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Abstract

The statistical analysis of counts of living organisms brings information about the collective behavior of
species (schooling, habitat preference, etc), possibly depending on their biological characteristics (growth
rate, reproductive power, survival rate, etc). The negative binomial distribution (NB) is widely used to
model such data but the parametric approach is ill-suited from an exploratory point of view. Indeed, the
�visual� distance between parameters is not relevant, because it depends on the chosen parametrization! On
the contrary, considering the Riemannian manifold NB(DR) of negative binomial distributions equipped
with the Fisher-Rao metrics, it is possible to compute intrinsic distances between species.
In this work, we focus on geometrical aspects of the χ2 goodness-of-�t (GOF) test for distributions in
NB(DR), in connection with the position of the reference distribution. We show that this position is critical
for performances of this test, as Critchley & Marriott (2016) noticed in a di�erent setting.
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1. Introduction

In a seminal paper, Rao (1945) noticed that, equipped with the Fisher information metrics denoted g (•), a
family of probabilities depending on p parameters can be considered as a p-dimensional Riemannian manifold.
The associated Riemannian (Rao's) distance between the distributions of parameters θ1 and θ2 is given by:

DR
(
θ1, θ2

)
:=

∫ 1

0

√
γ̇′ (t) .g (γ (t)) .γ̇ (t)dt (1)

where γ is a segment (minimal length curve) connecting θ1 = γ (0) to θ2 = γ (1). As any Riemannian
distance, DR is intrinsic (i.e. does not depend on the parametrization used). Following this pioneer work, a
number of authors used the Rao's distance to deal with various statistical topics: exploratory methods such
as data visualization, clustering and classi�cation, or hypothesis testing problems (Menendez et al. , 1995;
Cubedo & Oller , 2002).
We will focus on the latest topic (GOF tests), in the setting of the Riemannian manifold NB(DR) of negative
binomial distributions equipped with this distance. A probability distribution Li will be identi�ed with its
coordinates with respect to some chosen parametrization; for instance, we will write Li ≡

(
φi, µi

)
.

2. Essential elements of Riemannian geometry

Consider a Riemannian manifold M, and a parametric curve α : [a, b]→M. Its �rst derivative with respect
to �time� will be denoted α̇. We will also consider for any θ ∈ M the local norm ‖V ‖g (θ) associated with
the metrics g on the tangent space TθM :

∀V ∈ TθM, ‖V ‖g (θ) :=
√
V ′.g(θ).V . (2)

De�nition 1. (Berger , 2003) Let γ : [0, 1] → M be a curve traced on M, and D be a connection on M.
γ is a geodesic with respect to D if its acceleration Dγ̇(t)γ̇ (t) is null ∀t ∈]0, 1[. In other words, a geodesic

has constant speed in the local norm (2):

‖γ̇‖g := ‖γ̇ (•)‖g (γ (•)) =
√
γ̇′ (•) .g (γ (•)) .γ̇ (•).



Geodesics on a p-dimensional Riemannian manifold with respect to the metric connection ∇ are solutions of
the Euler-Lagrange equation (Berger , 2003; Burbea , 1986):

∀ 1 ≤ k ≤ p, γ̈k (t) +

p∑
i,j=1

Γ ki,j γ̇i(t) γ̇j(t) = 0 (3)

where each coe�cient of ∇ (some �Christo�el symbol� Γ ki,j) only depends on g. To determine the shortest
curve between two points of M, one applies the following result.

Lemma 1. (Berger , 2003) Let M be an abstract surface, and p, q ∈ M. Suppose that α : [a, b] → M is a
curve of minimal length connecting p to q. Then, α is a geodesic.

Nevertheless, building the segment connecting L1 to L2 is not straightforward, since the lemma above only
says that a segment is a geodesic. But a geodesic is not necessarily a segment, since it can include cut points;
see (Berger , 2003; Manté & Kidé , 2016) for more details on cut points and their detection.

De�nition 2. (Berger , 2003) Let M be a Riemann manifold and x ∈M. The exponential map of M at x
is expx : Wx →M, de�ned on some neighborhood Wx of the origin of TxM by:

expx (V ) := αB(V ) (‖V ‖)

where B (V ) is the projection of V onto the unit ball and αB(V ) is the unique unit-speed geodesic in M such
that αB(V ) (0) = x and α̇B(V ) (0) = B (V ).

Generally, DR
(
L1,L2

)
cannot be obtained in a closed-form. It must be computed by �nding the numerical

solution of (3) completed by the boundary conditions{
γ (0) = θ1, γ (1) = θ2

}
. (4)

But geodesics can be as well be computed by solving (3) under the alternative constraints{
γ (0) = θ1, γ̇ (0) = V ∈ R2

}
(5)

where V is the initial velocity of the geodesic; this solution is associated with the exponential map at θ1.
3. Tangent plane approximation and χ2 GOF tests

Remember that DR has been constructively de�ned by formula (1); the following proposition shows that it
is really a metric, at least locally.

