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The statistical analysis of counts of living organisms brings information about the collective behavior of species (schooling, habitat preference, etc), possibly depending on their biological characteristics (growth rate, reproductive power, survival rate, etc). The negative binomial distribution (NB) is widely used to model such data but the parametric approach is ill-suited from an exploratory point of view. Indeed, the visual distance between parameters is not relevant, because it depends on the chosen parametrization! On the contrary, considering the Riemannian manifold N B(D R ) of negative binomial distributions equipped with the Fisher-Rao metrics, it is possible to compute intrinsic distances between species.

In this work, we focus on geometrical aspects of the χ 2 goodness-of-t (GOF) test for distributions in N B(D R ), in connection with the position of the reference distribution. We show that this position is critical for performances of this test, as Critchley & Marriott (2016) noticed in a dierent setting.

Introduction

In a seminal paper, [START_REF] Rao | Information and accuracy attainable in the estimation of statistical parameters[END_REF] noticed that, equipped with the Fisher information metrics denoted g (•), a family of probabilities depending on p parameters can be considered as a p-dimensional Riemannian manifold. The associated Riemannian (Rao's) distance between the distributions of parameters θ 1 and θ 2 is given by: D R θ 1 , θ 2 := 1 0 γ (t) .g (γ (t)) . γ (t)dt (1) where γ is a segment (minimal length curve) connecting θ 1 = γ (0) to θ 2 = γ (1). As any Riemannian distance, D R is intrinsic (i.e. does not depend on the parametrization used). Following this pioneer work, a number of authors used the Rao's distance to deal with various statistical topics: exploratory methods such as data visualization, clustering and classication, or hypothesis testing problems [START_REF] Menendez | Statistical tests based on geodesic distances[END_REF][START_REF] Cubedo | Hypothesis testing: a model selection approach[END_REF].

We will focus on the latest topic (GOF tests), in the setting of the Riemannian manifold N B(D R ) of negative binomial distributions equipped with this distance. A probability distribution L i will be identied with its coordinates with respect to some chosen parametrization; for instance, we will write L i ≡ φ i , µ i .

Essential elements of Riemannian geometry

Consider a Riemannian manifold M, and a parametric curve α : [a, b] → M. Its rst derivative with respect to time will be denoted α. We will also consider for any θ ∈ M the local norm V g (θ) associated with the metrics g on the tangent space T θ M :

∀ V ∈ T θ M, V g (θ) := V .g(θ).V .
(2) Denition 1. [START_REF] Berger | A Panoramic View of Riemannian Geometry[END_REF] Let γ : [0, 1] → M be a curve traced on M, and D be a connection on M. γ is a geodesic with respect to D if its acceleration D γ(t) γ (t) is null ∀t ∈]0, 1[. In other words, a geodesic has constant speed in the local norm (2):

γ g := γ (•) g (γ (•)) = γ (•) .g (γ (•)) . γ (•).
Geodesics on a p-dimensional Riemannian manifold with respect to the metric connection ∇ are solutions of the Euler-Lagrange equation [START_REF] Berger | A Panoramic View of Riemannian Geometry[END_REF][START_REF] Burbea | Informative geometry of probality spaces[END_REF]:

∀ 1 ≤ k ≤ p, γk (t) + p i,j=1 Γ k i,j γi (t) γj (t) = 0 (3)
where each coecient of ∇ (some Christoel symbol Γ k i,j ) only depends on g. To determine the shortest curve between two points of M, one applies the following result.

Lemma 1. [START_REF] Berger | A Panoramic View of Riemannian Geometry[END_REF] Let M be an abstract surface, and p, q ∈ M. Suppose that α : [a, b] → M is a curve of minimal length connecting p to q. Then, α is a geodesic.

Nevertheless, building the segment connecting L 1 to L 2 is not straightforward, since the lemma above only says that a segment is a geodesic. But a geodesic is not necessarily a segment, since it can include cut points; see [START_REF] Berger | A Panoramic View of Riemannian Geometry[END_REF]Manté & Kidé , 2016) for more details on cut points and their detection.

Denition 2. [START_REF] Berger | A Panoramic View of Riemannian Geometry[END_REF] Let M be a Riemann manifold and x ∈ M. The exponential map of M at x is exp x : W x → M, dened on some neighborhood W x of the origin of T x M by:

exp x (V ) := α B(V ) ( V )
where B (V ) is the projection of V onto the unit ball and α B(V ) is the unique unit-speed geodesic in M such that α B(V

) (0) = x and αB(V ) (0) = B (V ).
Generally, D R L 1 , L 2 cannot be obtained in a closed-form. It must be computed by nding the numerical solution of (3) completed by the boundary conditions

γ (0) = θ 1 , γ (1) = θ 2 .
(4) But geodesics can be as well be computed by solving (3) under the alternative constraints

γ (0) = θ 1 , γ (0) = V ∈ R 2 (5)
where V is the initial velocity of the geodesic; this solution is associated with the exponential map at θ 1 .

