P = AHU

n+1/2, (91)

BγU = 0, (92)

with the classical notations (see [48]) for the mass matrix AH , the divergence operator matrix
Bγ. The matrix AH depends on the water depth H and is composed of the three diagonal
matrices MH

AH =

 MH 0 0
0 MH 0
0 0 MH

 ,

with MHji the approximation of
∑

T∈Kh,i

∫
T
Hiϕiϕjdx. More precisely, using mass lumping

we obtain

MHji =
∑

T∈Kh,i

mes(T )

3
Hiδij. (93)

We have denoted by Bγ the shallow water divergence operator defined by (90) with Bγ =
(Bγ,1, Bγ,2, Bγ,3) and using the definition of divγsw in (11), we obtain

Bγ,1 ji = −
∑

T∈Kh,i

∫
T

∂Hhϕi
∂x

ϕjdx +
∑

T∈Kh,i

∫
T

ϕiϕj
∂ζh
∂x

dx,

Bγ,2 ji = −
∑

T∈Kh,i

∫
T

∂Hhϕi
∂y

ϕjdx +
∑

T∈Kh,i

∫
T

ϕiϕj
∂ζh
∂y

dx,

Bγ,3 ji = −γ
∑

T∈Kh,i

∫
T

ϕiϕjdx.

Finally, the linear system (91)-(92) reads
1

∆t
MH 0 0 Bγ,1

0 1
∆t
MH 0 Bγ,2

0 0 1
∆t
MH Bγ,3

BT
γ,1 BT

γ,2 BT
γ,3 0




U1

U2

U3

P



=


1

∆t
MH 0 0
0 1

∆t
MH 0

0 0 1
∆t
MH

0 0 0


 U

n+1/2
1

U
n+1/2
2

U
n+1/2
3

 . (94)

By analogy with the continuous problem, applying the matrix Bγ to the equation (91), we
obtain the discrete elliptic equation for the pressure

BγA
−1
H BT

γ P = BγU
n+1/2, (95)
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which is the discretization of the pressure equation (74). We now give some numerical approx-
imations of the integrals we use for each matrix. The matrix B is computed with the following
formulas

Bγ,1 ji = −
∑

T∈Kh,i

∂Hh

∂x

∣∣∣∣
T

∫
T

ϕiϕj dx−
∑

T∈Kh,i

∂ϕi
∂x

∣∣∣∣
T

∫
T

Hhϕj dx

+
∑

T∈Kh,i

∂ζh
∂x

∣∣∣∣
T

∫
T

ϕiϕj dx,

Bγ,2 ji = −
∑

T∈Kh,i

∂Hh

∂y

∣∣∣∣
T

∫
T

ϕiϕj dx−
∑

T∈Kh,i

∂ϕi
∂y

∣∣∣∣
T

∫
T

Hhϕj dx

+
∑

T∈Kh,i

∂ζh
∂y

∣∣∣∣
T

∫
T

ϕiϕj dx,

Bγ,3 ji = −γ
∑

T∈Kh,i

mes(T )

3
δij.

In the first terms of Bγ,1 ji and Bγ,2 ji, we use definition (83) of Hh with mass lumping, and we
obtain the following formula∫

T

Hhϕj dx =
∑
k

∫
T

Hkϕkϕj dx =

∫
T

Hiϕj dx =
mes(T )

3
Hi. (96)

The projection of the shallow water divergence on a vertex of the mesh is defined by ∀ϕi ∈
Wh, ϕj ∈ Qh

divγsw (uh)|j =
3

supp(ϕj)

∑
i∈IN

∫
Ω

divγsw (ϕi(x))ϕj(x) dx ui, (97)

where supp(ϕj) is the area of the support of the function ϕj and is computed by supp(ϕj) =∑
T∈Kh,j mes(T ).

Remark 4.2 Notice that mass lumping is chosen for the approximation of MH in order to be
consistent at the update step

AHU + ∆tBT
γ P = AHU

n+1/2,

since Un+1/2 is not written in the same approximation space in the finite volume part, it is
more convenient to have a diagonal matrix in practice.

4.2 A P1-isoP2/P1 approximation

In this part, we propose another approximation by finite elements, using the spaces P1-
isoP2/P1 (see [48]) in which we define a coarse triangular mesh T2h and a fine mesh Th. The
fine mesh corresponds to the primal mesh introduced for the finite volume method 3.3. Unlike
the previous approach, the velocity and the pressure are defined in two different spaces. This
allows us to approximate the pressure on a coarser mesh than the velocity. Let us introduce
the discrete spaces of approximation

Vh = {vh ∈ C0(Ωh), vh|τ ∈ P1, ∀ τ ∈ Th},
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Qh = {qh ∈ C0(Ωh), qh|T ∈ P1, ∀ T ∈ T2h},

with the dimensions dim(Vh) = N and dim(Qh) = M. In addition, we assume Hh ∈ Vh. In
practice, the triangulation Th is obtained by subdividing each triangle T ∈ T2h into four
triangles τ by joining the middle of the edges, as shown in Fig. 3.

