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Abstract This review presents the state of the art of hybrid RANS/LES modeling for the
simulation of turbulent flows. After recalling the modeling used in RANS and LES method-
ologies, we propose in a first step a theoretical formalism developed in the spectral space
that allows to unify the RANS and LES methods from a physical standpoint. In a second
step, we discuss the principle of the hybrid RANS/LES methods capable of representing a
RANS-type behavior in the vicinity of a solid boundary and an LES-type behavior far away
from the wall boundary. Then, we analyze the principal hybrid RANS/LES methods usually
used to perform numerical simulation of turbulent flows encountered in engineering appli-
cations. In particular, we investigate the very large eddy simulation (VLES), the detached
eddy simulation (DES), the partially integrated transport modeling (PITM) method, the
partially averaged Navier-Stokes (PANS) method, and the scale adaptive simulation (SAS)
from a physical point of view. Finally, we establish the connection between these meth-
ods and more precisely, the link between PITM and PANS as well as DES and PITM
showing that these methods that have been built by different ways, practical or theoreti-
cal manners have common points of comparison. It is the opinion of the author to consider
that the most appropriate method for a particular application will depend on the expecta-
tions of the engineer and the computational resources the user is prepared to expend on the
problem.
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1 Introduction

Different but complementary methods have been developed in the past fifty years for sim-
ulating turbulent flows. Obviously, direct numerical simulation (DNS) [1] solving all the
scales on a mesh with a grid-size at least of order of magnitude of the Kolmogorov scale
is the best tool for investigating turbulent flows. But this approach remains out of reach for
all engineering applications. Large eddy simulation [1–3] (LES) which consists in model-
ing the more universal small scales while the large scales motions are explicitly computed
is a promising route but remains also extremely costly in term of computer resources for
domain with large dimension or at large Reynolds numbers, even with the rapid increase of
supercomputer power [4–6]. For instance, an LES simulation of the flow around an entire
aircraft still remains out of scope at present time. This problem is particularly acute at high
Reynolds numbers since the Kolmogorov scale cubed decreases according to the Reynolds
number R

−9/4
t power law of turbulence. Moreover, LES using eddy viscosity models (EVM)

known as first-order models assuming a direct constitutive relation between the turbulence
stress and strain components, cannot calculate the subgrid scale (SGS) turbulent turbulent
energy and the subgrid scale stresses because these subgrid scale energies are not attain-
able in such models although they may be an appreciable part of the total energies. On the
other hand, the Reynolds averaged Navier-Stokes (RANS) methodology based on a statisti-
cal averaging (or in practice a long-time averaging which is sufficiently large in comparison
with the turbulence time scale [7]) including advanced eddy viscosity models (EVM), and
Reynolds stress models (RSM) developed in the framework of second-moment closures
(SMC) [3, 8, 9] appears well adapted for tackling engineering flows encountered in aeronau-
tics applications with reasonable computational costs [10–12]. But although reaching a high
level of sophistication in RANS methodology, RSM models may show some weaknesses in
simulating turbulent flows in which the unsteady large scales play an important role. This
happens in particular situations where the mean flow quantities are strongly affected by
the dynamic of large scale turbulent eddies. As known, RANS models work well in flow
situations where the time variations in the mean flow are of much lower frequency than
the turbulence itself. This is the favored field of application of RANS and unsteady RANS
(URANS). For these reasons, inability of RANS to reproduce unsteady flows and high com-
putational costs for LES, new methods of turbulence modeling that combine the advantages
of both RANS and LES methods have been recently proposed to simulate engineering or
industrial flows [13]. They are essentially based on hybrid zonal methods but non-zonal
methods have also emerged recently [14]. In this framework, different hybrid RANS/LES
methods such as the very large eddy simulation (VLES) [15, 16], the detached eddy simula-
tion (DES) [17–25], the partially integrated transport modeling (PITM) method [26–36], the
partially averaged Navier-Stokes (PANS) method, [37–45], and the scale adaptive simula-
tion (SAS) [46–48], have been developed for tackling these identified challenges. According
to the literature [49–51], these hybrid methods can be classified into two categories, zonal
and non-zonal methods. RANS/LES zonal methods rely on two different models, a RANS
model and a subgrid-scale model, which are applied in different domains separated by a
sharp or dynamic interface whereas non-zonal methods assume that the governing set of
equations is smoothly transitioning from a RANS behavior to an LES behavior, based on
criteria updated during the computation.

The objective of this paper is to present the state of the art at the present time of hybrid
RANS/LES modeling for the simulation of turbulent flows. We will begin to analyze the
RANS and LES methodologies and the way to unify these approaches with respect to their
basic foundations by a theoretical method developed in the spectral space. Then, considering
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these various hybrid RANS/LES methods that have been developed often independently
from each other using theoretical or empirical arguments, we will investigate the principal
hybrid methods that are currently used from a physical point of view. In particular, we
will focus attention on VLES, DES, PITM, PANS and SAS methods. We will see that it is
possible to establish a link between several methods, from one hand, PITM and PANS and
from the other hand, DES and PITM, provided some assumptions are however made.

2 DNS

2.1 Navier-Stokes equations

The Navier-Stokes equations governing the detailed flow evolution are the starting point of
the analysis. The equations of conservation of mass and momentum are

∂uj

∂xj

= 0 (1)

and
∂ui

∂t
+ ∂

∂xj

(uiuj ) = − 1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj ∂xj

(2)

where in this equation, the variables ui , p and ν denote the velocity, pressure and molecular
viscosity, respectively.

2.2 Computational resources for DNS

A direct numerical simulation [52–55] consists in solving all essential scales of motion that
are at least of order of magnitude of the Kolmogorov scale ηK computed as ηK = (ν3/ε)1/4

where ε denotes the dissipation-rate. As a rough guide, in order to describe a “minimal”
sine curve on a full period, the number of grid-points of the mesh is then given by

Nη = 64 L3

η3
K

(3)

where L is the size of the computational domain. Considering a turbulent flow at the
Reynolds number Re = UbL/ν based on the bulk velocity Ub and the characteristic length-
scale L, Eq. 3 can be easily simplified if one considers that the size of the energetic big
eddies Le = k3/2/ε is roughly of order of magnitude of the characteristic geometrical size
of the flow itself leading to Nη = 64 R

9/4
t where the turbulent Reynolds number is defined

by Rt = Le

√
k/ν = (Le/ηK)4/3 = k2/(νε). The computational time can be estimated if

we assume that the turbulent Reynolds number is proportional to the mean flow Reynolds
number Rt = ζ Re, where ζ is an empirical coefficient usually close to 1/10 in confined
flows (and in usual Reynolds numbers range). It is then proportional to the Reynolds num-
ber according to the law t ∝ 64ζ R

11/4
t . These numerical order of magnitudes clearly show

that DNS (or even highly resolved LES) implies a huge numerical task and still remains dif-
ficult to reach in practice at the present time even if considering the Moore’s law suggesting
that the number of transistors of a processor doubles every second years (10 years = factor
32) and supercomputers as indicated in Table 1. The Moore’s prediction proved accurate for
several decades. The rate of advancement was 22 nanometer feature width in 2012, 14 nm in
2015 and should be 10 nm in 2018. The projection suggests the same trend until 2025-2030
but it cannot be sustained indefinitely for technological reasons linked to the fundamental
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Table 1 List of supercomputers (Top500 November 2016) (https://www.top500.org/lists/2016/11/)

RANK SITE SYSTEM CORES RPEAK (FLOPS/s)

1 NSC Wuxi (China) Sunway TaihuLight (1.45 GHz) 10.6 106 125.4 1015

(2016) NRCPC

2 NSC Guangzhou (China) Tianhe-2 (2.2 GHz) 3.1 106 54.9 1015

(2013) NUDT

3 DOE/SC/Oak (U.S.) Titan-Cray XK7 (2.2 GHz) 0.5 106 27.1 1015

(2012) Cray Inc.

4 DOE/NNSA/LLNL (U.S.) Sequoia-BlueGene/Q (1.6 GHz) 1.5 106 20.1 1015

(2011) IBM

5 DOE/NNSA/LLNL (U.S) Cori-Cray XC40 (1.4 GHz) 0.6 106 27.8 1015

(2016) Cray Inc.

barrier of atoms. The exascale supercomputer (1018 floating point operations per second) is
expected in 2020.

3 RANS Modeling

3.1 Principle of the method

The RANS methodology is based on the Reynolds averaging in the statistical sense of
the instantaneous Navier-Stokes equations. Applying the averaging process or in practice
a long-time averaging that is sufficiently large in comparison with the turbulence time
scale (and sufficiently small in comparison with the evolution time of the mean flow) on
the instantaneous equations leads to the averaged equations of conservation of mass and
momentum of the flow. As a result, the motion equation contains the unknown turbulent
stress that must be modeled to close and solve the set of equations. This problem is known
as the turbulence closure problem as described in detail in Refs. [8, 9, 56]. The turbulent
stress is defined by the correlation of the fluctuating velocities including all the turbulence
scales. The RANS method has been developed initially for simulating steady flows or flows
that evolve slowly in time. The turbulent stress is modeled using eddy viscosity models or
second moment closure models, depending of the level of closure considered. Usually, eddy
viscosity models perform well for shear flows where the shear stress is the most impor-
tant dynamical component of the stress tensor. Reynolds stress models account for more
physics than eddy viscosity models and provide a better prediction of the normal turbu-
lent stresses for flows encountered in aeronautical or turbomachinery applications where
complex physics phenomena are produced by strong effects of streamline curvature such
as detachment or reattachment of the boundary layer, separation and recirculation in pres-
ence of adverse pressure gradient, as well as rotational effects [7, 10–12, 57]. This modeling
corresponds to the optimal level of closure for the prediction of turbulent flows.

3.2 The averaging process

Turbulent flow of a viscous incompressible fluid is considered. The Reynolds averaged
Navier-Stokes method in the statistical approach assumes that every instantaneous function

https://www.top500.org/lists/2016/11/
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φ(x, t) varying in time and space, can be decomposed into an ensemble average part 〈φ〉
and a fluctuating part that embodies all the turbulent scales φ′ such as φ = 〈φ〉 + φ′. From
its definition, the statistical mean is defined as

〈φ(x)〉 = lim
N→∞

1

N

N∑

j=1

φj (x, t) (4)

where φj is the value associated with the j process and N , the total number of realiza-
tions of the flow. In practice, if assuming an ergodic assumption, the Reynolds averaging is
obtained from time averaging over a sufficiently long period of time T in comparison with
the characteristic turbulent time scale given itself by the ratio τ = k/ε where k denotes the
turbulent energy. In the case where T � τ , one gets

〈φ(x)〉 = 1

T

∫ T

0
φ(x, t) dt (5)

This approximation cannot be used in unsteady turbulent flows in the mean, except in the
particular case of periodic flows in which phase averaging can be used. In most theoretical
studies, the mean value is given by statistical averaging which allows a more consistent and
general formalism in the turbulence equations.

3.3 Averaged equations

The transport equations of the mass conservation and the mean statistical velocity is
obtained by applying the process (5) to Eqs. 1 and 2

∂
〈
uj

〉

∂xj

= 0 (6)

∂ 〈ui〉
∂t

+ ∂

∂xj

(〈ui〉
〈
uj

〉) = − 1

ρ

∂ 〈p〉
∂xi

+ ν
∂2 〈ui〉
∂xj ∂xj

− ∂R(ui, uj )

∂xj

(7)

where the Reynolds stress tensor R(ui, ui) is defined as

R(ui, uj ) = Rij = 〈uiui〉 − 〈ui〉
〈
uj

〉
(8)

The stress Rij represents the effect of the turbulence scales on the mean field.

3.4 Closure of equations

3.4.1 Eddy viscosity models

In the case of eddy viscosity models, the Reynolds stress tensor Rij appearing in the right-
hand side of Eq. 7 is modeled by means of the Boussinesq hypothesis, non-linear model
or even algebraic stress model [58] taking into account an eddy viscosity. The Boussinesq
hypothesis leads to the well known relation

Rij = −2νt

〈
Sij

〉 + 2

3
kδij (9)

where νt is the turbulent viscosity that must be modeled, and where Sij denotes the strain
deformation

Sij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
(10)
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The principal models in use are the model of Spalart-Allmaras (S-A) [59, 60] based on a
single transport equation for the effective viscosity ν̃ allowing the computation of νt and
the two-equation models such as the k − ε initially developed by Jones and Launder [61]
considering the transport equations for the turbulent kinetic energy k and the dissipation-
rate ε or its variant k − ω developed by Wilcox [62] using the characteristic frequency
ω = ε/(cμk) where cμ is a constant coefficient, as well as the shear-stress transport model
(SST) developed by Menter [63] that is a combination of k − ε and k − ω models. The
transport equation for the effective turbulent viscosity ν̃ in the model of Spalart and All-
maras especially developed for applications of aerodynamic flows is empirically built as
follows [60]

∂ν̃

∂t
+ ∂

∂xj

(
ν̃

〈
uj

〉) = Cb1ν̃S̃ + 1

σ

[
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ Cb2

∂ν̃

∂xj

∂ν̃

∂xj

]

−Cw1fw

ν̃2

d2
w

(11)

where the terms appearing in the right hand side of this equation are identified as production,
diffusion and dissipation. The quantity S̃ corresponds to the magnitude of the vorticity, dw

is the wall distance whereas the other parameters are coefficients or blending functions
defined in the original paper [60]. The turbulent eddy viscosity is then deduced from ν̃ by
the simple relation νt = ν̃fν1 where fν is a given function of the ratio χ = ν̃/ν [60]. In
the case of the k − ε model, the turbulent eddy viscosity νt is computed by means of the
turbulent energy and dissipation-rate as

νt = cμ

k2

ε
(12)

where k and ε are themselves computed by their own transport equations. At high Reynolds
number, the modeled transport equation of the turbulent energy reads [61]

∂k

∂t
+ ∂

∂xj

(k〈uj 〉) = P − ε + Jk (13)

where the terms appearing in the right hand side of this equation are identified as the pro-
cesses of production P , dissipation-rate ε and diffusion Jk . The modeled transport equation
of the dissipation-rate reads

∂ε

∂t
+ ∂

∂xj

(ε〈uj 〉) = cε1

ε

k
P − cε2

ε2

k
+ Jε (14)

where cε1 and cε2 are constant coefficients. The production term P is given by

P = −Rij

∂〈uj 〉
∂xi

(15)

The turbulence diffusion terms Jk and Jε are modeled using a well known gradient law
hypothesis

Jk = ∂

∂xj

[(
ν + νt

σk

)
∂k

∂xj

]
(16)

and

Jε = ∂

∂xj

[(
ν + νt

σε

)
∂ε

∂xj

]
(17)
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where σk and σε are constant coefficients. In low Reynolds number flows, additional cor-
rection terms may also appear in Eq. 14, but they are not detailed here. In the case of the
two equation k − ω model [62], the transport equations for k and ω read formally

∂k

∂t
+ ∂

∂xj

(k〈uj 〉) = P − β∗ωk + J ′
k (18)

∂ω

∂t
+ ∂

∂xj

(ω〈uj 〉) = γ

νt

P − β∗ω2 + Jω (19)

where γ and β∗ are coefficients, J ′
k and Jω denote the diffusion processes. In this model,

the turbulent eddy viscosity is computed as νt = k/ω = Cμk2/ε.