Tangent plane approximation and χ 2 GOF tests

Remember that D R has been constructively dened by formula (1); the following proposition shows that it is really a metric, at least locally.

Proposition 1. [START_REF] Berger | A Panoramic View of Riemannian Geometry[END_REF] For small enough, the exponential map at θ 0 is a local dieomorphism, such that exp θ 0 (B (0, )) = B R θ 0 , (metric balls of radius of T θ 0 M and M, respectively).

The maximal admissible value of

(named injectivity radius of M at θ 0 ) is denoted ¯ θ 0 . Considering the rst-order approximation of D R we can write, if θ is close enough to θ 0 : D R L θ 0 , L θ ≡ D R θ 0 , θ ≈ t (θ 0 -θ) .g (θ 0 ) . (θ 0 -θ) ≡ θ 0 -θ g θ 0 . (6) Thus, if D R L θ 0 , L θ = ≤ ¯ θ 0 is small enough, the metric sphere S R θ 0 , := θ ∈ M : D R θ 0 , θ =
can be isometrically identied with the centered ellipsoid E θ 0 ( ) drawn on T θ 0 M. This is illustrated on Figure 1, where we displayed exp θ (E θ ( )) = S R (θ, ) for NB distributions of parameters θ 1 = {0.7767, 11.2078} (yellow point, a rather aggregative distribution) and θ 2 = {10., 9.12624} (red point, a bell-shaped distribution). We can see on Figure 1 that for = 0.3 and = 1.5, the geodesics emanating from θ 2 draw circles, while the situation is very dierent for θ 1 : for = 1.5, the ball is dramatically anisotropic, very far from an ellipse while for = 0.3, the tangent approximation (6) seems reasonable. Consider now the application P : Θ → M associating to θ the probability L θ . Suppose that the classical Fréchet-Darmois-Cramer-Rao (FDCR) assumptions [START_REF] Rao | Information and accuracy attainable in the estimation of statistical parameters[END_REF](Rao , , 1965, chapter 5) , chapter 5) are fullled by the family ≤ ¯ θ 0 , because of the Mahalanobis-like relationship (6), P (E θ 0 ( )) can be confused with the metric sphere of radius centered on L θ 0 . But ¯ θ 0 is unknown in general; so, what if θ 0 -θ g θ 0 is too large ¯ θ 0 ? This is an important issue because of the χ 2 GOF test (see for instance [START_REF] Rao | Information and accuracy attainable in the estimation of statistical parameters[END_REF][START_REF] Menendez | Statistical tests based on geodesic distances[END_REF][START_REF] Cubedo | Hypothesis testing: a model selection approach[END_REF] associated with formula (6): if θ N is the estimation obtained from some

N-sample of L θ 0 , N D 2 R θ 0 , θ N should obey χ 2 (p) , asymptotically.

The geometry of N B(D R )

There is a number of parametrizations for the negative binomial distribution; because of its orthogonality, we chose the one used by [START_REF] Chua | Test of mispecication with application to Negative Binomial distribution[END_REF]:

P (X = j; (φ, µ)) = φ + j -1 j µ µ + φ j 1 - µ µ + φ φ , j ≥ 0 (7) (φ, µ) ∈ R + × R + ;
here, µ is the mean of the distribution. D R L 1 , L 2 cannot be obtained in a closed-form but must be computed by nding the numerical solution of a the Euler-Lagrange equation (3), completed in the parametrization (7) by the boundary conditions

γ (0) = φ 1 , µ 1 , γ (1) = φ 2 , µ 2 . (8)
Geodesics can be as well be computed by solving (3) under the alternative constraints

γ (0) = φ 1 , µ 1 , γ (0) = V ∈ R 2 (9)
where V is the initial velocity of the geodesic; this solution is associated with the exponential map at φ 1 , µ 1 . The manifold N B(D R ) was considered by Manté & Kidé (2016) for computing coordinates-free distances between marine species characterized by count distributions. In that work, we mainly focused on numerical problems met in approximating D R L 1 , L 2 : this is not an easy task, because of the possible presence of cut points on geodesics (Manté & Kidé , 2016). A visual distance between species was afterwards obtained through Multidimensional Scaling (MDS) of the Rao's distance table.