© ©

©

• •

•
T ∈ T2h

τ ∈ Th

• •

•

Figure 3: Representation of the triangulation. The velocity is evaluated on the black nodes,
while the pressure is evaluated on the circles.

In these spaces of approximation, the velocity is evaluated with the same degrees of freedom
as for the P2 space on the coarse mesh.
In order to describe the method, we introduce the following notations

• Sh = {si = (xi, yi) ∈ Th}: the vertices of the fine mesh,

• S2h = {sj = (xj, yj) ∈ T2h}: the vertices of the coarse mesh,

• Kh,i = {τ ∈ Th|si ∈ τ}: the triangles of the fine mesh connected to node si,

• K2h,j = {T ∈ T2h|sj ∈ T}: the triangles of the coarse mesh connected to node sj.

We take uh ∈Wh and ph ∈ Qh, with Wh = {vh ∈ Vh, vh · n|Γs = 0},

ph(x) =
∑
j∈JM

piφj(x), Hh =
∑
i∈IN

Hiϕi(x), (Hu)h =
∑
i∈IN

(Hu)iϕi(x),

where φj (resp. ϕi) are the basis functions of Qh (resp. Vh) and

uh(x) =
∑
i∈IN

uiϕi(x),

with ui defined as in (85). Then the matrix B is computed with the following formulas

Bγ,1 ji = −
∑

T∈K2h,i

∂φj
∂x

∣∣∣∣
T

∑
τ∈T

∫
τ

Hhϕi dx−
∑

T∈K2h,i

∂Hh

∂x

∣∣∣∣
T

∑
τ∈T

∫
τ

φjϕi dx

+
∑

T∈K2h,i

∑
τ∈T

∂ζh
∂x

∣∣∣∣
τ

∫
τ

ϕiφj dx,

Bγ,2 ji = −
∑

T∈K2h,i

∂φj
∂y

∣∣∣∣
T

∑
τ∈T

∫
τ

Hhϕi dx−
∑

T∈K2h,i

∂Hh

∂y

∣∣∣∣
T

∑
τ∈T

∫
τ

φjϕi dx

+
∑

T∈K2h,i

∑
τ∈T

∂ζh
∂y

∣∣∣∣
τ

∫
τ

ϕiφj dx,
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Bγ,3 ji = −γ
∑

T∈K2h,i

∑
τ∈T

∫
τ

ϕiφjdx.

As for (96), we choose Hh and zbh linear on each triangle τ ∈ Th and we use mass lumping∫
τ

Hhϕidx = Hi
mes(τ)

3
,

and ∫
τ

ϕiφjdx =
mes(τ)

3

∑
x∈s̄(τ)

ϕi(x)φj(x),

where s(τ) = {v0, v1, v2} are the three vertices of the triangle τ . Finally, the discrete version
of the shallow water divergence operator is defined for each vertex of the coarse mesh by
∀ϕi ∈Wh, φj ∈ Qh

divγsw (uh)|j =
3

supp(φj)

∑
i∈IN

∫
Ω

divγsw (ϕi(x))φj(x) dx ui. (98)

This definition is used numerically and can be seen as a diagonal preconditioner to solve
Eq. (95).

5 Numerical algorithm

In this section, we give details about the procedure we use to combine the finite volume method
and the finite element method. For the sake of clarity, we just give an overview of the steps
of the algorithm. Assuming we know Hn, Hun, the combined finite volume/finite element
method (37)-(39) can be summarized by the following steps

• Solve the hyperbolic part (37) with the finite volume scheme (44)-(45) and get (H,Hu)n+1/2.
Because of Eq. (47), we obtain Hn+1 as well.

• Solve the elliptic problem (95) to obtain pn+1. We use the iterative method described
below.

• Update the velocity un+1 in the correction step (91) using ∇γ
sw p

n+1.