Proposition 1. (Berger , 2003) For % small enough, the exponential map at θ0 is a local di�eomorphism,
such that expθ0 (B (0, %)) = BR

(
θ0, %

)
(metric balls of radius % of Tθ0M and M, respectively).

The maximal admissible value of % (named injectivity radius of M at θ0) is denoted %̄
(
θ0
)
. Considering the

�rst-order approximation of DR we can write, if θ is close enough to θ0:

DR

(
Lθ

0

,Lθ
)
≡ DR

(
θ0, θ

)
≈
√
t (θ0 − θ) .g (θ0) . (θ0 − θ) ≡

∥∥θ0 − θ∥∥
g

(
θ0
)
. (6)

Thus, ifDR

(
Lθ

0

,Lθ
)

= % ≤ %̄
(
θ0
)
is small enough, the metric sphere SR

(
θ0, %

)
:=
{
θ ∈M : DR

(
θ0, θ

)
= %
}

can be isometrically identi�ed with the centered ellipsoid Eθ0 (%) drawn on Tθ0M. This is illustrated on Fig-
ure 1, where we displayed expθ (Eθ (%)) = SR (θ, %) for NB distributions of parameters θ1 = {0.7767, 11.2078}
(yellow point, a rather aggregative distribution) and θ2 = {10., 9.12624} (red point, a bell-shaped distribu-
tion). We can see on Figure 1 that for % = 0.3 and % = 1.5, the geodesics emanating from θ2 draw circles,
while the situation is very di�erent for θ1 : for % = 1.5, the ball is dramatically anisotropic, very far from an
ellipse while for % = 0.3, the tangent approximation (6) seems reasonable.
Consider now the application P : Θ → M associating to θ the probability Lθ. Suppose that the classical
Fréchet- Darmois- Cramer- Rao (FDCR) assumptions (Rao , 1945, 1965, chapter 5) are ful�lled by the family



Figure 1: Sampled metric balls (50 geodesics) of radius 1.5 (blue curves) and 0.35 (white contours)

for two distributions from NB(DR); see comments in the text.
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{
Lθ : θ ∈ Θ

}
and that θ̂ is an unbiased �rst-order e�cient estimator of θ. Then, g

(
θ0
)
≈ V

(
θ̂
)−1

and,

if % ≤ %̄
(
θ0
)
, because of the Mahalanobis-like relationship (6), P (Eθ0 (%)) can be confused with the metric

sphere of radius % centered on Lθ
0

. But %̄
(
θ0
)
is unknown in general; so, what if

∥∥θ0 − θ∥∥
g

(
θ0
)
is too large(

� %̄
(
θ0
))
? This is an important issue because of the χ2 GOF test (see for instance Rao , 1945; Menendez

et al. , 1995; Cubedo & Oller , 2002) associated with formula (6): if θ̂N is the estimation obtained from some

N-sample of Lθ
0

, N D2
R

(
θ0, θ̂N

)
should obey χ2

(p), asymptotically.

4. The geometry of NB(DR)
There is a number of parametrizations for the negative binomial distribution; because of its orthogonality,
we chose the one used by Chua & Ong (2013):

P (X = j; (φ, µ)) =

(
φ+ j − 1

j

) (
µ

µ+ φ

)j (
1− µ

µ+ φ

)φ
, j ≥ 0 (7)

(φ, µ) ∈ R+ × R+; here, µ is the mean of the distribution. DR
(
L1,L2

)
cannot be obtained in a closed-form

but must be computed by �nding the numerical solution of a the Euler-Lagrange equation (3), completed in
the parametrization (7) by the boundary conditions{

γ (0) =
(
φ1, µ1

)
, γ (1) =

(
φ2, µ2

)}
. (8)

Geodesics can be as well be computed by solving (3) under the alternative constraints{
γ (0) =

(
φ1, µ1

)
, γ̇ (0) = V ∈ R2

}
(9)

where V is the initial velocity of the geodesic; this solution is associated with the exponential map at
(
φ1, µ1

)
.