3.4.2 Reynolds stress models

Second moment closure is a more advanced turbulence modeling [8, 9] developed initially
by Hanjalic and Launder [64], Launder et al. [65]. The modeled transport equation of the
turbulent stress Rij can be written in a compact form as

∂Rij

∂t
+ ∂

∂xk

(
Rij 〈uk〉

) = Pij + Πij − εij + Jij (20)

where in this equation, the production term Pij takes on the exact expression

Pij = −Rik

∂〈uj 〉
∂xk

− Rjk

∂〈ui〉
∂xk

(21)

The redistribution term Πij is usually decomposed into a slow part Π1
ij which characterizes

the return to isotropy due to the action of turbulence on itself and a rapid part Π2
ij which

describes the return to isotropy by action of the mean velocity gradient [64–66]. In a first
approach, these terms are modeled as

Π1
ij = −c1

ε

k

(
Rij − 2

3
k δij

)
(22)

where c1 is the constant Rotta coefficient. The second term Π2
ij is modeled by means of the

rapid distortion theory (RDT) for homogeneous strained turbulence in an initially isotropic
state [67]

Π2
ij = −c2

(
Pij − 1

3
Pmmδij

)
(23)

where the coefficient c2 is a constant coefficient. The dissipation-rate εij is usually modeled
at high Reynolds number assuming that the small scales are isotropic εij = 2/3δij ε. The
diffusion term Jij appearing in Eq. 20 associated with the fluctuating velocities and pres-
sure together with the molecular diffusion is modeled assuming a well known gradient law
hypothesis

Jij = ∂

∂xk

(
ν
∂Rij

∂xk

+ cs

k

ε
Rkl

∂Rij

∂xl

)
(24)

where cs is a constant coefficient. The dissipation-rate ε is computed from its modeled
transport given by Eq. 14 but the diffusion term is modeled by means of a tensorial eddy
viscosity concept as follows

Jε = ∂

∂xj

(
ν

∂ε

∂xj

+ cε

k

ε
Rjm

∂ε

∂xm

)
(25)

where the coefficient cε is a constant coefficient. More advanced turbulence modeling use
in SMC can be found in Refs. [57, 68, 69].
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4 Large Eddy Simulation

4.1 Principle of the method

Large-Eddy Simulation (LES) [1–3] is a promising route towards the calculation of turbu-
lent flows which has been now largely developed [70, 71] and relies on the spectral filtering
of turbulence energy, the most suggestive type of filtering being the spectral splitting as
sketched in Fig. 1. The energy spectrum [72] is then decomposed into different zones with
respect to the cutoff wave number κc given itself by the grid size Δ as κc = π/Δ, and
the dissipative wave number κd located at the far end of the inertial range of the spectrum
assuming that the energy pertaining to higher wave numbers is negligible. Turbulent energy
is transferred from the large scales to the small scales by the turbulence cascade involving
non-linear interactions although backscatter of energy is possible [1–3]. The spectral fluxes
corresponding to the wave numbers κc and κd are denoted Fc and Fd , respectively. The
LES method consists in modeling the more isotropic small-scales of the energy spectrum
E(κ) for κ > κc while the large scales motions are explicitly calculated. This technique
assumes that the filter cutoff occurs at a wave number which is located in the inertial range
of the spectrum given by E(κ) = CKε2/3κ−5/3 (located before κd ) where CK is the Kol-
mogorov constant. LES thus appears as a good compromise between DNS which resolves
all the turbulent scales and RANS statistical modeling in which the whole flow structures
are modeled. Contrary to full statistical modeling, LES enables to mimic the mechanisms
of turbulent interactions, and information on velocity, pressure fluctuations and two-point
correlations are possible to obtain. Applying the filtering process on the instantaneous equa-
tions leads to the filtered equations of conservation of mass and momentum of the flow
where the turbulent subgrid scale stress must be modeled to close the system of equations.
In the past, the most widely used subgrid-scale model was a viscosity type model proposed
by Smagorinsky (SM) [73]. It is based on an implicit equilibrium hypothesis which assumes
that the viscosity can be calculated using the resolved scales as a characteristic velocity and
the grid size as a characteristic length. Many flow studies can be found in the scientific
literature that have used this model. However, it soon appeared that the Smagorinsky con-
stant is not universal and must be varied from one flow to another. New trends in LES
of turbulence have been proposed in the past two decades [70] including for instance the
dynamic Smagorinsky model (DSM) [74, 75] or the structure function model (SFM) [76].

Fig. 1 Sketch of spectral
splitting of turbulence energy in
LES

LogE

c d

k

k

Fc

Fd

O

les

sgs
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Eddy viscosity models based on the transport equation of the subgrid scale turbulent energy
[77–79] or second moment closure models based on the transport equation of the subgrid
scale stresses [80, 81], both levels of closure using an algebraic relation for length-scale,
have been also proposed to overcome the limitations of the Smagorinsky type model. Large
eddy simulation that accurately resolves the viscous region of wall-bounded flows is very
costly in computer time because of the very refined mesh near the wall that increases the
number of grid points and leads also to a reduction of the Courant-Friedrichs-Lewy (CFL)
number selected in the simulation. As a consequence, the extension of LES to practical
applications is not always feasible with reasonable computational ressources. For this rea-
son, several techniques have been proposed to model the wall flow region instead of solving
all the turbulent scales [82–85]. LES is then performed in the core flow accounting for a
wall modeling (WM) for reproducing the boundary layer. The first technique is based on
the equilibrium laws [77] assuming a relation between the shear stress at the wall and the
velocity of the core flow and was afterwards improved to take into account the inclination
of the elongated structures in the near wall region [82]. The second technique relies on a
zonal approach based on the explicit solution of a different set of equations in the inner layer
[82]. In this framework, there are two different approaches. The first one uses two wall lay-
ers (TLM) with two different calculation grids [86] whereas the second one uses a single
calculation grid as in DES [17].

4.2 Filtering process

In large eddy simulations, the variable φ is decomposed into a large scale (or resolved part)
φ̄ and a subfilter-scale (SFS) fluctuating part φ> or modeled part such that φ = φ̄ + φ>.
The filtered variable φ̄ is defined by the filtering operation as the convolution with a filter
G in physical space

φ = G ∗ φ (26)

that leads to the computation of a variable convolution integral

φ̄(x, t) =
∫

R3
G [x − ξ ,Δ(x, t)] φ(ξ , t)dξ (27)

The instantaneous fluctuation φ′ appearing in RANS methodology contains in fact the large
scale fluctuating part φ< and the small scale fluctuating part φ> such that φ′ = φ< + φ>.
So that the instantaneous variable φ can then be rewritten like the sum of a mean statistical
part 〈φ〉, a large scale fluctuating part φ< and a small scale fluctuating part φ> as follows
φ = 〈φ〉 + φ< + φ>. As made in Ref. [28], in the framework of spectral splitting, it
is possible to define the large scale fluctuations (resolved scales) φ< and the fine scales
(modeled scales) φ> through the relations

φ< =
∫

|κ |≤κc

φ̂′(κ) exp (jκξ) dκ (28)

and

φ> =
∫

|κ |≥κc

φ̂′(κ) exp (jκξ) dκ (29)

where φ̂ denotes the Fourier transform of φ and κc is the cutoff wave vector verifying
|κc| = κc = π/Δ. This particular filter, as a spectral truncation, presents some interesting
properties that are not possible with continuous filters. In particular, it can be shown [87,
88] that large scale and small scale fluctuations are uncorrelated 〈φ>φ<〉 = 0. The most
commonly used filters in the physical space are the box and Gaussian filters. Using the
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definition (27), it is obvious to see that the Fourier transform of the filtered variable φ̄ in
homogeneous turbulence is simply

̂̄φ(κ, t) = Ĝ(κ, κc) φ̂(κ, t) (30)

If in the spectral space, the filtering operation is naturally defined by the spectral cutoff wave
number, the interpretation in the physical space by inverse Fourier transform however leads
in this case to some complexities because of the more intricate form of the filter function
[33, 89].

4.3 Filtered equations

Due to the fact that the filtering operation does not commute with the space or time deriva-
tive, commutation terms appear in the derivative in space ∂φ̄/∂xi or in time ∂φ̄/∂t such as
[33, 90]

∂φ̄

∂xi

(x, t) = ∂φ

∂xi

(x, t) + ∂Δ

∂xi

∂φ

∂Δ
(x, t) (31)

and equivalently , if transposing (31) in time for the derivative ∂φ̄/∂t

∂φ̄

∂t
(x, t) = ∂φ

∂t
(x, t) + ∂Δ

∂t

∂φ

∂Δ
(x, t) (32)

Using Eqs. 31 and 32, it simple matter to show that

dφ

dt
= ∂φ̄

∂t
+ ∂(ūj φ̄)

∂xj

+ ∂τ(uj , φ)

∂xj

− βT (φ) (33)

where βT (φ) = βt (φ) + βxj
(ujφ) with

βt (φ) = ∂Δ

∂t

∂φ̄

∂Δ
(34)

βxj
(ujφ) = ∂Δ

∂xj

∂

∂Δ

(
ūj φ̄ + τ(uj , φ)

)
(35)

where τ(uj , φ) is a function defined as

τ(uj , φ) = ujφ − ūj φ̄ (36)

The transposition in space of Eq. 34 is

βxi
(φ) = ∂Δ

∂xi

∂φ̄

∂Δ
(37)

As a result, Eq. 33 including βT is used to derive the filtered Navier-Stokes equations. The
filtered equation of mass conservation reads

∂ūj

∂xj

− βxj
(uj ) = 0 (38)

while the filtered motion equation is obtained using Eq. 33

∂ūi

∂t
+ ∂

(
ūi ūj

)

∂xj

− βT (ui) = − 1

ρ

∂p̄

∂xi

+ 1

ρ
βxi

(p) − ∂τ(ui, uj )

∂xj

+ν
∂2ūi

∂xj ∂xj

− ν
∂2Δ

∂xj ∂xj

∂ūi

∂Δ
− ν

∂Δ

∂xj

∂Δ

∂xj

∂2ūi

∂Δ2
− 2ν

∂Δ

∂xj

∂2ūi

∂xj ∂Δ
(39)
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The presence of the subfilter scale stress

τ(ui, uj ) = (τij )sf s = uiuj − ūi ūj (40)

in Eq. 39 represents the effect of the subfilter turbulence scales on the resolved field. The
subfilter scale tensor (τij )sf s can be historically developed into several contributions includ-
ing the Leonard stresses, cross terms and small scales fluctuating velocity correlations
as [91]

(τij )sf s = [ūi ūj − ūi ūj ] + [ūiu
>
j + u>

i ūj ] + u>
i u>

j (41)

but this decomposition is no longer retained in LES because (τij )sf s is now modeled as a
whole. Similarly, the resolved scale tensor is defined by the relation

τr (ui, uj ) = (τij )les = ūi ūj − 〈ui〉 〈uj 〉 (42)

It is simple matter to show that 〈τ(ui, uj )〉 =
〈
u>

i u>
j

〉
and 〈τr (ui, uj )〉 =

〈
u<

i u<
j

〉
. Using

the decomposition φ = 〈φ〉+φ<+φ>, the Reynolds stress tensor Rij from Eq. 8 is given by

Rij =
〈
u<

i u<
j

〉
+

〈
u>

i u>
j

〉
+

〈
u<

i u>
j

〉
+

〈
u>

i u<
j

〉
(43)

So that, assuming that the correlation between the small scale and large scale
〈
u<

i u>
j

〉
are

small compared to the other correlations, Rij can be computed in a first approximation as
the sum of the statistical average of subfilter and resolved stresses

Rij ≈ 〈(τij )sf s〉 + 〈(τij )les〉 (44)

Strictly speaking, the filtered (38) and (39) do not satisfy the conservation of mass and
momentum as the RANS equations because of the commutation terms that appear in these
equations. But if we assume that the commutation terms are negligible, we can see that
the RANS and LES motion equations take exactly the same mathematical form [92, 93].
This is the main argument that allows to build hybrid RANS/LES methods. The difference
between the RANS and LES methodologies relies only on the closure of equations. Indeed,
in RANS, the closure is made by means of the flow variables, while in LES, it is worked
out by considering both the flow variable and the grid size Δ of the mesh (in fact, the filter
width) involving the cutoff wave number κc of the energy spectrum.