5.1 Iterative methods

The linear problem (91)-(92) leading to (95), is solved in practice with iterative methods.
Several algorithms allow us to solve the classical mixed problem (51)-(52) in the divergence
form. This is usually applied to the finite element method for the Navier-Stokes equations, see
[48, 37]. We describe here the Conjugate Gradient method (CG) and the Uzawa algorithm (see
[41, 48]) which use the duality property of the operators. In practice, to take the boundary
conditions into account, the matrix consists in two blocks in which one part contains the
elements of BγA

−1
H BT

γ for all the nodes that have to be solved and another diagonal part
which is the identity and corresponds to impose Dirichlet conditions for the pressure. Then
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the contribution of the matrix Bγ associated with the given pressure is affected on the right
hand side. The linear problem can be written(

A 0
0 Id

)
P =

(
1

∆t
D −AGPG
PG

)
, (99)

where A is the matrix extracted from BγA
−1
H BT

γ corresponding to the fact that we restrict to
the nodes of unknowns, respectively AG to the nodes of the given pressure PG. The matrix D
is the shallow water divergence vector of the velocity at the unknown nodes at the prediction
part. This reduces the size of the problem and allows us to apply the Conjugate Gradient
algorithm. The initialization is done with the state (Hu,Hv,Hw)n+1/2 computed at the
hyperbolic step. For the sake of clarity, we drop the superscripts n+1/2 and we denote with the
superscript (k) the index iteration of the iterative method. In addition, we use the notation
f = 1

∆t
D −AGPG. Then the CG algorithm can be summarized as

Initialization

U (0), P (0) given,

r(0) = f −AP (0),

d(0) = r(0).

For k > 0

ρ =
(r(k), d(k))

(d(k),Ad(k))
,

P (k+1) = P (k) + ρd[k),

r(k+1) = r(k) − ρAd(k),

δ(k+1) =
||r(k+1)||2

||r(k)||2
,

d(k+1) = r(k+1) + δ(k+1)d(k).

Then, the correction is applied to the velocity.
For the description of the Uzawa method, let us now use the duality between the operators

(40) and (11), keeping the notations

U (0), P (0) given,

P (k+1) = P (k) + αBγU
(k),

AHU
(k+1) = AHU

n+1/2 −∆tBT
γ P

(k+1),

with α chosen such that 0 < α < 2
maxλi

with λi the eigenvalues of BγA
−1
H BT

γ . The CG
algorithm adapted for problem (91)-(92) in the form of the Uzawa algorithm reads
Initialization

U0 = Un+1/2,

d(0) = r(0) = BγU
(0),

k > 0

α(k) =
(r(k), dk)

(BT
γ d

(k), A−1
H BT

γ d
(k))

,
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P (k+1) = P (k) + α(k)d(k),

Z = AHU
n+1/2 −∆tBT

γ P
(k+1).

Solve the system AHU
(k+1) = Z (we recall that the matrix AH is diagonal since we have used

mass lumping).
Compute BγU

r(k+1) = BγU
(k+1),

δ(k+1) =
||r(k+1)||2

||r(k)||2
,

d(k+1) = r(k+1) + δ(k+1)d(k).

In accordance with Eqs. (97),(98), the norm ||.|| used in the above iterative algorithms takes
into account the normalization of the operators by the basis function support area.

5.2 Wet-dry interface

As one can see, the method presented above requires the water depth does not vanish since the
resolution of the equation for the pressure (40) requires dividing the shallow water gradient
by H. At the discrete level, this difficulty arises in the mass matrix (93). But in practice,
it is necessary the model be able to capture dry/wet interfaces e.g. when considering wave
propagation over obstacles like islands or reaching a coast line.

In practice, we introduce a small parameter ε such that the pressure equation (40) returns
p = 0 when H tends to zero. This can be viewed as a Dirichlet condition on the dry zone of
the domain, such that the pressure equation is solved only on the wet domain. In the iterative
solver, this leads to testing the value of the water depth for each node sj of the mesh (or
for the coarse mesh if the P1-isoP2/P1 approximation is used). However, in order to avoid
selecting a list of dry nodes at each time step, which would require significant computation
time, we solve the whole problem and we introduce a threshold

ε� 1, (100)

under which the water depth is redefined by ε, namely Hε = max(H, ε). Since the mass
matrix MH is weighted with H and needs to be inverted in the correction step, to avoid
having singularities, the matrix is redefined with respect to Hε as

MHεji =
∑

T∈Kh,i

∫
T

Hεϕiϕjdx.