5. Plotting χ2 metric spheres around counts distributions



Figure 2: The case of the MED distribution. Left (resp. right) panel: representation through MDS

of P (SEMED (0.1, 100)) (resp. P (SEMED (0.99, 100))).
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The manifold NB(DR) was considered by Manté & Kidé (2016) for computing coordinates-free distances
between marine species characterized by count distributions. In that work, we mainly focused on numerical
problems met in approximating DR

(
L1,L2

)
: this is not an easy task, because of the possible presence of

cut points on geodesics (Manté & Kidé , 2016). A �visual� distance between species was afterwards obtained
through Multidimensional Scaling (MDS) of the Rao's distance table.
In this work, our purpose is more geometrical, in connection with GOF tests. Consider some θ0 =

(
φ0, µ0

)
∈

Θ := R+ × R+ and, for α < 1, the ellipsoid Eθ0 (α,N) := Eθ0
(
χ2
(2) (α) /N

)
, where N is the sample size and

χ2
(2) (α) denotes the quantile of order α of χ2

(2) (see for instance Figure 4). IsP (Eθ0 (α,N)) yet a metric sphere

for usual values of α (0.1, 0.5, 0.95,...) and any Lθ
0

? If the answer is negative for some
(
θ0, α

)
∈ Θ×]0, 1[,

the GOF test will be �anisotropic�, i.e. there will be a pair of probabilities
(
Lθ,Lθ

)
with identical risk, such

that DR

(
Lθ

0

,Lθ
)
< DR

(
Lθ

0

,Lθ
)
. We put in limelight �ve very di�erent test distributions:

• �BSh� (for �bell-shaped�) is NB (10, 144.3)

• �Moy� = NB (1.193, 87.268) is the mean of a bivariate distribution �tting the parameters of non-
aggregative species found in a speci�c habitat

• �MED�=NB (0.7767, 11.2078) is the spatial median (Ser�ing , 2004) of the same sample of parameters

• �Agreg�=NB (0.01, 0.1443) corresponds to a theoretical aggregative species (borderline case: φ→ 0+ )

• �Boundary�=NB (6, 0.05), designed for investigating the case µ→ 0+ (second borderline case).

The �rst four distributions were already exempli�ed in Manté et al. (2016, Appendix 2).
Just as Critchley & Marriott (2016), we �xed the sample size to N = 100; then, for each one of the
test distributions above, we determined a set SEθ0 (α,N) of 20 regularly-sampled points upon the ellipsoid
Eθ0 (α,N) ⊂ Θ, for α ∈ {0.1, 0.99}. By �regularly-sampled�, we mean that the arc length between two
neighbor points should be Length (Eθ0 (α,N)) /20. Afterwards, for each pair on points

{
θ1, θ2

}
of each

SEθ0 (α,N), DR
(
θ1, θ2

)
was computed by solving (3) under (8); in addition each DR

(
θ1, θ0

)
was computed

too. This gave rise to a 21× 21 table ∆
(
θ0, α,N

)
submitted to MDS.

The reader can examine on Figures 2&3 several sampled metric �spheres� obtained through MDS. On these
plots, the 21st point corresponds to the reference Lθ

0

, and should occupy the center of the circle; we super-
imposed the �true� circle obtained through MDS from the regularly sampled circle, with N = 100.
For α = 0.1, the representation was always rather good (even in the case of Agreg: see Figure 3). With a
lower con�dence level (α = 0.99), the spheres are more or less deformed (see the right panel of Figure 2) , or



Figure 3: The case of Agreg. Left (resp. right) panel: representation of P (SEAgreg (0.1, 100)) (resp.
P (SEAgreg (0.99, 100))).
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squarely destroyed in the case of borderline distributions like �Agreg� or �Boundary� (see the right panel of
Figure 3).

Figure 4: Plot of the Riemannian measure inside SEAgreg (0.99, 100) (truncated ellipsoid); the ref-

erence distribution θAgreg is represented by the black point.

Let's examine a little further the case of �Agreg�. On Figure 4 we plotted the Riemannian measure dVM (θ) :=√
det (gi j (θ)) dθ1 · · · dθp associated with the metrics g, for values inside EAgreg (0.99, 100) cut by the axes

φ = 0 and µ = 0. The points far from the frontiers are labeled by {1, 15, · · · , 20}; we can see on the right
panel of Figure 3 that these points are exactly those which appear on an arc of ellipsoid while the other points



collapse, forming two clusters: {2, 4, 5}, associated with the µ = 0 borderline, and {8, · · · , 14}, associated
with the φ = 0 borderline. In fact, as Critchley & Marriott (2016) noticed, problems are met near the frontier(

Θ− Θ̊
)
. Incidentally, a similar phenomenon happened in large neighbohoods of the �MED� distribution

(see Figure 1).

6. Conclusions

We have shown that:

• the critical locus of level 1−α associated with the GOF test Lθ̂
?
= Lθ

0

is an ellipsoid Eθ0 (α) ⊂ Θ which
depends (centre, eccentricity) on θ0

• the image of Eθ0 (α) under P : Θ → NB(DR) associating to θ the probability Lθ is theoretically a
metric sphere

• P (Eθ0 (α)) can be considered as spherical only when Eθ0 (α) is �far enough� from the frontier of Θ

(see Figure 1, or Critchley & Marriott (2016)).
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