4.4 Closure of equations

4.4.1 Eddy viscosity models

Eddy viscosity models include the Smagorinsky model [73], already cited, or in its dynamic
version, the dynamic subgrid-scale eddy viscosity model [74] but also other models based
on transport equation for the subgrid turbulent energy [77–79, 94]. In the case of subgrid-
scale eddy viscosity models involving the grid size Δ, the subgrid scale stress tensor
(τij )sgs appearing in the right-hand side of Eq. 39 is modeled by means of the Boussinesq
hypothesis, non-linear model or even algebraic stress model. As for Eq. 9, the Boussinesq
assumption in LES leads to

(τij )sgs = −2νsgs S̄ij + 2

3
ksgsδij (45)
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where the subgrid turbulent eddy viscosity must be modeled. In the case of the well
known Smagorinsky model inspired by the mixing length hypothesis, the eddy viscosity is
computed by

νsgs = (CsΔ)2
√

2S̄ij S̄ij (46)
where Cs is the Smagorinsky coefficient that takes on a constant value [73] or a variable
coefficient evaluated locally and dynamically in space using a second test filter [74, 75]. In
the case of one transport equation for the subgrid turbulent energy ksgs = (τii )sgs/2, the
turbulent viscosity νsgs is obtained by

νsgs = cμk
1/2
sgs Δ (47)

where Δ is the grid size of the mesh. In first moment closure, the subfilter energy ksgs is
computed by means of its transport equation. The modeling of the subgrid energy equation
has been worked out by several authors such as Schumann, Yoshizawa and Horiuti [77–79].
This one is inspired from its corresponding RANS modeling but assumes that the turbulence
length-scale is of the same order of the grid-size Δ leading to

∂ksgs

∂t
+ ∂

∂xj

(
ksgs ūj

) = Psgs − εsgs + (Jk)sgs (48)

where Psgs , εsgs and (Jk)sgs denote the production, dissipation-rate and diffusion terms,
respectively. The production term is given by

Psgs = −(τij )sgs

∂ūj

∂xi

(49)

The modeling of the dissipation-rate is then not given by its transport equation as in RANS
modeling but it is then explicitly computed by means of the grid size Δ as

εsgs = Cε

k
3/2
sgs

Δ
(50)

where Cε is a constant coefficient. The diffusion term is modeled by analogy with the RANS
modeling as

(Jk)sgs = ∂

∂xj

[(
ν + νsgs

σk

)
∂ksgs

∂xj

]
(51)

where σk is a constant coefficient.

4.4.2 Subgrid scale stress models

In the case of second moment closure, the turbulent subgrid scale (τij )sgs = τ(ui, uj ) is
computed by means of its transport equation with a closure for the dissipation-rate given by
Eq. 50. One of the first subgrid scale stress model was derived by Deardorff [80, 81] con-
sidering the transport equation for the correlation of the subgrid-scale fluctuating velocities
u>

i u>
j appearing in Eq. 41. The modeled equation reads

∂(τij )sgs

∂t
+ ∂

∂xk

((τij )sgs ūk) = (Pij )sgs + (Πij )sgs − 2

3
δij εsgs + (Jij )sgs (52)

where in this equation, the production term (Pij )sgs takes on the exact expression

(Pij )sgs = −(τik)sgs

∂ūj

∂xk

− (τjk)sgs

∂ūi

∂xk

(53)

The redistribution term (Πij )sgs appearing in Eq. 52 is modeled considering the analogy
between the RANS and LES modeling assuming that the interaction mechanisms of the
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subgrid scales with the resolved scales of the turbulence is of the same nature than the inter-
action mechanisms involving all the fluctuating scales with the main flow. The redistribution
term (Πij )sgs is then given by

Π1
ij = −cm

k
1/2
sgs

Δ

(
(τij )sgs − 2

3
ksgs δij

)
(54)

where cm is a constant coefficient that plays the same role as the Rotta coefficient. The
second term (Π2

ij )sgs is modeled by means of the rapid distortion theory (RDT) for
homogeneous strained turbulence in an initially isotropic state [66, 67]

(
Π2

ij

)

sgs
= 2

5
ksgs S̄ij (55)

Equation 55 can be recovered from Eq. 23 in the particular case of isotropic turbulence for
the coefficient value c2 = 3/5. The diffusion term (Jij )sgs appearing in Eq. 52 is modeled
by means of the gradient law hypothesis [95]

(Jij )sgs = ∂

∂xk

[
cmΔk

1/2
sgs

(
∂(τij )sgs

∂xk

+ ∂(τik)sgs

∂xj

+ ∂(τjk)sgs

∂xi

)]
(56)

where cm is a constant coefficient. Some justification for the assumptions and the way in
which the constants are evaluated are given in Ref. [80]. This model was originally applied
for the simulation of three-dimensional atmospheric turbulence [80, 81].

5 A Theoretical Formalism to Unify RANS and LES Methods

5.1 General properties

As emerge from the previous considerations, although RANS and LES approaches both
lead to very similar evolution equations of motion, they rely on different grounds, statisti-
cal average for RANS and filtering for LES. The development of hybrid methods needs to
bridge the RANS and LES methodologies not only from a practical point of view but also
from a theoretical point of view. So, considering the numerous turbulence models used in
RANS and LES that have been developed often independently from each other, it seems of
primary importance to unify these different methodologies, referring to their basic physical
foundations, with the aim of building hybrid RANS/LES models. It has been shown in Ref.
[28] that spectral turbulence theory can provide the main ingredient of this development
[28]. The theory deals with the dynamic equation of the two-point fluctuating velocity cor-
relations with extensions to the case of nonhomogeneous flows. This choice is motivated
by the fact that the two-point velocity correlation equation enables a detailed description of
the turbulence field that also contains the one point information as a special case. By using
Fourier transform and performing averaging on spherical shells on the dynamic equation,
one can formally obtain the evolution equation of the spectral velocity correlation tensor in
one-dimensional spectral space [96–99]. On the one hand, a full integration over the wave
number space of the resulting evolution equation of the spectral velocity correlation tensor
allows to recover formally usual one-point statistical models. On the other hand, a partial
integration over a split spectrum, with a given spectral partitioning, yields partial integrated
transport models that can be transposed both in statistical multiple-scale models [98, 100],
or in large eddy simulations [26, 27]. In the present case, any flow variable φ is decomposed
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into a statistical mean value and a fluctuating turbulent part which may be developed into
several ranks of fluctuating parts using an extension of the Reynolds decomposition [98]

φ = 〈φ〉 +
∞∑

m=1

φ′[κm−1,κm] (57)

where the partial fluctuating velocities are defined by partial integration of their generalized
Fourier transform

φ′[κm−1,κm](ξ) =
∫

κm−1<|κ |<κm

φ̂′(κ) exp (jκξ)dκ, (58)

where φ̂′(κ) denotes the Fourier transform of φ′(ξ) and κm is a series of partitioning (pos-
sibly evolving) wave numbers. Applying the basic decomposition of the turbulent velocity
defined by relations (57) and (58) for m = 1 allows to recover the Reynolds velocity decompo-
sition φ = 〈φ〉+φ′[0,∞[ used in RANS models in which the whole spectrum is modeled. For
m = 2 or higher, we find the usual decomposition retained for the multiple-scale statisti-
cal models [98]. The two-level decomposition m = 2 is also relevant for the decomposition
used in large eddy simulations where only one part of the spectrum containing the small
eddies is modeled φ=〈φ〉+φ<+φ> with φ< = φ′[0,κ1] and φ> = φ′[κc,κ2] whereas the other
part of the spectrum containing large eddies is resolved by the simulation. In this framework,
κ1 denotes the cutoff wave number κc whereas κ2 is the dissipative wave number κd .

5.2 Transport equation of the two-point velocity fluctuation

The general case of nonisotropic inhomogeneous turbulence is considered for bridging the
gap between the RANS and LES methodologies. In this case, the two-point velocity corre-

lation Rij =
〈
u′

iAu′
jB

〉
is function of the distance between the points A and B, denoted ξ ,

but also of the location of these points xA and xB in the flow field because of the inhomo-
geneity of the turbulence field. New independent variables defined by the vector difference
ξ = xB − xA and the midway position X = 1

2 (xA + xB) are then considered in order to
distinguish the effects of the distance separation from the effects of space location [72] so
that each variable can be regarded as a function of the two variables ξ and X. The first step
is to write the dynamic equation for the double velocity correlation that reads [28]

∂Rij (X, ξ , t)

∂t
+ 〈uk〉(X)

∂Rij (X, ξ , t)

∂Xk

= −Rjk(X, ξ , t)
∂〈ui〉
∂Xk

− Rik(X, ξ , t)
∂〈uj 〉
∂Xk

− ξp

∂〈uk〉
∂Xp

∂Rij

∂ξk

(X, ξ , t)

−1

2

∂

∂Xk

(Si,kj + Sik,j )(X, ξ , t) − ∂

∂ξk

(Si,kj − Sik,j )(X, ξ , t)

− 1

2ρ

(
∂K(p)j

∂Xi

+ ∂Ki(p)

∂Xj

)
(X, ξ , t) + 1

ρ

(
∂K(p)j

∂ξi

− ∂Ki(p)

∂ξj

)
(X, ξ , t)

+ν

2

∂2Rij (X, ξ , t)

∂Xl∂Xl

+ 2ν
∂2Rij (X, ξ , t)

∂ξl∂ξl

(59)

where the term Si,jk and Sik,j denote the turbulent diffusion terms due to the fluctuat-

ing velocities Si,kj (X, ξ , t) =
〈
u′

iA
u′

kB
u′

jB

〉
, Sik,j (X, ξ , t) =

〈
u′

iA
u′

kA
u′

jB

〉
and the terms

K(p)i and Ki(p) are turbulent diffusion terms due to the fluctuating pressure defined by
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K(p)i(X, ξ , t) =
〈
p′

Au′
iB

〉
, and Ki(p)(X, ξ , t) =

〈
p′

Bu′
iA

〉
. Equation 59 is written in this

form to give a direct connection with the one-point Reynolds stress equation [96, 98].
Indeed, the nonhomogeneous terms appearing in Eq. 59 correspond to the usual terms in
one-point equation whereas the others terms involving the distance ξ are treated as in homo-
geneous anisotropic turbulence. This formalism leads to consider the tangent homogeneous
anisotropic field at point X of the nonhomogeneous field implying that the variation of the
mean velocities is accounted for by the use of Taylor series expansion in space limited to
the linear terms. This concept ensures that the filtered field goes to the statistical mean field
when the filter width goes to infinity (Δ → ∞, κc → 0 and φ → 〈φ〉). In particular,
when the cutoff vanishes, the full integration in the tangent homogeneous space exactly cor-
responds to the statistical mean, that guarantees exact compatibility with RANS equations
[28]. The second step consists in taking the Fourier transform of Eq. 59 using the definition

φ̂(X, κ) =
∫

φ(X, ξ) exp (−jκξ) dξ (60)

5.3 One-dimensional models by spherical mean

In the third step, we apply on the variable φ̂(X, κ) the spherical mean operator (.)Δ defined
in Refs. [96–99]

[φ(X)]Δ(κ) = 1

A(κ)

∫∫
©

A(κ)

φ̂(X, κ) dA(κ) (61)

where A(κ) is the spherical shell of radius κ , to obtain an equation that depends only on
the scalar wave number and not anymore on the vector wave number implying a loss of
directional information. The resulting equation reads

∂ϕij (X, κ, t)

∂t
+ 〈uk〉 (X)

∂ϕij (X, κ, t)

∂Xk

= Pij (X, κ, t) + Tij (X, κ, t)

+Ψij (X, κ, t) + Jij (X, κ, t) − Eij (X, κ, t) (62)

where the function ϕij denotes the spherical mean of the Fourier transform of the two-point
correlation tensor

ϕij (X, κ, t) = (
Rij (X, ξ , t)

)Δ (63)

This type of approach is the basis of spectral models developed in references [96, 97]. On
the right and side of Eq. 62, Pij represents the production term defined by

Pij (X, κ, t) = −ϕik(X, κ, t)
∂〈uj 〉
∂Xk

− ϕjk(X, κ, t)
∂〈ui〉
∂Xk

(64)

Tij is the total transfer term defined by

Tij (X, κ, t) = θij (X, κ, t) + ζkimj (X, κ, t)
∂〈uk〉
∂Xm

(65)

where the first transfer term θij related to the triple velocity correlations is the inertial
cascade

θij (X, κ, t) = −
(

∂

∂ξk

(Si,kj − Sik,j )(X, ξ , t)

)Δ

(66)

whereas the second transfer term ζkimj represents the fast transfer by action of mean velocity
gradients

ζkimj (X, κ, t) = −
(

ξm

∂Rij

∂ξk

(X, ξ , t)

)Δ

(67)
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The redistribution term Ψij takes the form as follows

Ψij (X, κ, t) = 1

ρ

(
∂Kj

∂ξi

− ∂Ki

∂ξj

)
+ 1

2ρ

(
∂Kj

∂Xi

+ ∂Ki

∂Xj

)
(68)

where Ki is the turbulent diffusion due to fluctuating pressure defined by

Ki (X, κ, t) = (Ki(p)(X, ξ , t))Δ = (K(p)i(X, ξ , t))Δ (69)

Jij embodies all the diffusion like terms

Jij (X, κ, t) = − 1

ρ

(
∂Kj

∂Xi

+ ∂Ki

∂Xj

)
− 1

2

∂

∂Xk

(ςi,kj + ςik,j ) + ν
∂2ϕij (X, κ)

∂XlXl

. (70)

where the turbulent diffusion terms ςi,jk and ςik,j are due to fluctuating velocities

ςi,kj (X, κ, t) = (Si,kj (X, ξ , t))Δ

ςik,j (X, κ, t) = (Sik,j (X, ξ , t))Δ (71)

and the tensorial dissipation-rate Eij reads

Eij (X, κ, t) = ν

2

∂2ϕij (X, κ, t)

∂XlXl

+ 2νκ2ϕij (X, κ, t) (72)

5.4 Integration in the spectral space

5.4.1 Single-scale turbulence models

The full integration of any variable φ in the wave number ranges [0, ∞[ of the spectral
space is defined by

φ(X) =
∫ ∞

0
[φ(X)]Δ(κ)dκ (73)

The full integration of Eq. 62 allows to recover the usual statistical Reynolds stress model
described by Eq. 20 where

Rij (X, t) =
∫ ∞

0
ϕij (X, κ)dκ. (74)

Pij (X, t) =
∫ ∞

0
Pij (X, κ)dκ (75)

Πij (X, t) =
∫ ∞

0
Ψij (X, κ)dκ (76)

εij (X, t) =
∫ ∞

0
Eij (X, κ)dκ (77)

Jij (X, t) =
∫ ∞

0
Jij (X, κ)dκ (78)

Obviously, the integration of transfer term Tij vanished because the distance between the
two points A and B goes to zero (ξ = 0) in the physical space.