Then, at the correction step, the shallow water gradient is redefined by

∇γ,ε
swp|i =

1Hi>Hε
supp(ϕi)

∑
j

∫
Ω

∇γ
sw (ϕj) ·ϕidx pj, (101)

so the velocity is not updated at these nodes by step (38). In Eq. (101), the function ϕj is
replaced by φj if we use P1-isoP2/P1 space approximation. Notice that introducing Hε does
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not change the result since it appears only in the terms of degree zero for the derivative of
the pressure. It only prevents from redefining wet/dry zones at each iteration. With these
definitions, the Laplacian operator written in (41) becomes

∆γ,ε
swp = divγsw

(∇γ
sw

Hε

p
)

= ∇x,y.(H∇x,yp) +

(
∆ζ − 1

Hε

((
∂ζ

∂x

)2

+

(
∂ζ

∂y

)2

+ γ2

)
p

)
. (102)

5.3 An improved time scheme

The numerical methods presented in the previous sections can be improved if we apply a
Heun scheme, which is based on a Runge-Kutta method, to the Saint-Venant model and
the correction part. This improvement has been detailed for the one-dimensional problem
in [2] and can be straightforwardly applied to the two-dimensional case. The Heun scheme
is slightly modified so that the stability (CFL) condition remains valid. For this system, our
scheme is second order accurate in time and, if we use a MUSCL like extension based on
limited reconstructed values at interfaces (see [7]) in the hyperbolic step, it is formally second
order accurate in space (see [7]). However, with the correction step, the resulting scheme
is no longer of order two, but introducing the Heun scheme and the reconstruction in the
hyperbolic step can improve the global accuracy of the scheme. This will be illustrated in the
next section.

6 Numerical validation

In this section, we confront the numerical procedure with several test cases. First, we present
convergence curves for two time dependent analytical solutions allowing to validate the nu-
merical resolution. Then comparisons with experimental data and in the situation of an
earthquake-generated tsunami are performed enforcing the validity of the model. From some
of the analytical and experimental test cases, we investigate the influence of the chosen value
for the parameter γ.

6.1 A solitary wave

The solitary wave is a one-dimensional non-stationary analytical solution of the model. This
solution has been proposed to validate the one-dimensional model in [2] and has the form

H = H0 + a

(
sech

(
x− c0t

l

))2

,

and we deduce

u = c0

(
1− d

H

)
,

w = −c0d

γ

∂(lnH)

∂x
,

p = −c0dH

γ2

(
∂2(lnH)

∂x∂t
+ c0

(
1− d

H

)
∂2(lnH)

∂x2

)
,
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(a)

(b)

Figure 4: Illustration of the solitary wave propagation at t = 1.99 s, (a) computed water
depth (lateral view) and (b) non-hydrostatic pressure (top view), analytical solution at the
top, numerical field below.

with d, a,H0 ∈ R, H0 > 0, a > 0 and c0 = H0

d

√
g(H0 + a), l = 2H0

γ

√
H0

a
+ 1.

This analytical solution is extended to two dimensions in a rectangular channel and the defi-
nition v = 0 is added to the previous equations.
We consider a channel of dimension 30 m ×1 m, the water elevation H0 is set to 1 m with
significant wave amplitude a = 0.35m and d = 1m. On the model domain in Figure 1a, we
set a slip boundary condition for Γs, a given discharge for the inlet (14) and a water elevation
at the outlet (15) with a homogeneous Dirichlet boundary condition for the pressure at the
correction step. The test case is initialized with the analytical solution in the domain and we
observe the propagation of the wave over time.

In Fig. 4, we show the computed water depth (Fig. 4-(a)) and the computed and analytical
pressures (Fig. 4-(b)). Notice that the numerical results have been obtained for γ = 2 but since
it is an analytical solution, any other choice for γ would have given the same results. This has
been obtained with the P1-isoP2/P1 approximation and the wave has covered approximately
one wavelength.

A numerical comparison of the P1/P1 and P1-isoP2/P1 approximations is proposed in
order to choose the most accurate one for practical applications. In Fig. 5, we compare the
numerical solutions, computing the P1/P1 solution on the fine mesh of the P1-isoP2/P1, here
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(a) H at time t=0.444213 s
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(b) H at time t=0.665963 s
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Figure 5: Comparison between the analytical water depth Han and the P1isoP2/P1 and the
P1/P1 approximations on the solitary wave propagation.

an unstructured mesh of 72770 nodes. After a short time, the P1/P1 method provides a less
accurate solution than the P1-isoP2/P1 approximation, since we observe the amplitude of the
wave obtained by the P1-isoP2/P1 method is closer to the analytical solution than the P1/P1

approximation.
Since the comparison gives better results with the P1-isoP2/P1 spaces, we opt for this

approximation to validate the method. We apply the ”improved” method presented in para-
graph 5.3 and obtain a good approximation of the soliton during all the propagation (see
Fig. 6), we observe that the solitary wave conserves its amplitude over the time. The sim-
ulation shown in Fig. 6 was computed with 251330 nodes for the fine mesh. We study the
convergence rate of the computed solutions, computing the L2 error at time t = 1.99 s for dif-
ferent meshes of triangle’s mean edges h0 = 0.0493528 m, h1 = 0.0250468 m and h2 = 0.016781
m. Figure 7 shows the logarithm of the L2 error between the analytical solution and the nu-
merical solution with respect to log

(
h0
h

)
where h = hi, i = 0, 1, 2. We observe a convergence

rate close to 1 for the first order method, while with the improved scheme we still obtain
approximately a first order convergence rate, although the computed error is smaller.