Plotting χ 2 metric spheres around counts distributions

In this work, our purpose is more geometrical, in connection with GOF tests. Consider some θ 0 = φ 0 , µ 0 ∈ Θ := R + × R + and, for α < 1, the ellipsoid E θ 0 (α, N ) := E θ 0 χ 2 (2) (α) /N , where N is the sample size and χ 2

(2) (α) denotes the quantile of order α of χ 2 (2) (see for instance Figure 4). Is P (E θ 0 (α, N )) yet a metric sphere for usual values of α (0.1, 0.5, 0.95,...) and any L θ 0

? If the answer is negative for some θ 0 , α ∈ Θ×]0, 1[, the GOF test will be anisotropic, i.e. there will be a pair of probabilities L θ , L θ with identical risk, such that D R L θ 0 , L θ < D R L θ 0 , L θ . We put in limelight ve very dierent test distributions:

• BSh (for bell-shaped) is N B (10, 144.3) .193, 87.268) is the mean of a bivariate distribution tting the parameters of nonaggregative species found in a specic habitat

• Moy = N B (1
• MED=N B (0.7767, 11.2078) is the spatial median [START_REF] Sering | Nonparametric multivariate descriptive measures based on spatial quantiles[END_REF] of the same sample of parameters

• Agreg=N B (0.01, 0.1443) corresponds to a theoretical aggregative species (borderline case: φ → 0 + )

• Boundary=N B (6, 0.05), designed for investigating the case µ → 0 + (second borderline case).

The rst four distributions were already exemplied in Manté et al. (2016, Appendix 2).

Just as [START_REF] Critchley | Computing with Fisher geodesics and extended exponential families[END_REF], we xed the sample size to N = 100; then, for each one of the test distributions above, we determined a set SE θ 0 (α, N ) of 20 regularly-sampled points upon the ellipsoid E θ 0 (α, N ) ⊂ Θ, for α ∈ {0.1, 0.99}. By regularly-sampled, we mean that the arc length between two neighbor points should be Length (E θ 0 (α, N )) /20. Afterwards, for each pair on points θ 1 , θ 2 of each SE θ 0 (α, N ), D R θ 1 , θ 2 was computed by solving (3) under (8); in addition each D R θ 1 , θ 0 was computed too. This gave rise to a 21 × 21 table ∆ θ 0 , α, N submitted to MDS.

The reader can examine on Figures 2&3 several sampled metric spheres obtained through MDS. On these plots, the 21 st point corresponds to the reference L θ 0 , and should occupy the center of the circle; we superimposed the true circle obtained through MDS from the regularly sampled circle, with N = 100.

For α = 0.1, the representation was always rather good (even in the case of Agreg: see Figure 3). With a lower condence level (α = 0.99), the spheres are more or less deformed (see the right panel of Figure 2) , or 3 that these points are exactly those which appear on an arc of ellipsoid while the other points collapse, forming two clusters: {2, 4, 5}, associated with the µ = 0 borderline, and {8, • • • , 14}, associated with the φ = 0 borderline. In fact, as [START_REF] Critchley | Computing with Fisher geodesics and extended exponential families[END_REF] noticed, problems are met near the frontier Θ -Θ . Incidentally, a similar phenomenon happened in large neighbohoods of the MED distribution (see Figure 1).

Conclusions

We have shown that:

• the critical locus of level 1 -α associated with the GOF test L θ ?

= L θ 0 is an ellipsoid E θ 0 (α) ⊂ Θ which depends (centre, eccentricity) on θ 0

• the image of E θ 0 (α) under P : Θ → N B(D R ) associating to θ the probability L θ is theoretically a metric sphere

• P (E θ 0 (α)) can be considered as spherical only when E θ 0 (α) is far enough from the frontier of Θ (see Figure 1, or [START_REF] Critchley | Computing with Fisher geodesics and extended exponential families[END_REF]).
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 1 Figure 1: Sampled metric balls (50 geodesics) of radius 1.5 (blue curves) and 0.35 (white contours) for two distributions from N B(D R ); see comments in the text.
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 2 Figure 2: The case of the MED distribution. Left (resp. right) panel: representation through MDS of P (SE M ED (0.1, 100)) (resp. P (SE M ED (0.99, 100))).
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 3 Figure 3: The case of Agreg. Left (resp. right) panel: representation of P (SE Agreg (0.1, 100)) (resp. P (SE Agreg (0.99, 100))).
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 4 Figure 4: Plot of the Riemannian measure inside SE Agreg (0.99, 100) (truncated ellipsoid); the reference distribution θ Agreg is represented by the black point.