5.4.2 Multiple-scale turbulence models

The partial integration of Eq. 62 in the wave number ranges [κm−1, κm] of the spectral space
allows to obtain the formulation of multiple-scale models [28, 98]. This one is not detailed
here for the purpose of simplification.
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5.4.3 Subgrid-scale turbulence models

The analysis is restricted to the case of homogeneous anisotropic turbulence for the sake of
clarity and simplification. Consequently, the diffusion term vanishes. Subfilter scale stress
models can be derived in a particular case where m = 2 and by identifying the wave num-
bers κ1 = κc and κ2 = κd . Considering the wave number ranges such as [0, κc], [κc, κd ]
and [κd,∞[, and by identifying the significant physical processes in each spectral zone, the
integration of Eq. 62 leads to the three partial equations as follows

∂Rij [0,κc]
∂t

= Pij [0,κc] − Fij (κc) + Πij [0,κc] (79)

∂Rij [κc,κd ]
∂t

= Pij [κc,κd ] − Fij (κd) + Fij (κc) + Πij [κc,κd ] (80)

0 = Fij (κd) − εij [κd ,∞[ (81)

where

Rij [0,κc] =
∫ κc

0
ϕij (κ, t)dκ (82)

for the large resolved scales and

Rij [κc,κd ] =
∫ κd

κc

ϕij (κ, t)dκ (83)

for the small modeled scales. The fluxes of transfer of energy are computed by

Fij (κc, t) = Fij (κc, t) − ϕij (κc, t)
∂κc

∂t
(84)

Fij (κd, t) = Fij (κd, t) − ϕij (κd, t)
∂κd

∂t
(85)

with the definition

Fij (κ, t) =
∫ ∞

κ

Tij (κ
′, t)dκ ′ = −

∫ κ

0
Tij (κ

′, t)dκ ′ (86)

The subgrid viscous dissipation-rate reads

(εij )[κd ,∞[ =
∫ ∞

κd

Eij (κ, t)dκ (87)

Equation 81 indicates that the tensorial dissipation-rate can be considered as a spectral flux
that is independent of the cutoff wave number κc. Its theoretical expression is given by Eq.
87. Combining Eq. 80 with Eq. 81 gives the transport equation of the subgrid scale stress

∂Rij [κc,κd ]
∂t

= Pij [κc,κd ] + Fij (κc) + Πij [κc,κd ] − (εij )[κd ,∞[ (88)

and in the contracted form, the transport equation of the subgrid-scale turbulent energy

∂k[κc,κd ]
∂t

= P[κc,κd ] + F(κc) − ε[κd ,∞[ (89)

It is simple matter to show that Rij [κc,κd ] corresponds in fact to the statistical averaging of
the subgrid scale fluctuating velocities 〈τ(ui, uj )〉, more precisely

Rij [κc,κd ] = 〈τ(ui, uj )〉 = 〈(τij )sgs〉 =
〈
u>

i u>
j

〉
(90)
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Equation 88 looks like Eq. 52 although this one is written in a instantaneous form involving
the stress (τij )sgs whereas Eq. 88 is written in a statistical sense involved the averaged sub-
grid scale stress

〈
(τij )sgs

〉
. As a consequence, we can assume that closures approximations

used for statistical averaged equations also prevail in the case of large eddy simulations.

6 Hybrid RANS/LES Simulation

6.1 Principle of the method

Hybrid RANS/LES methods capable of reproducing a RANS-type behavior in the vicinity
of a solid boundary and an LES-type behavior far away from the wall boundary have been
developed in the past two decades for improving numerical prediction of complex flows
encountered in engineering applications with affordable computational resources. In par-
ticular, depending on the physical problem to be studied, some regions of the flow may
require a more refined description of the turbulent eddy interactions using finer grids with
LES simulation whereas other regions that are of less complex physics can be calculated
satisfactorily from RANS models [101–106]. As statistical and filtered equations can be
written formally in the same mathematical form at a first sight, provided the commutation
terms are negligible, (see Sections 3, 4 and 5), RANS and LES can be combined by using
turbulence models based on different type of closure to build composite methods. The the-
oretical formalism developed in the spectral space in Section 5 also strengthens the idea
that it is possible to unify the RANS and LES methodologies from a physical point of view
in reconciliating different physical descriptions. Usually, hybrid RANS/LES methods are
inspired from RANS modeling that constitutes a convenient framework [92, 93]. According
to the literature [49, 51], hybrid methods can be broadly classified into two main categories,
zonal and non-zonal methods. RANS/LES zonal methods rely on two different models, a
RANS model and a subgrid-scale model, which are applied in different domains separated
by a sharp or dynamic interface whereas non-zonal methods assume that the governing set
of equations is smoothly converting from a RANS behavior to an LES behavior, based on
criteria updated during the computation. This terminology employed for classifying hybrid
RANS-LES methods among zonal and non-zonal methods can be however ambiguous since
both methods use different models in different regions. For this reason, some authors [14]
prefer to identify on the one hand segregated modeling when different models RANS and
LES based on a different structure of equations are used in each part of the computational
domain, both RANS and LES computations are then performed in their respective domains
separated by the interface and, on the other hand unified modeling corresponding to the
counterpart to segregated modeling, considered as a more continuous approach, where here
the RANS and LES models bear the same structure of equations. With segregated model-
ing, the flow solution including the velocity is discontinuous at the interface. Most of hybrid
RANS-LES models were initially developed in the framework of a zonal approach [17–19],
but more recently, new models based on a non-zonal approach [15, 26–28, 38–40, 46–48]
are of growing interest in hybrid RANS-LES modeling for simulation of complex turbulent
flows encountered in engineering applications.

6.2 Zonal models

Noticeably, the main shortcoming of these methods lies in the connection interface between
the RANS and LES regions [102–104, 107–109]. The interface being empirically set inside
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the computational domain, the turbulence closure changes from one model to another one
without continuity when crossing the interface. An internal forcing produced by artificial
instantaneous random fluctuations is then necessary for restoring continuity at the cross-
flow between these domains in aiming to obtain correct velocity and stress profiles in
the boundary layer. Extra terms introduced in the equations are then necessary to get the
correct velocity and stress profiles in the boundary layer [110]. In particular, a thorough
review on synthetic turbulence generators for RANS-LES interfaces in zonal simulations
of aerodynamic problems was conducted recently by Shur et al. [111]. The question of the
log-layer mismatch velocity for hybrid RANS/LES simulations has been addressed in detail
by Hamba in Ref. [109]. Among these hybrid RANS/LES methods, the Detached Eddy
Simulation (DES) developed by Spalart et al. [17–19], which was refer to as DES97 in its
original version [20], where the model is switching from a RANS behavior to an LES behav-
ior, depending on a criteria based on the turbulent length-scale, is one of the most popular
method. However, although of practical use for aeronautical applications, DES is very sen-
sitive to the grid-size. In particular, the gray area where the model varies from URANS to
LES mode may be problematic unless the separation is abrupt and fixed by the geometry
[20]. The second problem of DES is concerned with a possible delay in the formation of
instabilities in mixing layers. Note that a new version of the detached-simulation, referred
to as DDES [21], for delayed DES, resistant to ambiguous grid density, has been developed
recently in this framework. Still from a practical point of view, the DES technique was after-
wards applied on two-equation models such as for instance the k − ω SST model [63] to
convert it into the zonal k − ω SST-DES model [23–25].

6.3 Non-zonal models

One of the first non-zonal hybrid RANS-LES method was derived by Speziale [15] hereafter
denoted VLES98 for performing very large eddy simulation (VLES). In this method, the tur-
bulent stresses are computed by damping the Reynolds stress stresses in regions where the
grid spacing is of order of the Kolmogorov length-scale. This method presents the advantage
to continuously vary between DNS and RANS computation and several VLES models were
afterwards derived in this same line of thought. The partially integrated transport modeling
(PITM) method is one of promising method in turbulence modeling developed by Schies-
tel and Dejoan [26], Chaouat and Schiestel [27, 31] because it allows numerical simulation
of turbulent flows out of spectral equilibrium performed on relatively coarse grids. This
one has become widespread in turbulence modeling because of its interest to dramatically
reduce the computational resource in the field of engineering applications. The subfilter
models derived in PITM have the property of working on LES mode and smoothly change
from RANS to DNS if the grid-size is enough refined in the flow region with seamless cou-
pling. The main ingredient of this method is the new dissipation-rate equation that is used in
conjunction with the equation of the subfilter scale energy or equations of the subfilter scale
stresses depending on the level of closure that is chosen. In particular, these authors have
derived subfilter turbulence models, the former one using a two-equation subfilter energy
model [26, 29] and the latter one, using a stress transport model based on second-moment
closure [27, 30, 32]. The stress transport closure derived in the PITM framework was
initially developed in the wave number space by Chaouat and Schiestel [27, 28], and its for-
malism afterwards was transposed to the frequency space by Fadai-Ghotbi et al. [112, 113]
who obtained very similar equations. The partially averaged Navier-Stokes (PANS) method
developed by Girimaji [39] also belongs to this line of thought, and the final equations have
great similarities with the PITM equations. But the PANS equations were obtained on the
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basis of practical arguments on turbulence. More precisely, the PANS method [37–41] has
been formulated in the physical space by considering that the ratio for the subgrid energy
to the total energy of turbulence, is arbitrary fixed in the flow without referring to the grid
size of the mesh like in PITM. This assumption was used to derive turbulence models based
on transport equations of the subgrid scale energy and dissipation-rate. The method of scale
adaptive simulation (SAS) using two-equation models has been proposed by Menter and
Egorov [46–48] to simulate unsteady turbulent flows. This method is based on the intro-
duction of the Von Kármán length-scale into the turbulence scale equation. Like PANS,
SAS must be however considered more as a URANS method than an hybrid RANS-LES
method because no explicit filter or grid size appears in the formulation of its basic equa-
tions. Among non-zonal methods, one can notice also blending turbulence models using a
weighted sum of a RANS model and LES model by means of blending factors such as for
instance the one in Ref. [114] or the SBES model [115] that is promising.

6.4 Zonal or non-zonal models?

The key issue to address now for the simulation of turbulent flow is whether one has to apply
a zonal or a non-zonal model? This choice depends on several factors, mainly the type of
the physical phenomena acting in the flow and the computer resources in terms of number
of necessary grid-points and computational times that are available by the user. In the use
of zonal modeling, the determination of the frontier between the zones must be motivated
on physical phenomena involved in the flow field to be meaningful and how to manage the
interface requires particular care. Non-zonal modeling presents the advantage to give a more
consistent formalism. Some non-zonal models switch from RANS to LES using clipping
parameters while others use a continuous formalism. The author considers that a non-zonal
hybrid RANS/LES model that evolves continuously in LES mode between the two extreme
limits of the spectrum that are RANS and DNS is more satisfactory from a physical point of
view than a zonal model because it bridges two different levels of description in a consistent
way. The model formulation may remain the same and does not pose some conceptual and
numerical problems of an artificial separation between the RANS and LES regions. In such
an hybrid RANS/LES simulation, the magnitude of the large scale fluctuating velocity u<

is more or less large depending on the location of the cutoff wave number κc according to
Eq. 28 and also on the physical processes involved in the flow such as interactions between
the mean flow and turbulence. As it was mentioned, the question of the computer resource
is of major importance in the choice of the model. In the case where the computer resources
are large allowing a high grid resolution, the model can be simple in its formulation such
as an eddy viscosity model assuming a direct constitutive relation between the turbulent
stress and strain components only valid for fine grid turbulence. The resolved part of energy
will be much larger than the modeled part of energy, and DES will be convenient. But
conversely, when the memory resources are small leading to a poor grid resolution, the
model should account for several transport equations of flow variables like PITM, PANS
or SAS because the modeled part of energy can be appreciable in comparison with the
resolved part of energy. Of course, in this case, it is not expected to get the accuracy of
conventional fine grid simulation in the structural description of the flow, but some useful
trends are however possible, the aim being to get acceptable results while hugely reducing
the computational cost. Finally, it appears that these methods complement each other and
are often implemented in combination.
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7 Popular Hybrid RANS/LES Methods

There is a great variety of hybrid RANS/LES methods. The first hybrid methods have been
historically introduced in the practical aim to tackle efficiently the problem of solving the
wall region, which is by far the most usual type of real flow configuration in industrial and
environmental practice. The RANS region near the wall was used as some convenient and
economical boundary treatment. But this approach soon exhibited serious problems in the
frontier between the two zones, may it be discontinuous or not. These problems depending
on the type of models in use, they will be discussed in the following. Then the hybrid
RANS/LES approach developed worldwide by several researchers undergo improvements
and extended formalisms. Now continuous approaches are more and more preferred and
applied to very different types of flows. The LES region and the RANS region of treatment
are essentially determined by the local complexities of every particular flow or the type
of description the user needs to obtain. Some degree of self adaptation can be active also.
All these aspects are now discussed by considering the main usual methods of approach
available at present time.