Notice that the simulations have also been carried out when, at the initial instant, the
soliton is outside of the considered domain. The simulation results and the convergence curve
are exactly the same, see [2]. It is a good indicator of the quality of the numerical treatment
of the boundary conditions.

6.2 A periodic analytical solution with wet-dry interfaces

In this section the objective is to validate the method with a non stationary analytical solution
where the free surface oscillates over the time. Such solutions have been introduced by Thacker
in [50] for the shallow water equations and can be obtained over a paraboloid topography with
a velocity (u, v) varying only with respect to time. In the following proposition, we extend
the result proposed by Thacker to the case of the non-hydrostatic model (7)-(9).
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Figure 6: Cross section at the center of the channel y = 0.5 m; water depth of the analytical
solution at initial time H0 = Han and computed solution H(ti), i = 1, ..., 4 with t0 = 0
s, t1 = 0.499805 s, t2 = 0.999871 s, t3 = 1.49983 s, t4 = 1.99993 s for the P1-isoP2/P1

approximation and the improved method (Heun scheme).
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Proposition 6.1 Let H0 ∈ R+, (α, β) ∈ R2 with |αβ| ≤ 1 and

ω2 =
αg

1− α2β2
.

Then the variables H, u, v, w, p, s defined by

H(x, y, t) = max
(

0, H0 −
α

2
(x− β cos(ωt))2 − α

2
(y − β sin(ωt))2

)
,

u(x, y, t) = −βω sin(ωt),

v(x, y, t) = βω cos(ωt),

w(x, y, t) = −αβω(sin(ωt)x− cos(ωt)y),

p(x, y, t) =
β2αω2

2
H,

s(x, y, t) = αβω2(sin(ωt)x− cos(ωt)y),

with the topography

zb(x, y) = α
x2 + y2

2
,

are solutions of the model

∂H

∂t
+∇0 · (Hu) = 0,

∂(Hu)

∂t
+∇0 · (Hu⊗ u) +∇0(

g

2
H2) +∇γ

sw p = −gH∇0(zb) + S,

divγsw (u) = 0,

with S = (0, s)T corresponding to the model (7)-(9) with γ = 2 and completed with the source
term s.

Proof of prop. 6.1 The proof relies on simple computations and is not detailed here. �

Remark 6.1 The proposition 6.1 is valid only for γ = 2, see also [19]. And it is worth noticing
that, as proved in [19], the solution proposed in prop. 6.1 is also an analytical solution for the
full Euler system (17)-(18),(19)-(21). Thus the modelMγ for γ = 2 shares common analytical
solutions with the Euler system, this has already been mentioned in paragraph 2.3.3.

We run this test on a disc domain centered in (x, y) = (0, 0) with a radius of 5 m, with
α = 0.3 m−1, β = 1.6 m and H0 = 1.0 m as shown in Figure 8. This case is simulated
with 440746 nodes for the fine mesh (and 220588 for the coarse mesh). We use the strategy
proposed in paragraph 5.2 to treat the wet-dry front with ε defined by (100), ε = 10−5 m
and we impose a discharge equal to zero at the boundary conditions (14) and a Dirichlet
boundary condition for the pressure on Γ. In Fig. 8, the representation of the free surface
oscillating in the bowl is shown for different time steps. The Figure 9 presents the profile of
the elevation in the cross-section y = 0 at different time steps compared with the analytical
solution. This is a crucial test case for the validation of the method since we test the dry/wet -
wet/dry transitions and strong variations of the free surface. We also compute the convergence
rate with the same formula described for the solitary case (see paragraph 6.1) for different
meshes where h0 = 0.0551138 m, h1 = 0.0412458 m, h2 = 0.0330043 m, h3 = 0.0274674 m,
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Figure 8: Simulation of the free surface oscillations in a paraboloid at different time steps.

where hi, i = 0, . . . , 3 are the mean edges of the meshes. In Figures 10 and 11 we observe
that the convergence rate is close to one for the water depth, the vertical discharge Hw and
the non-hydrostatic pressure p. These simulated results are computed with the improved
method described in 5.3 and as expected, we obtain a similar slope for Hw and p and a better
convergence for H which is not corrected in the second step of the scheme (38).

6.3 Dingemans experiments - effect of the choice of γ

The experiments carried out by Dingemans [24] at Delft Hydraulics deal with the wave prop-
agation over uneven bottoms. A small amplitude wave (0.02 m) is generated at the left
boundary of a closed basin with vertical shores. At rest, the water depth in the channel varies
from 0.4 m to 0.1 m, see Fig. 13. Eight sensors recording the free surface elevation are located
at abscissa 2 m, 4 m, 10.5 m, 12.5 m, 13.5 m, 14.5 m, 15.7 m and 17.3 m.

Since the studied model (7)-(9) depends on a parameter γ, we have tried to investigate
the impact of the parameter value. The values γ = 3/2 – corresponding the Green-Naghdi
model – and the value γ = 2 – corresponding to the model proposed by some of the authors –
have been tested and the simulations results are depicted in Figs. 13.

It appears over Figs. 13 that either for γ = 2 or for γ = 3/2, the simulation results are
rather in good agreement with the recorded data. Nevertheless, we can see over Figs. 13 that
the Green-Naghdi model i.e. when γ = 3/2 gives better results than the model for γ = 2.
This is in accordance with the fact that the Green-Naghdi model is well adapted for gravity
waves propagation whereas for advection dominant flows, the value γ = 2 can be singled out,
see remark. 6.1.

Remark 6.2 As mentioned in Section 2, γ can be any real number with γ > 1. The values
γ = 2 and γ = 3/2 corresponding to existing models are mainly used. It is important to notice
that in the case of the Dingemans experiments, with values of γ very different from 2 and 3/2
e.g. γ = 5, the obtained results are worse but not significantly different, See Fig. 14.
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Figure 10: Convergence rate of the L2 error of the water depth.
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Figure 12: Channel profile for the experiments and location of the sensors.
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(a) (b)

(c) (d)

Figure 13: Comparisons between the experimental data (solid line) and the simulations of the
dispersive model with γ = 3/2 (dashed line) and γ = 2 (dashed-dotted line). Figs. (a), (b),
(c) and (d) respectively correspond to the results for the sensors 3, 4, 5 and 6.

(a) (b)

Figure 14: Comparisons between the experimental data (solid line) and the simulations of the
dispersive model with γ = 3/2 (dashed line) and γ = 5 (dashed-dotted line). Figs. (a), (b)
respectively correspond to the results for the sensors 4 and 5.
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6.4 Application to the 2014 Iquique earthquake, Chile

In this section we apply the depth-averaged model (7)-(9) to a real geophysical event, i.e. an
earthquake-generated tsunami. On April 1, 2014 at 23:46:47 UTC, a 8.2 magnitude earthquake
struck off the coast of northern Chile and generated a tsunami. The earthquake was localized
at 95km NW of Iquique (see Figure 15) and the elevation of the water depth was recorded
by the Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys of the NOAA
center for tsunami research [1]. The objective of this section is to confront the results of the
hydrostatic and non-hydrostatic shallow water models to the water wave measurements of
the DART buoys. To simulate the tsunami generated earthquake, we use a topography given
by the NOAA and two different sources, denoted by Source A and Source B, describing the
displacement of the topography during the earthquake (Figure 16a and 16b). The sources
A and B have been obtained from different joined inversion of seismic, GPS and tsunami
data ([51] and Martin Vallée, personnal communication). These sources have been chosen
because of their different spatial variability : source A (Fig. 16a) is overall more symmetric
and smoother than source B (Fig. 16b). As dispersive effects are expected to be more important
for shorter wavelength spatial heterogenities, we investigate here the relative importance of
dispersive effects for these two sources. In particular, we compare the simulations using both
the hydrostatic and non-hydrostatic models on two gauges represented in Figure 17a and
corresponding to the location of

• the closest DART buoy: DART-32401 localized at 260 NM West-Southwest of Arica,
Chile at Latitude/Longitude coordinates (-20.473, -73.429).

• a point denoted S, localized at coordinates (-21.98702, -71.14027), closer to the coast
and next to the trench where bathymetry variations are huge.

The simulation is made on a spatial domain covering an area of 800 km × 1200 km (Figures 15
and 17). For the initial conditions, we prescribe (i) a horizontal free surface for the water and
(ii) the bathymetry before the earthquake occurred (Fig. 17). The topography associated with
the unstructured mesh is obtained by a linear interpolation of the ETOPO1 Arc-Minute Global
Relief Model [5]. According to the comments in paragraph 2.3.3 and the results obtained in
paragraph 6.3, the value γ = 2 has been chosen for the simulations. Notice that with γ = 3/2,
the simulation results are very similar in the sense that the differences cannot be seen with
the naked eye.