7.1 Very large eddy simulation (VLES)

The method was presented in its conceptual form VLES98 by Speziale in Ref. [15] and
consists in evaluating the subgrid scale stresses (τij )sgs by means of a function FR that con-
trols the ratio of the part of modeled energy to resolved energy and the Reynolds averaged
stresses Rij as

(τij )sgs = FRRij (91)

The functions initially derived are of the form

FR = [
1 − exp (−βΔ/ηK)

]n (92)

where ηK is the Kolmogorov length-scale, β and n are numerical parameters. In the limit
where Δ/ηK goes to zero, all relevant scales are resolved and the model behaves like DNS
whereas when Δ/ηk goes to infinity or is very large, the model goes to a RANS com-
putation. But this function poses some problems when the Reynolds number is very large
implying that the Kolmogorov length-scale ηK is very small. In this case, this function FR

goes to zero and the model gives a RANS behavior independently to the grid-size spac-
ing, even for fine grids. Prior to every simulation, this method requires to perform a RANS
computation to get an estimate of the Reynolds stresses Rij as well as the Kolmogorov
length-scale ηK . That said, the numerical values of the model parameters (β and n) were not
fixed in Ref. [15]. Fasel et al. [16] has applied this method to derive a VLES model based
on the function given in Eq. 92 and two equation transport k − ε model using the algebraic
stress model (ASM) developed by Gatski and Speziale [58]. The numerical parameters used
in this model were calibrated to β = 0.004 and n = 1. These authors performed the wall
jet flow that highlights the interaction between large structures developing in the free shear
layer and the near wall boundary layer with encouraging results. This method was applied
in its principle by Hsieh et al. [116] to derive a variant of VLES model using a generalized
function FR based on the turbulence energy spectrum E(κ) defined as

FR =
∫ κd

κc
E(κ)dκ

∫ κd

κe
E(κ)dκ

(93)
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where κe and κd are the wave numbers corresponding to the integral length-scale of tur-
bulence Le = k3/2/ε and the Kolmogorov length-scale ηK , respectively. This model was
applied to simulate the flow over an array of cubes placed in a plane channel. The hybrid
RANS/LES simulation provided similar results as LES and better than unsteady RANS.
Recently, Han and Krajnovic [117, 118] have built a new function FR inspired both by
Eqs. 92 and 93 as

FR = min

[
1,

(
1 − exp (−β1κd/κc)

1 − exp (−β2κd/κe)

)n]
(94)

where β1 = 1.22 × 10−3, β2 = 2.0 × 10−3 and n = 2. This model was used in conjunction
with a turbulence model which takes the same form as the standard k − ε model given by
Eqs. 13 and 14 using the Boussinesq viscosity assumption defined in Eq. 45 but the turbulent
eddy viscosity was modified as νsgs = FRνt where νt is given by Eq. 12. The motivation
of this model was to provide a proper LES mode between the RANS and DNS limits. In
practice, it was found that the VLES model behaves like a RANS model in the near-wall
region within the viscous sublayer and like a VLES mode in other regions that approaches
LES in the limit of fine mesh resolution. This model was applied to simulate the periodic
hill flow at the Reynolds number Re = 10595, as well as turbulent flows past a square
cylinder at Re = 22000 and a circular cylinder at Re = 3900 and 140000. Then, Han and
Krajnovic [119] have developed a VLES model based on the k−ω model [62] including the
function FR given by Eq. 94 to better describe the near wall turbulence where the turbulent
eddy viscosity is then given by νt = FRk/ω. They performed numerical simulations of
the turbulent flow past a circular cylinder at Re = 3900 and Re = 3× 106 and obtained
satisfactory results on coarse meshes.

7.2 Detached eddy simulation (DES)

7.2.1 S-A DES model

The detached eddy simulation (DES) developed by Spalart and co-authors in its origi-
nal version DES97 [17–19] including its variant delayed version DES (DDES) [21] and
the improved delayed detached eddy simulation (IDDES) [22] is one of the most popular
method used for the simulation of high Reynolds number flows with massive separation
around obstacles, with the aim to access global coefficients such as the drag, lift and pres-
sure coefficients that are useful in the aerodynamic design optimization of aircraft wings.
In this approach, the model is switching from a RANS mode in the boundary layer to LES
mode in the core flow, depending on a criterion based on the turbulence length-scale. This
approach is zonal but considering that the same basic model is used both in the RANS and
LES zones, the transition between the two zones occurred in the so-called “gray-zone ” is
made without true discontinuity. The success and weakness of the DES method were men-
tioned by Spalart in Ref. [20]. These DES models are based on the Spalart-Allmaras RANS
model [59, 60] described by Eq. 11 where the wall distance dw is replaced by d̃ involving
the grid-size Δ

d̃ = min (dw, CDESΔ) (95)

where
Δ = max (Δ1,Δ2,Δ3) (96)

CDES is a coefficient set to 0.65 which has been calibrated in the decaying homogeneous
turbulence. In the near wall region, Δ1 ≈ Δ2 � Δ3, so that Δ = Δ1 and d̃ = dw , the model
reduces to the S-A model whereas far away from the wall, dw � Δ leading to d̃ = CDESΔ
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and the model acts as a subgrid scale model. The gray zone corresponds to the interface
region where dw ≈ CDESΔ. In this version of the model, the separation of the boundary
layer is controlled by the RANS model. This model was used to simulate aerodynamic flow
such as for instance a mixing layer and the flow over a backward-facing step [17], the flow
past a circular cylinder including laminar or turbulent separation at the Reynolds numbers
Re = 5 × 104, 1.4 × 105 and 3 × 106 [18], and the flow with massive separation around the
aircraft F-15E at 65◦ angle of attack at the Reynolds number Re = 13.6 × 106 and Mach
number 0.3 [120]. Spalart and al. [21] have pointed out that the original DES model can
exhibit an incorrect behavior in thick boundary layers when the grid spacing parallel to the
wall becomes less than the boundary layer thickness δ. In this case, DES unsuccessfully
attempts LES, as the eddy viscosity is lower than that from the RANS S-A model, but the
resolved Reynolds stresses have not developed. The delayed DES model has been then
proposed with a RANS mode in thick boundary layers without preventing LES mode after
massive separation. To overcome this shortcoming, the DES length-scale was redefined as
follows [21]

d̃ = dw − fd max (0, dw − CDESΔ) (97)

where fd is a shielding function which takes on the value unity in the LES region and
reduces to zero elsewhere. The authors have proposed the hyperbolic function fd =
1 − tanh

([8rd ]3
)

where the dimensionless parameter rd corresponds to the ratio (squared)
of the length-scale involved in the mean shear rate to the distance from the wall, rd =
(ν + νt )/(

√
S̃C2

Kd2
w), where S̃ = ∂ūi/∂xj ∂ūi/∂xj . This model was applied to various

flow configurations such as the backward facing step, circular cylinder, single and multi-
element airfoil [21]. As an illustrative example, Spalart et al. used this DDES model to
simulate the flow around a rudimentary landing gear characterized itself by the separation
of the turbulent boundary layer [121]. The standard DDES model was improved by Shur
et al. [22] by combining the DDES with a wall modeling in LES (WMLES), mainly to
resolve the mismatch between the inner modeled log layer and the outer resolved log-layer
produced by the RANS and LES mode, respectively. Overall, the IDDES model was empir-
ically built in order to perform external flows with massive separation like DES or DDES
and improves DDES in case of mixed flow with both attached and separated regions. To do
that, the authors have modified the computation of the length-scale given by Eq. 97 firstly
by introducing a blending functions f̃d such as

d̃ = f̃d (1 + fe)dw + (1 − f̃d )CDESψΔ (98)

where f̃d , fe and Ψ are empirical functions and secondly by modifying the estimate of
the grid spacing Δ as indicated in Ref. [22]. This model was evaluated in the case of a
plane channel and a plane hydrofoil with trailing edge separation [22] and applied by sev-
eral authors for performing different types of flows such as for instance the flow around a
pair of cylinders in tandem [122, 123], the NACA 5510 airfoil flow [124]. In a different
spirit, a purely zonal DES model (ZDES) in which RANS and DES domains are selected
individually was proposed by Deck [125, 126]. As pointed out by Spalart [20], ZDES is
less self-sufficient than DES and there is the concern that for complex flow subjected to
a smooth-wall separation, the DES mode is normally not known at the time the zone are
set. Referring to Section 6.4, it seems that this latter zonal approach raises more questions
than it answers and should be discarded for the simulation of too complex turbulent flows.
Improvement of DES based on S-A model is still an active field of research [127]. Note
at least that the logarithmic-layer mismatch (LLM) of the mean velocity in DES simulation
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resulting from the grid size effects near the wall has been investigated by several authors
[20, 83, 84] and in particular by Nikitin et al. [128] giving a clear diagnosis on this problem.

7.2.2 DES based on two-equation models

The principle of the DES method has been initially applied to the S-A Spalart Allmaras
model but it was then generalized to any RANS model in order to derive its corresponding
DES-RANS model.

The basic idea relies on Eq. 95 where in this case, the turbulence length-scale is computed as

ŁDES = min (LRANS, CDESΔ) (99)

where LRANS denotes the length-scale computed by the RANS mode. The basic two-
equation k − ε model defined by Eqs. 13 and 14 is transformed into the k − ε DES model
by modifying the dissipation term in the kinetic energy equation as

∂ksgs

∂t
+ ∂

∂xj

(
ksgs ūj

) = Psgs − FDES εsgs + (Jk)sgs (100)

∂εsgs

∂t
+ ∂

∂xj

(
εsgs ūj

) = cε1

εsgs

ksgs

Psgs − cε2

ε2
sf s

ksgs

+ (Jε)sf s (101)

where

FDES = max

(
1,

k
3/2
sgs /εsgs

CDESΔ

)
(102)

It is of interest to study the extreme limits of this model. In the case where
k

3/2
sgs /εsgs > CDES Δ, one gets FDES εsgs = k

3/2
sgs /CDES Δ, the model behaves like the

one equation LES model given by Eqs. 48 and 50 whereas in the contrary case where
k

3/2
sgs /εsgs < CDESΔ, one gets FDES εsgs = εsgs and the model behaves like the usual

RANS k − ε model given by Eqs. 13 and 14. If we will see that this method returns good
results in the following, Eq. 100 poses some problems from a physical point of view because
the dissipation-rate is modified by the function FDES although in principle, it should not be
affected by the cutoff wave number ∂εsgs/∂κc = 0. Indeed, it must be interpreted as a flux
of energy that is transferred from the large scales to the small scales. This is demonstrated
in Section 5 by Eq. 81 leading to the resulting equation 89. In the framework of DES using
two-equation models, Strelets [23], Travin et al. [24] then proposed a zonal k − ω SST-
DES model based on the RANS model [63]. These authors performed a large variety of
flows such as the NACA 0012 airfoil beyond stall, flows around circular cylinder as well as
separated flow in the backward-facing step. As a result, this model did not show any clear
superiority over the S-A-DES model. Menter at al. [25] have presented the full formulation
of a zonal k −ω SST-DES model inspired from the SST model [63] accounting for a variant
of the function FDES leading to the k−ω SST-DDES model. These equations formally read

∂ksgs

∂t
+ ∂

∂xj

(ksgs ūj ) = Psgs − FDESβ∗ωsgsksgs + (J ′
k)sgs (103)

∂ωsgs

∂t
+ ∂

∂xj

(ωsgs ūj ) = ανtPsgs − βω2
sgs + (Jω)sgs + (Ckω)sgs (104)

where Psgs denotes the production term, (J ′
k)sgs and (Jω) are the diffusion terms. The

function FDES is still inspired from Eq. 102 but the coefficient CDES is computed by
means of a blending function F1 corresponding to the two branches of the SST model
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CDES = (1 − F1)C
k−ω
DES + F1C

k−ω
DES as defined in Ref. [24]. In Ref. [25], the function FDES

is computed using a variant version as

FDES = max

(
1,

k
3/2
sgs /εsgs

CDESΔ
(1 − FSST )

)
(105)

where FSST is a function selected from the blending functions of the SST model [63]. This
function FDES has the effect to reduce the influence of the DES limiter on the bound-
ary layer portion of the flow. The quantity (Ckω)sgs is a cross-term involving the gradients
∂ksgs/∂xj and ∂ωsgs/∂xj , α and β are computed from a blending operation from the cor-
responding constants of k − ε and the k − ω models. These terms appearing in Eqs. 103
and 104 are given in detail in Ref. [25]. Note however that the notations have been changed
here to clearly make the difference between mean statistical variables used in RANS and
subgrid-scale variables used in LES. This model was applied to simulate the flow around a
cube mounted inside a 2D channel and it returned good results [25]. One can also mention
for instance the simulation of plane impinging jets with the k − ω DES model [130]. As
for DES based on S-A model, DDES and IDDES based on the k − ω SST model, to date,
constitute a part in the work of hybrid RANS-LES modeling that is actively pursued by
several authors [131]. For illustration purposes of the IDDES method, several applications
are briefly presented in the following. Figure 2 describes the flow around tandem cylinders
representative of a simplified landing gear accounting for 11 ×106 cells where the span-
wise dimension is given by L3/D = 3. This visualization displays the capability of the
simulation to resolve fine-grained turbulence and exhibits the vortical structures [122, 123].