The initial instant of the simulation exactly corresponds to the trigger point of the seism.
The earthquake is simulated by updating the bathymetry at the first time step. The imposed
bottom displacement is illustrated in Figure 16 for sources A and B. For the non-hydrostatic
simulation, the fine mesh – on which the velocity is computed – has 470174 nodes which gives
a size of edge’s triangle of about 2.5 km, while the coarse mesh - on which the pressure is
computed - has 117088 nodes. The hydrostatic simulation has been performed on the fine
mesh. We use the improved order accuracy in time and space for both simulations.

Figure 18 shows that non hydrostatic effects generate waves with higher frequencies, as
expected. In Figure 19a, we compare the simulated water waves obtained with source A using
the hydrostatic and non-hydrostatic models with the waves recorded at the DART buoy 32401.
The simulation pretty well reproduces the first wave in terms of amplitude and phase. The
higher frequency oscillation of the water surface are not at all captured by the hydrostatic
model (dashed line). These oscillations may result from more complex effects like dispersion.
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Figure 15: Map of the Chilean coast with localization of the simulated domain. Localization
of the DART buoy 32401 and the other reference DART buoys (see NOAA’s data).
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(a) Source A (b) Source B

Figure 16: Imposed displacement for (a) source A and (b) source B. The selected zone corre-
sponds to the source zone in red shown in Figure 15.
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(a) Domain of the simulation: localization of the observed nodes
and topography (m)

(b) Computational domain at t = 666 s.

Figure 17: (a) Topography and bathymetry of the simulation domain (Chile) and location of
the earthquake epicenter, the DART buoy 32401 and the gauge S. (b) Simulated free surface
variation η of the tsunami wave at time 666 s.
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(a) t = 666 s

(b) t = 999 s

Figure 18: Comparison of the wave front for the hydrostatic (left) and the non-hydrostatic
(right) model at time t = 666s and t = 999 s and using the source A. The coordinate (0,0)
corresponds to the coordinate (15.0 S, 70.0 W).
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The non-hydrostatic (DAE) model produces indeed higher frequencies than the hydrostatic
model. However these higher frequencies oscillations are very small compared to the observed
ones. As a result, in this case the dispersion effects do not seem to play a significant role.

In Figure 19b, we do the same comparison with simulations based on the more heteroge-
neous source B. Although the simulated maximum amplitude and the phase of the first wave
is further from the observation, the differences between the hydrostatic and non-hydrostatic
models are larger. In particular, the non-hydrostatic model generates an oscillation at higher
frequency (between times around 1.734 s and 1.737 s) followed by smaller fluctuations. This
oscillation bare some similarities with the oscillation that follows the first wave in the obser-
vations (between times around 1.735 and 1.738 s), even though the phase is different and the
amplitude of the negative part is smaller than the recorded wave.

The ability of the DAE model to generate higher frequencies is illustrated on the waves
simulated at gauge S for the two sources (Figure 20a). At this location, there are strong
gradients of the bathymetry (see Figure 17a), that are expected to enhance non-hydrostatic
effects . We observe indeed that at this location, dispersive effects are more important for
both sources and produce high frequency oscillations. Interestingly, the two sources give
very different high frequency waves, suggesting that detailed comparison between simulation
and observation in this frequency range may provide insight into the source heterogeneity,
providing non-hydrostatic effects are properly accounted for. Further investigation of the
impact of detailed source characteristics on high frequency waves would be very interesting
but beyond the scope of this paper. A big issue is the numerical cost of such non-hydrostatic
simulations making it difficult to perform sensitivity analysis since a very fine mesh is required
to obtained converged numerical solutions.

7 Conclusion

In this paper, we have presented a new method for a family of two-dimensional dispersive
shallow water systems, where we do not solve equations containing high order derivatives but
a mixed problem in velocity and pressure. This allows to applying the method with appropriate
boundary conditions for the velocity and the pressure, which is usually a difficult task when
high order equations are solved. In addition, due to the general framework of the method and
the definition of the shallow water operators, i.e. the duality property on which the method is
based, the algorithm has been applied on unstructured meshes using a combined finite volume
/ finite element method to solve a hyperbolic system on the one hand and an elliptic equation
on the other hand. The algorithm uses an iterative method of Uzawa type to solve the elliptic
problem. We provided a numerical validation with two analytical solutions. We have proved
that our model is applicable at the scale of geophysical events by simulating an earthquake
generated tsunami in Chili. Our simulations pretty well reproduce the recorded wave. Our
results show that, in a real situation, strong differences may be obtained between hydrostatic
and non-hydrostatic simulations, depending on the variability of the topography around the
recorded gauge and on the source heterogeneity.