Fig. 2 IDDES simulation of the flow around around tandem cylinders at the Reynolds number ReD =
VoD/ν = 1.66 × 105 [122, 123]. Isosurfaces of swirl colored by the streamwise velocity (λ = 4Vo/D). Grid
of 11 ×106 cells. (Courtesy of P.R. Spalart (Boeing, USA) and M. Strelets (NTS, Russia)
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Fig. 3 IDDES simulation of the flow around around tandem cylinders at the Reynolds number ReD =
VoD/ν = 1.66 × 105 [122, 123]. Surface pressure distributions over the upstream (a) and downstream (b)
cylinders. (Courtesy of P.R. Spalart (Boeing, USA) and M. Strelets (NTS, Russia)

Overall, the prediction of this turbulent flow including the pressure coefficient on both
cylinders, power spectral densities as well as velocity and turbulent energy profiles were
found in relatively good agreement with the experiment [122, 123]. Figure 3 displays the
surface pressure distributions over the upstream (a) and downstream (b) cylinders returned
by the IDDES simulation in comparison with the measurements from wind tunnels (BART
and QFF) at NASA LaRC. The next application is concerned with space launchers. Figure 4

Fig. 4 IDDES simulation of the flow around a nozzle of a launch escape system at the Mach number M =
0.85. Isosurfaces of swirl colored by the streamwise velocity (λ = 3Vo/D). Grid of 25 ×106 cells. (Courtesy
of Garbaruk et al. [129])
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shows the flow structures around a nozzle of a launch escape system at the Mach number
M = 0.85. This simulation has been performed on a fine grid of 25 ×106 cells and provided
the determination of the mean flow and evaluation of integral forces [129].

7.3 Partially integrated transport modeling (PITM) method

7.3.1 Basic equations

Generally speaking, the PITM method based on the spectral (62) allows to convert any
RANS model to its corresponding subfilter scale model. In regards with conventional LES
[70], the PITM method enables to simulate turbulent flows on relatively coarse grids when
the cutoff wave number can be placed before the inertial zone as far as the grid-size is how-
ever sufficient to describe correctly the mean flow. The PITM method is founded on the
technique of partial spectral integration introduced in Refs. [26–28]. In this presentation, the
case of homogeneous ansisotropic turbulence is considered for sake of clarity and simplifi-
cation so that the diffusion terms vanish and the variable X appearing in Eq. 62 is omitted.
As a result, Eq. 88 involving the transport equation of the subfilter-scale stress (τij )sf s can
be rewritten in a more compact form as

∂〈(τij )sf s〉
∂t

= 〈(Pij )sf s〉 + 〈(Πij )sf s〉 − 〈(εij )sf s〉 (106)

where

〈(Pij )sf s〉 = (Pij )[κc,κd ] + Fij (κc) (107)

〈(Πij )sf s〉 = (Πij )[κc,κd ] (108)

〈(εij )sf s〉 = (εij )[κd ,∞[ (109)

and in a contracted form

∂〈ksf s〉
∂t

= 〈Psf s〉 − 〈εsf s〉 (110)

where ksf s is the subfilter scale turbulent energy, So, at the wavenumber κd , all the preced-
ing hypotheses imply F(κd) = ε ≈ 〈

εsf s

〉
, the turbulence Reynolds number being supposed

to be large. Like in the RANS multiscale approach [98], the variable wavenumber κd is
defined such that

κd − κc = ζ
〈εsf s〉

〈ksf s〉3/2
(111)

where the value of the numerical coefficient ζ is chosen such that the wavenumber κd is
always sufficiently large in order to leave the entire inertial region before it and also that
the spectral energy beyond κd is negligible. This practice allows to avoid infinite integration
bounds and within these hypotheses it is a fair approximation to suppose that the energy
flux through the splitting at wavenumber κd is equal to the dissipation rate. Moreover, the
relation (111) together with the choice of the coefficient ζ provides a dynamical mean for
continuously adjusting the location of the cutoff wavenumber just after the inertial zone
while the spectrum is still evolving. So, the difference in the wave numbers (κd − κc) stays
nicely in scale in the spectrum. The dissipation rate equation is then obtained by taking the
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derivative of Eq. 111 with respect to time using Eqs. 84 and 85 written in a contracted form
and also taking into account Eq. 110. One can then easily obtain [26–28]

∂〈εsf s〉
∂t

= csf sε1

〈εsf s〉
〈ksf s〉 〈Psf s〉 − csf sε2

〈εsf s〉2

〈ksf s〉 (112)

where

csf sε1 = 3

2
(113)

and as a main result, it is found that

csf sε2 = 3

2
− 〈ksf s〉

(κd − κc) E(κd)

[(F(κd) − F(κd)

ε

)
− E(κd)

E(κc)

(F(κc) − F(κc)

ε

)]
(114)

Setting κd � κc, and E(κd) � E(κc), Eq. 114 reduces to

csf sε2 = 3

2
− 〈ksf s〉

κdE(κd)

(F(κd) − F(κd)

ε

)
(115)

Taking then the corresponding equation for κc = 0 in a pure RANS modeling,

cε2 = 3

2
− k

κdE(κd)

(F(κd) − F(κd)

ε

)
(116)

and combining these Eqs. 115 and 116 as explained in Refs. [26, 27], it is then simple matter
to show that

cεsf s2 = 3

2
+ 〈ksf s〉

k

(
cε2 − 3

2

)
(117)

As it is demonstrated in detail in Ref. [32], the numerical value cεsf s1 = 3/2 can be re-
adjusted to a different value and the more general expression for cεsf s2 is

cεsf s2 = cε1 + 〈ksf s〉
k

(
cε2 − cε1

)
(118)

The ratio 〈ksf s〉/k appearing in Eq. 117 can be calibrated as a function of the location
of the cutoff wave number. In the first version of the PITM models [26, 27], this ratio
was computed by integrating the Kolmogorov law in the wave number range [κc,∞[. The
resulting expression was then empirically modified to satisfy the limit when ksf s approaches
k leading to

cεsf s2 = cε1 + cε2 − cε1

1 + βη
2/3
c

(119)

where ηc = κcLe and β = 2/(3CK). This dimensionless parameter η = κLe is interpreted
as a dimensionless wavenumber with the turbulence length-scale Le = k3/2/ε. Then, in
more advanced PITM models, the universal spectrum [30]

E(κ) =
2
3β(κLe)

α−1Lek

[1 + β(κLe)α]γ+1
(120)

where α and β are constant coefficients given by αγ = 2/3 and β = [2/(3CK)]γ to comply
with the Kolmogorov law, was considered to better describe the spectrum at the origine of
small wave numbers. Indeed, in this region, the spectrum behaves like E(κ) = ∝ κα−1

taking into account the hypothesis of permanence of very large eddies . Using Eq. 120, it is
a simple matter to compute the ratio ksf s/k, leading to the more accurate computation of
the coefficient cεsf s2 than Eq. 119 as

cεsf s2 = cε1 + cε2 − cε1[
1 + βηα

c

]γ (121)
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In practice [30–36], the coefficients used in Eq. 120 are α = 3 and γ = 2/9 . The function
given by Eq. 121 introduced in the subfilter-scale model equation allows to sensitize the
model to the grid-size Δ or in a more general way, the filter width that may be larger than
the grid-size [33]. The coefficient cεsf s2 can be considered as a dynamical parameter which
draws the spectral distribution towards the prescribed equilibrium distribution given by Eq.
120. In other words, this term acts like a relaxation towards the Kolmogorov equilibrium
spectrum. In PITM like in LES methodology, the turbulence model is formulated using the
framework of filtering of equations.

7.3.2 Subfilter scale eddy viscosity models

The filtered transport equation of the subfilter scale energy corresponding to Eq. 110 reads

Dksf s

Dt
= Psf s − εsf s + Jsf s (122)

where D/Dt denotes the material derivative defined by D/Dt = ∂/∂t + ūk∂/∂xk . The pro-
duction term Psf s due to the interaction between the subfilter stress and the filtered velocity
gradient is given by Eq. 49. The turbulent stresses (τij )sf s are proportional to the filtered
deformation of the flow field according to Eq. 45 where the eddy viscosity is defined by

νsf s = cμ

k2
sf s

εsf s

(123)

The diffusion term Jsf s appearing in Eq. 122 is modeled by a gradient law hypothe-
sis according to Eq. 51. The filtered transport equation of the subfilter dissipation-rate
corresponding to Eq. 112 reads

Dεsf s

Dt
= csf sε1

εsf s

ksf s

Psf s − csf sε2

ε2
sf s

ksf s

+ (Jε)sf s (124)

The coefficient csf sε1 = cε1 whereas csf sε2 is given by Eq. 121. The diffusion term (Jε)sf s

embedded in Eq. 124 for handling non-homogeneous flows is modeled using a gradient law
hypothesis

(Jε)sf s = ∂

∂xj

[(
ν + νsf s

σε

)
∂εsf s

∂xj

]
(125)

where σε is a constant coefficient.

7.3.3 Subfilter scale stress models

The filtered transport equation of the subfilter scale stress corresponding to Eq. 106 reads

D(τij )sf s

Dt
= (Pij )sf s + (Πij )sf s − (εij )sf s + (Jij )sf s (126)

where the terms appearing in the right-hand side of this equation are identified as subfil-
ter production, redistribution, dissipation and diffusion, respectively. The production term
(Pij )sf s accounts for the interaction between the subfilter stresses and the filtered veloc-
ity gradients is given by Eq. 53. The redistribution term (Πij )sf s appearing in Eq. 126 is
modeled assuming that the interaction mechanisms of the subgrid scales with the resolved
scales of the turbulence is of the same nature than the interaction mechanisms involving
all the fluctuating scales with the main flow. So that Eqs. 22 and 23 established in RANS
modeling can be transposed to LES. Taking into account this argument, the redistribution
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term (Πij )sf s is also decomposed into a slow part (Π1
ij )sf s that characterizes the return to

isotropy due to the action of subgrid turbulence on itself
(
Π1

ij

)

sf s
= −c1sf s

εsf s

ksf s

(
(τij )sf s − 1

3
(τmm)sf sδij

)
(127)

and a rapid part, (Π2
ij )sf s that describes the action of the filtered velocity gradients

(
Π2

ij

)

sf s
= −c2

(
(Pij )sf s − 1

3
(Pmm)sf s δij

)
(128)

where c1sf s plays the same role as the Rotta coefficient c1 but is no longer constant whereas
c2 is the same coefficient used in RANS modeling. In practice, the function c1sf s is modeled
as c1sf s = c1α(η) where α is an increasing function of the parameter η to strengthen the
return to isotropy for large wave numbers. The diffusion terms (Jij )sf s is modeled assuming
a well-known gradient law

(Jij )sf s = ∂

∂xm

(
ν
∂(τij )sf s

∂xm

+ cs

ksf s

εsf s

(τml)sf s

∂(τij )sf s

∂xl

)
(129)

where cs is a constant coefficient. The subfilter tensorial transfer rate (εij )sf s approached
by 2/3εsf sδij at high Reynolds number is computed by its transport (124) but the diffusion
term (Jε)sf s is then modeled by a gradient tensorial law

(Jε)sf s = ∂

∂xj

(
ν
∂εsf s

∂xj

+ cε

ksf s

εsf s

(τjm)sf s

∂εsf s

∂xm

)
(130)

where cε is a constant coefficient. The subfilter model is extended to low Reynolds number
turbulence in Ref. [35].

7.3.4 Limiting behavior for the subfilter model

From a theoretical point of view, it is of interest to analyze the asymptotic behavior of the
subfilter stress model when the cutoff location approaches the upper limit of the energy
spectrum wavenumber interval. Considering a spectral equilibrium situation in the inertial
zone governed by the Kolmogorov law, the theoretical ratio of the subfilter energy to the
total energy reaches the value

〈ksf s〉
k

≈ 3CK

2
η

−2/3
c (131)

In this case, it is a straightforward matter to show that the subfilter characteristic length
scale goes to the filter width

〈ksf s〉3/2

〈εsf s〉 = Δ

π

(
3CK

2

)3/2

(132)

The subfilter scale stress model allows to compute the stress (τij )sf s thanks to the transport
(126) and (124) so that the concept of the turbulent viscosity is discarded. But it is still
possible to define a tensorial viscosity given by (νij )sf s = cμ(〈ksf s〉(τij )sf s)/εsf s . For
the sake of clarity, due to the fact that the small scales become isotropic at high Reynolds
number, limηc→∞〈(τij )sf s〉 = 2/3〈ksf s〉δij , it is simpler to analyze the case of a scalar
viscosity given by νsf s = cμ〈ksf s〉2/〈εsf s〉. Assuming a local equilibrium situation inside
a very small slice in the far end of the energy spectrum, 〈εsf s〉 = 2νsf s

〈
S̄ij S̄ij

〉
, it can be
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shown for a two-equation model [30] that the limiting behavior for the subfilter viscosity
νsf s is then given by

νsf s = 1

π2

(
3CK

2

)3

c3/2
μ Δ2

√
2
〈
S̄ij S̄ij

〉
(133)

This expression shows that the subfilter model behaves like the Smagorinsky model given
by Eq. 46 where the Smagorinsky constant Cs can be easily identified.

7.3.5 Applications

The PITM models were first validated against the fully turbulent channel flow [26, 27] and
the decaying isotropic turbulence in/out of spectral equilibrium [26, 30]. This latter test case
was relevant to verify that the PITM method preserves the concept of the energy cascading
process independently of any spectral cutoff location [26]. Previous simulations have also
shown that the PITM method was able to reproduce fairly well a large variety of internal
and external flows. The subfilter scale eddy viscosity model accounting for Eqs. 122, 124,
123 was used to simulate turbulent pulsed flows [26] and a mixing of two turbulent flows
of differing scales [29], but also with an additional equation for the temperature variance,
thermal convection at high Rayleigh numbers [132], whereas the subfilter scale stress mod-
els accounting for Eqs. 126 and 124 was applied to perform rotating flows encountered in
turbomachinery at the bulk Reynolds number Rb = Ubδ/ν = 14000 and at different rota-
tion numbers Ro = �δ/Ub varying from moderate, medium and very high rotation rates
Ro = 0.17, 0.50 and 1.50 [31], flows in a plane channel with appreciable fluid injection
through a permeable wall which corresponds to the propellant burning in solid rocket motors
[27], flows over periodic hills with separation and reattachment of the boundary layer both
at the Reynolds number Re = 10595 [34, 133, 134] and Re = 37000 [35], airfoil flows at
the Reynolds number Re = 1.64×106 for an angle of attack 12◦ [135], a turbulent flow in a
small axisymmetric contraction at the bulk Reynolds number Rb = 4.47 × 105 [36]. Over-
all, it is found that the subfilter scale model behaves like a RANS model in the wall region
and like LES in the core flow. Moreover, the part of the modeled energy can be appreciable
in comparison with the resolved part of energy. For instance, the modeled energy repre-
sents roughly 50% of energy even in the center of the channel far away from the walls for
the simulation of the flow in a small axisymmetric contraction while providing fair results
[36]. These PITM simulations allowed a drastic reduction of the required computational
resources in comparison with those necessary for performing highly resolved LES. This
point will be discussed through elements of comparison of several models in Table 2. For
illustration purposes of the PITM method, different types of turbulent flows are presented
in the following.

Figure 5 displays the isosurfaces of the instantaneous spanwise filtered vorticity ω̄i =
εijk∂ūk/∂xj in the channel flow with fluid injection through the lower wall while the upper
wall is impermeable [27]. This figure reveals the detail of the flow structures as well as
the location of the transition process from the laminar to turbulent flow regime. One can
observe that the vortical structures appear two-dimensional in the upstream transition loca-
tion and break down to form three-dimensional structures after the flow transition. In the
downstream transition location, the flow is then characterized by the presence of roll-up vor-
tex structures of large magnitude of vorticity in the spanwise direction as also reproduced
in highly resolved LES [136]. This simulation performed on coarse grids returned the mean
velocity, turbulent stresses and transition location in good agreement with the experiment
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Table 2 Simulations of turbulent flows performed on fine and coarse grids, respectively

Engineering applications Authors Turbulence model Grid points

Mixing of turbulent flows Wengle et al. [141] DSM 4.0 × 106

Befeno and Schiestel [29] PITM 3.6 × 105

Flows with wall injection Apte and Yang [136] DSM 9.0 × 106

Chaouat and Schiestel [27] PITM 1.4 × 106

Flows in rotating frame Lamballais et al. [138] SFM 8.0 × 105

Chaouat [31] PITM 7.4 × 104, 8.8 × 105

Flows over periodic hills Fröhlich et al. [142] DSM/WALE 4.6 × 106

Breuer et al. [143] DSM 13.1 × 106

Re = 10595 Saric et al. [144] DES 4.8 × 105, 1.0 × 106

Saric et al. [145] DDES 2.4 × 105

Friess et al. [134] equiv-DES 9.6 × 105

Menter and Egorov [47] SST-SAS 2.5 × 106

Ma et al. [146] PANS 4.1 × 105

Chaouat [34] PITM 2.4 × 105

Re = 37000 Manhart et al. [147] SM,WALE,LAG 1.0 × 106, 3.8 × 106

Ma et al. [146] PANS 1.5 × 106

Chaouat and Schiestel [35] PITM 4.8 × 105, 9.6 × 105

[137]. Figure 6 describes the isosurfaces of the instantaneous vorticity modulus in the chan-
nel flow subjected to a spanwise rotation where the rotation rate Ro = 1.50 is here very high
[31]. A first glimpse of sight reveals that the PITM simulation provides some dynamical
elements of the flow in wall turbulence by the presence of very large-scale longitudinal roll
cells in the anticyclonic wall region and clearly illustrates the three-dimensional nature of

Fig. 5 PITM simulation of a turbulent flow in a plane channel with fluid injection through the lower surface
[27]. Isosurfaces of instantaneous filtered vorticity ω̄i = εijk∂ūk/∂xj in the streamwise direction. The flow
undergoes a transition process from laminar to turbulent regime. The bulk Reynolds number Rb = Ubδ/ν

varies from 0 at the head end of the channel to 105 at the exit section. Grid of 400×44×80 ≈ 1.4×106 points
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Fig. 6 PITM simulation of a rotating channel flow [31]. Isosurfaces of vorticity modulus ω = 3um/δ =
12. 105. Colored according to the pressure contours. Anticyclonic wall region: down; Cyclonic wall region:
up. Rm = 14000, Ro = 1.50. Grid of 124 × 84 × 84 ≈ 0.9 × 106 points

the flow although the geometry is two-dimensional. In comparison with non-rotating flows,
the vorticity roll cells appear less inclined with respect to the wall, 10◦ − 15◦ instead of 45◦
[138]. Figure 7 shows the Q isosurfaces [139] of the turbulent flows over periodic hills at
the high Reynolds number Rb = Ubδ/ν = 37000 [35] and reveals also the presence of very
large longitudinal roll cells that develop in the entire channel. Due to the flow recirculation,
a strong turbulence activity is visible near the lower wall and particularly concentrated in
the leeward region of the second hill. Obviously, RANS or even URANS models cannot
reproduce these instantaneous roll cell structures because of the long-time averaging pro-
cess. Considering that the gross structural features are satisfactorily approached, they are
a favorable indication for energy level predictions. Overall, the velocity and the turbulence

Fig. 7 PITM simulation of the turbulent flow over periodic hills at Re = 37000 [35]. Vortical activity
illustrated by the Q isosurfaces, Q = 4 105s−2. Grid of 160 × 60 × 100 ≈ ×106 points
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stresses were found in good agreement with the experiment [140]. This is shown in Fig. 8
that exhibits the mean streamwise velocity 〈u1〉 /Ub as well as the turbulent shear stress
τ13/U

2
b at two cross stations x1/h = 2 and 6. The selected positions encompass the regions

in the middle of the recirculation zone close to the leeward hill face x1/h ≈ 2, prior to
the reattachment x1/h = 4 and the flow recovery x1/h = 6. At the position x1/h = 2,
the velocity near the wall is negative showing that the boundary layer is detached (except
for the RANS-RSM calculation). The maximum reverse flow occurs in this region. But at
the position x1/h = 6, the boundary layer is again attached. The PITM simulation returns
mean velocity profiles that exhibit a very good agreement with the reference data, but on
the other hand, the RANS computation exhibits inaccurate results. The total shear stresses
τij includes the subfilter and resolved parts of energy. One can see that the PITM shear
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Fig. 8 Flow over periodic hills at Re = 37000 [35]. Mean streamwise velocity 〈u1〉 /Ub (a),(b) and turbulent
shear stress τ13/U

2
b (c),(d) at different locations (x1/h = 2 and 6). PITM (160 × 60 × 100) —; RSM

computation —(80 × 30 × 100). Experiment ◦ [140]
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stress profiles present a quantitative good agreement with the reference data even if some
slight differences are visible. As for the mean velocity, the RSM stresses highly deviate
from the reference data in the two positions of the channel. Finally, as the question of CPU
time requirement is of first importance in numerical simulation, note that the additional cost
resulting from the solving of the PITM subfilter scale stress model including seven trans-
port equations requires only roughly 30 % to 50 % more CPU time than eddy viscosity
models, so that the benefit to apply an advanced turbulence modeling is greatly appreciated.
Table 2 summarizes the characteristics of several LES and hybrid RANS/LES simulations
for comparison purpose.

7.3.6 Temporal partially integrated transport modeling method

Although the PITM formalism is built in the spectral space of wave numbers considering the
concept of the tangent homogeneous space at a point of non-homogeneous flow field [28],
it is of interest to note that this method was recently transposed to the space of frequencies
assuming inhomogeneous stationary flows by Fadai-Ghotbi et al. [112, 113] leading to the
temporal PITM (TPITM) method. These authors have considered temporal filters instead
of physical space filters to handle non-homogeneous stationary flows. The TPITM method
was also used to derive the dissipation-rate equation in an analogous manner as in standard
PITM. As an important result, they showed that the dissipation-rate equation finally takes
exactly the same formulation as the one found in the spectral space by the original PITM
method. In particular, Eq. 118 was recovered confirming its general character. These authors
then developed a subfilter-scale stress model [113] using the elliptic blending method [148]
and proposed a dynamic procedure to better drive the model toward the expected amount of
modeled/resolved energy that can be interpreted as a return to equilibrium process [32].

7.4 Partially averaged Navier-Stokes (PANS) method

7.4.1 Basic equations

The partially averaged Navier-Stokes (PANS) method developed by Girimaji [37, 39, 40]
is based on the self-similarity scale assumption in the physical space. In spite of a totally dif-
ferent background developed independently from PITM, the basic PANS transport equations
look similar in their general form to the PITM equations. However, in the PANS method,
the ratio of the subfilter-energy to the total energy fk = ksgs/k and the ratio fε = εsgs/ε

are arbitrarily and empirically prescribed to fixed values for each computation, whereas in
the PITM method, they are dynamically computed in time and space in connection with the
filter width. The PANS solution is then depending on these prescribed ratios, implying that
the filter becomes disconnected from the method. The role of the filter involved in the cutoff
wave number of the energy spectrum cannot anymore be clearly interpreted from a physical
point of view. Indeed, the PITM method provides a physical foundation in spectral space
that allows to make a clear link between the unresolved-to-total ratios and the filter length
scale whereas the PANS in the contrary does not address this question. Because of this argu-
ment, the PANS method is however questionable in principle for tackling all applications
and especially for simulating non-equilibrium flows with departures from the standard Kol-
mogorov law involving transfer of energy between the small scales and large scales. This
point was discussed in detail in Ref. [32]. Consequently, although of practical interest for
CFD, this method poses some problems in its overall consistency. For simplicity, the PANS
method is presented here in the case of homogeneous turbulence. The extension to the case
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of non-homogeneous turbulence is made by embedding the diffusion terms in the equations
as discussed earlier. Considering that fk is constant, it is simple matter to get

∂ksgs

∂t
= Psgs − εsgs = fk

∂k

∂t
= fk(P − ε) (134)

leading to

P = Psgs − εsgs

fk

+ εsgs

fε

(135)

Assuming also that fε is constant leads to

∂εsgs

∂t
= fε

∂ε

∂t
= fε

[
cε1

Pε

k
− cε2

ε2

k

]
= cε1Pfk

εsgs

ksgs

− cε2

fk

fε

ε2
sgs

ksgs

(136)

By substituting Eq. 135 into Eq. 136, it is simple matter to obtain the resulting equation

∂εsgs

∂t
= cε1

Psgsεsgs

ksgs

− csgsε2

ε2
sgs

ksgs

(137)

where

csgsε2 = cε1 + fk

fε

(
cε2 − cε1

)
(138)

In practice, PANS simulations are performed with the function fε set to unity [37, 39, 40].
The original PANS method was developed assuming that fk takes on a constant value [37]
and extensive applications have been worked out in this framework [39, 40]. The PANS
method was extended to the case where fk is a function in space given itself by a preliminar
RANS computation [41, 43] according to the proposal of Girimaji and Abdol-Hamid [38]
as follows

fk ≥ 1√
cμ

Δ

Le

(139)

to require that the grid-size is larger than the smallest resolved length scale. This variant
PANS version denoted here VPANS to clearly mention that the simulation is performed
with a constant RANS fk-field in space given by Eq. 139 throughout the whole computation
was applied to simulate the test case of an axisymmetric jet at different grid resolutions
[38]. A new formulation of the function fk has been used afterwards [45] based on partial
integration of the complete Von Kármán energy spectrum E(κ) as introduced earlier in
PITM [26, 30] leading to a new extended PANS formalism hereafter denoted EXPANS to
avoid confusion with PANS . In the PANS model, the diffusion terms can be embedded in
the equations for simulating non-homogeneous flows [39, 40]. Several authors have then
improved the basic eddy viscosity model derived from the PANS method. Basara et al. [43]
have developed a four-equation PANS model inspired from the RANS k − ε − ζ −f model
where ζ = (τ22)sgs/ksgs and f is a parameter related to the pressure-strain correlation term
accounting for the elliptic relaxation model [148] whereas Ma et al. [146] have proposed a
low Reynolds number PANS formulation using damping functions for approaching walls.