Compared to classical finite volume schemes for the approximation of the shallow water
equations, the proposed strategy for the resolution of these dispersive models only add the
resolution of a linear elliptic-type equation. Nevertheless, the iterative inversion of the elliptic
operator significantly increases the computational costs and an optimized technique e.g. using
a preconditioning is required. Moreover, the proposed method can be extended to layer-
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Figure 19: Comparison between numerical results using both models (hydrostatic and non-
hydrostatic) and the data of the DART buoy 32401 for (a) source A and (b) source B.
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averaged approximations of the 3d Euler system [?], this work is in progress.

Acknowledgments

The authors thank Robert Eymard for his helpful and constructive discussions that greatly
contributed to improve the final version of the paper and Martin Vallée, Sebastien Allgeyer
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A Equivalence with the Green-Naghdi system

In this section, we prove the equivalence up to some second order error terms between the
formulation (1)-(5) and the Green-Naghdi system described in [39, 14, 40] i.e. we generalise [42]
to the 2d case and with a non flat topography.
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Following the formulation given in [40, paragraph 2.1] (see also [14]), the Green-Naghdi
system writes

∂H

∂t
+∇x,y.(HU) = 0, (103)

(1 + µT [H, zb])

(
∂U

∂t
+ (U.∇x,y)U

)
+ g∇x,y(H + zb) + µQ[H, zb]U = 0, (104)

with U = (u, v) and

T [h, z]W = R1[h, z](∇x,y.W ) + βR2[h, z](∇x,yz.W ),

Q[h, z]W = −2R1[h, z]
(
∂xW.∂yW

⊥ + (∇x,y.W )2
)

+ βR2[h, z]
(
W.(W.∇x,y)∇x,yz

)
,

where W⊥ = (−W2,W1)T if W = (W1,W2)T and

R1[h, z]f = − 1

3h
∇x,y(h

3f)− βh
2
f∇x,yz,

R2[h, z]f =
1

2h
∇x,y(h

2f) + βf∇x,yz. (105)

Notice that in the previous equations and as in [40, paragraph 2.1], the parameter µ corre-
sponds to the shallowness of the flow while β accounts for the amplitude of the topography
variations.

The two models (1)-(5) and (103)-(104) correspond to shallow water flows and hence are
mainly valid in the context of µ, β � 1. The following proposition holds.

Proposition A.1 Up to O(µβ2) terms, the model (1)-(5) with γ = 3/2 and the model (103)-
(104) are equivalent.

Corollary A.1 Considering a modified Green-Naghdi model where the definition of R2[h, z]
is slightly modified and becomes

R̃2[h, z]f =
1

2h
∇x,y(h

2f) +
3β

4
f∇x,yz,

then the models (1)-(5) with γ = 3/2 and the models (103)-(104) have exactly the same
formulation.

Proof of prop. A.1 The proof of the proposition is very simple in the sense that it only relies
on simple computations but these computations are very long.

The dispersive terms in the Green-Naghdi model (103)-(104) i.e. the complementary terms
compared to the classical shallow water system writes

Pgn = µT [H, zb]

(
∂U

∂t
+ (U.∇x,y)U

)
+ µQ[H, zb]U,

whereas, for the model (1)-(4) their expression is given by (for γ = 3/2)

P = µ (∇x,y(Hp) + 3βp∇x,yzb) , (106)
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with p defined by

p =
2H

3

(
∂w

∂t
+ u.∇0w

)
, (107)

and w satisfies
3

2
w = −H∇0.u +

3β

2
u.∇0zb. (108)

In order to prove the result it remains to insert the expression of w given by Eq. (108) into
Eq. (107) then to insert the obtained expression for p into Eq. (106) and finally to check that
P − Pgn = O(µβ2) holds true.

Notice that in order to be consistent with the model formulation (103)-(104), in Eq. (106)
the value of P is multiplied by the shallowness parameter µ and the gradient of the topography
∇0zb is multiplied by β in Eqs. (106),(108).

Since they can be easily carried out using any symbolic computation software, we do not
reproduce the details of the computations allowing to obtain the simplified expression for the
quantity P − Pgn corresponding to

P − Pgn =
µβ2

4

(
∇x,yzb.

(∂U
∂t

+ (U.∇x,y)U
))
∇x,yzb +

µβ2

4

(
U.(U.∇x,y)∇x,yzb

)
∇x,yzb. (109)

�

Proof of corollary. A.1 The proof is very simple to obtain since it is a direct consequence
of the obtained expression for P − Pgn in Eq. (109) since we can rewrite

P − Pgn = µβ(R2[H, zb]− R̃2[H, zb])

(
∇x,yzb.

(∂U
∂t

+ (U.∇x,y)U
))

+ µβ(R2[H, zb]− R̃2[H, zb]) (U.(U.∇x,y)∇x,yzb) .

�
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