7.4.2 Applications

The PANS model has been used for simulating complex flows encountered in engineering
applications such as the turbulent flows past a square and circular cylinder [42, 149], the
flow around a rudimentary landing gear [44], the flows over periodic hills both at the
Reynolds number Re = 10595 and Re = 37000 [146], the flow around a simplified vehicle
model [150, 151] as well bluff body flows [152]. These applications often emphasize the
ability of the approach to simulate big unsteady eddying motions.
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7.5 Scale adaptive simulation (SAS)

7.5.1 Basic equations

The method of scale adaptive simulation (SAS) has been proposed by Menter and Egorov
[46, 47] to simulate unsteady turbulent flows by using two-equation models. This method
is based on the introduction of the generalized Von Kármán length-scale LνK defined as

LνK = K

√√√√
2〈Sij 〉〈Sij 〉
∂2〈ui 〉
∂x2

k

∂2〈ui 〉
∂x2

j

(140)

given by the Rotta’ equation [66] into the turbulence scale equation, K being the von
Kármán constant. The meaning of this turbulence length-scale is simple. For a boundary
layer, the Von Kármán length-scale LνK is the distance normal to the wall xn in the loga-
rithmic layer region assuming that the velocity gradient is given by ∂ 〈u1〉 /∂xn = uτ /Kxn

where uτ is the friction velocity. Menter and Egorov [46, 47] indicated in their paper that
the accounting for the von Kármán length-scale into RANS models allows the correspond-
ing SAS models to dynamically adjust to resolved structures in a URANS simulation, which
results in a LES-like behavior in unsteady regions of the flow field while acting like standard
RANS models in stable flow regions. This argument is supported by the test case of turbu-
lent shear flow. In the case of homogeneous shear flow, the frequency ω is proportional to the
mean strain rate while the length-scale L goes to infinity. In the case of non-homogeneous
flows, the frequency is proportional to the local strain rate but the spatial variation of length-
scale L is then limited by LνK . For unsteady flows, the model has the feature to work in a
SAS mode because the turbulence length-scale is reduced yielding a lower eddy viscosity
that allows the development of turbulent fluctuations. More details of the principle of the
SAS method can be found in Refs [46, 47]. The SAS method relies on local flow physics
rather than the grid-size to make the transition from RANS to LES-like behavior. In that
sense, the SAS method has been derived entirely from the RANS formalism given in Sec-
tion 3.2 without referring to the filter or the grid-size Δ (or equivalently the cutoff wave
number κc). So that this one must be considered more as an unsteady RANS method than a
hybrid RANS-LES method. This point is of importance because contrarily to VLES, DES
and PITM methods, SAS does not revert to DNS in the limiting condition where the grid-
size Δ goes to the Kolmogorov length-scale ηK . Initially, Menter and Egorov [46, 47] have
derived the transport equation for the variable Ψ = kL inspired from the work of Rotta [66]
and they have then introduced the variable Φ = √

kL by a simple transformation of vari-
ables since this one is directly proportional to the turbulent eddy viscosity νt = c

1/4
μ Φ. As

a result, they proposed the K-square-root K-L (KSKL) model that formally reads

∂k

∂t
+ ∂

∂xj

(k〈uj 〉) = P − c3/4
μ

k2

Φ
+ Jk (141)

and

∂Φ

∂t
+ ∂

∂xj

(Φ〈uj 〉) = Φ

k
P

(
ζ1 − ζ2

(
L

LνK

)2
)

− ζ3k + JΦ (142)

where JΦ denotes the diffusion process associated with Φ, ζ1, ζ2 and ζ3 being numeri-
cal coefficients. This model was tested on the case of the flow around a cylinder at the
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Reynolds number based on the diameter Re = 3.6 × 106 [47] as well as the well known
decaying isotropic turbulence. In comparison with the k − ω SST model which returns only
large scale fluctuations, it has been found that the KSKL model allowed the formation of
turbulent structures, in the separated zone past the cylinder due to the vortex shedding insta-
bility. Afterwards, the KSKL model was transformed into the k − ω SAS model using the
relation

Φ = 1

c
1/4
μ

k

ω
(143)

To do that, the additional term involving the ratio of the length-scale (L/LνK)2 appearing in
Eq. 142 was included as a source term in the ω equation of the k − ω SST model to convert
it into the k − ω SST-SAS model. This source term usually retained reads [46, 47]

QSAS = max

[
ζ2S

2
(

L

LνK

)2

− CSAS

2k

σΦ

max

(
1

k2

∂k

∂xj

∂k

∂xj

,
1

ω2

∂ω

∂xj

∂ω

∂xj

)
, 0

]
(144)

where CSAS = 2, σΦ = σk used in the diffusion term of Jk and the length-scale L is then

given by L = √
k/

(
C

1/4
μ ω

)
. This term QSAS dominates the other terms appearing in the ω

equation in situation of unsteady flows implying an increase of ω leading to a decrease of
the turbulent eddy viscosity since νt = k/ω. At last, note that SAS provides a continuous
variation of solution ranging from LES-type to RANS type with respect to the time step Δt

corresponding to the CFL number selected in the simulation.

7.5.2 Applications

The SAS method was applied to simulate the flow over periodic hills at the Reynolds num-
ber Re = 10595 on a coarse grid using different CFL [47]. The SAS simulations returned
mean velocity profiles in good agreement with reference LES for each CFL. Other cases
such as the backward facing step flow and the flow around a triangular cylinder were simu-
lated [47]. The k−ω SST-SAS model was finally used to simulate a large variety of turbulent
flows encountered in practical engineering applications as detailed in Ref. [48]. Recent ele-
ments and application of SAS to complex flows in industrial CFD can be found in Ref.
[153]. With the aim to illustrate the potential of SAS and its basic difference with standard
URANS models, several turbulent flows are presented in the following. Figure 9 shows the
Q isosurfaces [139] of the turbulent flow around a circular cylinder at the Reynolds num-
ber Re = 3.6 × 106 simulated with both the SST-URANS and KSKL models using the
same grid and the same time step (CFL). Contrarily to what happens for the SST-URANS
simulation that produces only organized roll cell structures, it can be seen that the KSKL
simulation reproduces the vortex shedding instability that is put in light by the formation
of turbulent structures past the cylinder. The next Fig. 10 is concerned with an airfoil flow
with massive flow separation at low Mach number. The angle of attack is α = 60◦ and the
Reynolds number takes on the value Re = 2.7 × 105. The simulation has been performed
using the SST-SAS model with a time scale equal to 3% of the convective time scale cor-
responding to a CFL of about unity. This figure shows the Q isosurfaces [139] of the flow
illustrating the turbulent structures behind the airfoil. As a result, this simulation predicted
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Fig. 9 Simulation of the turbulent flow around a circular cylinder in a cross flow at Re = 3.6 × 106 [47].
a SST-URANS (b) KSKL model. Q Isosurfaces colored according to the eddy viscosity ratio μt/μ, smaller
by factor 14 in (b) (Courtesy of Menter and Egorov [47].)

fairly well the lift and drag coefficients with 2% accuracy compared to the measurements
[48]. More precisely, Fig. 11 shows the evolution of the mean pressure coefficient returned
by the SST-SAS simulation. A good agreement is observed with the experimental data.



318 Flow Turbulence Combust (2017) 99:279–327

Fig. 10 SST-SAS simulation of the turbulent flow around the NACA0021 airfoil [48]. Turbulent structures.
Q isosurfaces colored according to the eddy viscosity ratio μt/μ. α = 60◦, Re = 2.7 × 105. Grid of
140 × 101 × 134 ≈ 1.9 × 106 points. (Courtesy of Egorov et al. [48])

8 Link Between some Hybrid RANS/LES Methods

8.1 PITM and PANS methods

Although the PITM method has been developed in the spectral space on the basis of the
physical processes of transfer of energy into the spectral zone of the spectrum whereas
the PANS method has been empirically developed in the physical space involving a self
similarity evolution hypothesis, the PANS method has made an important step towards
PITM when Foroutan and Yavuzkurt [45] introduced the technique of partial integration
of a Von Karman spectrum as previously developed in PITM, in the new extended PANS

Fig. 11 SST-SAS simulation of the turbulent flow around the NACA0021 airfoil [48]. Mean surface pressure
coefficient. α = 60◦, Re = 2.7 × 105. Grid of 140 × 101 × 134 ≈ 1.9 × 106 points. (Courtesy of Egorov
et al. [48])
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denoted EXPANS. In both approaches, relatively to the RANS equations (13) and (14), the
corresponding subfilter-scale equations (122) and (124) look like identical to the RANS
equations but the coefficient cεsf s2 appearing in the destruction term of the dissipation-rate
is no longer constant whereas the coefficient cεsf s1 is the same as the RANS coefficient cε1 .
In PITM, the coefficient cεsf s2 is given by Eq. 118 whereas in PANS, it is obtained from Eq.
138 which recovers the original PITM formulation considering that fε reduces to unity. In
practice, the PITM method was used to derive both two-equation subfilter scale models [26,
29] as well as seven equation subfilter scale stress models [27, 30–36] and is amenable to
the derivation of companion subfilter models for almost any usual RANS model. Up to now,
the PANS method was mainly applied to devise two-equation subfilter models [39, 40] as
well as four equation subfilter models [43]. These methods were used to simulate both inter-
nal and external flows encountered in engineering applications. The new EXPANS method
of Foroutan and Yavuzkurt was applied with success to swirling confined flows [45].

8.2 DES and PITM methods

The DES method has been shortly described previously. It is usually based on a single trans-
port equation for effective turbulence viscosity or on a k − ε type model and has provided
very convenient and successful practical applications in the engineering area. Friess et al.
[134] have shown that in the case of two equation models, an empirical modification of the
dissipation rate ε can lead to an equivalent formulation to PITM, provided some assump-
tions are made, as demonstrated in detail in Ref. [134]. Obviously, the equivalence property
is concerned with the ensemble-averaged filtered equations (110) and (112) and not with
the filtered instantaneous equations (122) and (124). The authors Friess et al. [134] have
introduced the general concept of H-equivalence where H stands for hybrid that allows to
view different hybrid methods as a model of the same system of equations. The comparison
between DES and PITM is then based on this H-equivalence property [134] which relies
on the postulate that two hybrid methods based on the same closure, but using a different
method of control of the energy partition yield similar low-order statistics of the resolved
velocity fields provided that they yield the same level of subfilter energy. According to
these authors [134], this postulate must be admitted to establish the H-equivalence between
DES and PITM by means of analytical developments. For both methods, the ensemble-
averaged filtered transport equations for the subfilter energy and dissipation-rate can be
formally rewritten in the compact form as

∂〈ksf s〉
∂t

= 〈Psf s〉 − ψ〈εsf s〉 + 〈Jsf s〉 (145)

and
∂〈εsf s〉

∂t
= cε1

〈εsf s〉
〈ksf s〉 〈Psf s〉 − c∗

ε2

〈εsf s〉2

〈ksf s〉 + 〈(Jε)sf s〉 (146)

For PITM, ψ = 1 and c∗
ε2

= csf sε2 is given by Eq. 118 whereas for DES, ψ = FDES

as defined in Eq. 102 and c∗
ε2

= cε2 . The theoretical analysis has been conducted in dif-
ferent cases of turbulent flows and different expressions of the function ψ were devised to
get the equivalence criterion between DES and PITM. As a result, Friess et al. [134] have
demonstrated that the DES method is H-equivalent to the PITM method if the length-scale
LH−DES is computed as

LH−DES = 1

ψ

( 〈ksf s〉
k

)3/2
k3/2

ε
(147)
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where ψ is given by

ψ = 1 + 1

cε1

(cε2 − cε1)

[
1 −

( 〈ksf s〉
k

)cε1 /cε2

]
(148)

provided however that the dissipation-rate is independent on the cutoff wave number κc. If
the cutoff wave number occurs in the inertial zone of the spectrum, it is simply matter then
to see by using Eq. 131 that the equivalent coefficient CH−DES must be given by

CH−DES = 1

β
3/2
0 πψ

(149)

which is now dependent of the ratio
〈
ksf s

〉
/k instead of being the constant numerical coef-

ficient CDES used in standard DES, β0 = 2/(3CK). The length-scale in standard DES is
a simple linear approximation of Eq. 149, called equivalent-DES. To illustrate their results,
these authors have performed the fully turbulent channel flow at the friction Reynolds
number Rτ = 395 as well as the well known test case of the flow over periodic hills at
the Reynolds number Re = 10595 using both the PITM method and the equivalent-DES
method where FDES is here given by

FDES = max

(
1,

k
3/2
sgs /εsgs

LH−DES

)
(150)

These methods were implemented in a framework of a second moment closure accounting
for transport equations of the subfilter-scale stresses (τij )sf s . As a result, both simulations
returned mean velocity and stress profiles that are close from each other, with a similar par-
tition of turbulent energy as shown in Figs. 6–8 of Ref. [134]. These authors then suggested
that the equivalence criteria can be valid beyond the restrictive framework of equilibrium
flows [134].

9 Concluding Remarks

In this paper, we have analyzed the RANS and LES methodologies and we have then pro-
posed a theoretical formalism developed in the spectral space that allows to unify these
two apparently different approaches. Then, considering these various hybrid RANS/LES
methods that have been developed often independently from each other using theoretical
or empirical arguments, we have investigated the main hybrid methods that are currently
used for the simulation of turbulent flows. In particular, we have focused attention on the
very large eddy simulation, the detached eddy simulation, the partially integrated trans-
port modeling method, the partially averaged Navier-Stokes method and the scale adaptive
simulation. The performances and drawback of these methods were mentioned with some
illustrations of turbulent flows encountered in engineering applications. Although these
hybrid methods appear different at a first sight, we have shown that it is still possible to
establish a link between several schools, PITM and EXPANS as well as DES and PITM,
provided some assumptions are made. Overall, the author felt that the choice of applying
a given model rather than another one is not only governed by the intrinsic performances
of the model itself but it depends also of the type of the physical phenomena acting in the
turbulent flow and the answers that are expected to the problem. In that sense, it is clear
that the most appropriate method for one particular application will depend on the expec-
tations of the engineer and the computational resources the applicant is prepared to expend
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on the problem. The computational framework, academic or industrial, is of course very
influential. That being said, the author tends to favor hybrid non-zonal RANS/LES models
evolving continuously from the RANS to LES mode with the same formulation of equations
depending both on the grid-size Δ and the flow characteristics, instead of zonal models for
which the basic formulation changes across the artificial interface separating the RANS and
LES regions where the so called gray zone still poses some overwhelming problems. Mod-
els based on theoretical arguments appear more satisfactory than models built on empirical
or practical arguments, at least in principle, even if an empirical model might return bet-
ter results than a more rational model for one specific test case. The ideal choice would
be to get the larger degree of universality in a model based on a consistent formalism that
works relatively well against a large variety of turbulent flows. An important point that
must be pointed out about hybrid methods is the grid resolution. Considerably coarsening
the mesh for reducing the computational time and memory resource has the effect to move
the cutoff wavenumber κc of the simulation earlier in the inertial zone of the energy spec-
trum. In that case, an higher part of subgrid-scale energy must be modeled in comparison
with the one associated with conventional LES. Then, the turbulent scales that are smaller
than the grid size Δ cannot anymore be considered as locally isotropic because intermedi-
ate scales between the large scales and small scales are included in this part of energy. In
this situation, it seems judicious to apply advanced closure models capable of reproducing a
realistic description of the subgrid flow anisotropy. Hybrid RANS/LES methods are a very
active field of research. This paper tries to bring to light some leading features of the hybrid
methods studied here with both theoretical and practical elements aiming to guide the user
involved in CFD in his choice of the appropriate turbulence model.
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