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Abstract

A central aim of current materials studies is to develop a predictive modeling that incorporates dislocation-based plastic activity

and microstructural evolution. Phase-field method has emerged as a powerful tool for addressing this issue, providing us with a

versatile variational framework able to describe the movement of dislocations in interaction with underlying microstructures. In

this article, a three-dimensional phase-field model of dislocations (PFMD) is developed with a discretization scheme that explicitly

captures the face-centered cubic (FCC) geometry. Within this framework, continuous fields are discretized in a way that allows

to consider strongly heterogeneous materials and sharp interfaces (free surfaces, stiffer precipitates, pores...) without generating

numerical artifacts. The PFMD exposed in this work reproduces dislocation activity in FCC geometry, their reactions, and a

particular attention is devoted to the dislocation core behaviors in order to remove effects present in prior generic PFMDs that can

appear to be spurious for micron-scale applications. This allows us to rigorously reproduce the dislocation’s velocity with respect

to experimental friction coefficients. The model is discussed and illustrated by applications standing at different space-scales that

show how dislocations operate with microstructural heterogeneities such as free-surfaces (cylindrical nanopillar) and voids (pore

under isostatic pressure).

Keywords: Dislocations, Phase-Field, Numerical Modeling, Nanopillar, Pore

1. Introduction

The macroscopic mechanical behavior of heterogeneous metallic alloys results from the evolution of its mi-

crostructure (solid precipitates, pore network...) generally coupled to microscopic phenomena (dislocations, micro-

cracks...). Numerically however, at a space and time-scale of the industrial processes, it is impossible to reproduce

this behavior without introducing constitutive laws that partially lack physically based justifications [1, 2]. As a con-

sequence, these models can fail to accurately describe and predict the evolution of a given system under specific

mechanical loads [3].
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A better understanding of the mechanical behaviors of heterogeneous materials can be achieved by explicitly

taking into account the crystalline defects that are at the origin of these behaviors, in particular dislocations. When the

typical distance between dislocations is much smaller than the characteristic length-scale of internal heterogeneities,

dislocations can be introduced at a continuum level using dislocation densities [4, 5]. However, the development of

a crystal plasticity model based on a rigorous transition between discrete dislocations and continuous densities is a

challenging task despite recent advances [6, 7].

When the average distance between dislocations is of the order or larger than other internal length-scales (for

example, the average distance between internal interfaces), plasticity has to be accounted for by considering individual

dislocations. In this context, a relevant model should include the interactions between dislocations ans other defects

(precipitates, interfaces, voids...) as well as the coupled dynamics of these defects.

Since more than a decade, Phase-Field Models (PFMs) have emerged as very powerful methods to reproduce,

within a well controlled variational formalism, the out-of-equilibrium evolution of microstructures. Therefore, it is of

great interest to develop a PFM formulation of dislocation glide (PFMD) that will permit, contrary to actual Discrete

Dislocation Dynamics (DDD) techniques [8, 9], a straightforward coupling between dislocations and microstructural

evolution [10–14]. However, PFMDs can still face technical difficulties to correctly couple the dislocations with

strong elastic heterogeneities [15]. In addition, because of their continuous formulations, PFMDs offer multiscale

possibilities for which relevant numerical implementations must be set.

For instance, when the issue is to study the core structure of dislocations, a subatomic refined mesh is required in

order to properly reproduce the continuous atomic-scale variations of the core profile [16–19]. In one such situation,

the underlying symmetry of the mesh can arbitrarily be chosen since, if the grid spacing is small enough, it does

not interfere with the physical symmetry of the PFMD. However, due to the required subatomic grid spacing, the

size of the simulated systems that can be afforded is necessarily limited. Alternatively, one could consider a PFMD

numerical implementation that can potentially stand at the micron-scale. In this case, a non-refined mesh would

have to be considered in order to reach relevant space scales. However, its intrinsic symmetry can then detrimentally

interfere with that of the crystalline materials.

Because face-centered cubic (FCC) crystallographic symmetry is very common, it is crucial to develop a numerical

scheme that incorporates the specificity of this symmetry (glide planes, dislocation line directions and characters...)

whatever the scale used for the numerical implementation. Our solution to this constraint is to adopt a numerical grid

which is always homothetic to crystalline symmetry such that FCC materials can be described irrespective of the mesh

refinement. In this work, this issue is addressed through the elaboration of a three-dimensional PFMD, considering

unambiguous free surfaces (with non-interpolated fields) on an explicit FCC grid. Due to its continuous formulation,

the present model is expected to propose a numerical framework in which other kinds of continuous fields can also be

introduced (diffusion, phase transformations...).

This paper is organized as follows: We first describe the elastic model and its numerical implementation that

explicitly captures the FCC underlying symmetry. Then, we implement a PFMD that correctly reproduces the coplanar
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dislocation reactions in this geometry. The dynamics of the model are modified which allows us to obtain a better

description of the dislocations’ physical properties. Finally, we validate the model and illustrate its potentiality when

dislocations operate in the presence of heterogeneities made of voids and free surfaces.

2. Elasticity

In all PFMDs, the starting point is a continuum material whose constitutive behavior is based on linear elasticity

[10–14]. In this section, we begin by recalling this background and describe how it is numerically implemented to

account for the underlying FCC symmetry where microstructural heterogeneities may develop.

2.1. Elastic model

Within linear elasticity [20], the total free elastic energy of a material is defined by the following functional:

Fel =

∫

V

fel

{

εi j(r)
}

dV, (1)

with V its total volume and fel the free elastic energy density given by:

fel(r) =
1

2
Ci jkl(r)εi j(r)εkl(r) − σA

i jεi j(r), (2)

where Ci jkl are the elastic tensor components and εi j are the elastic strains defined at position r. The components σA
i j

account for the applied stress. In the present work, we consider small strains:

εi j(r) =
βi j(r) + β ji(r)

2
, (3)

where βi j denotes the displacement-gradients given by:

βi j(r) =
∂ui(r)

∂X j

, (4)

with ui and X j the displacements and reference positions respectively.

Then, displacements ui are decomposed into a homogeneous part ūi and a heterogeneous part ∆ui such that ui =

ūi + ∆ui. The homogeneous part is defined by ūi(X j) = ǫi jX j and reflects the loading conditions through the average

strains ǫi j =
1
V

∫

V

εi j(r) dV (hard driving).

In classical PFMD, dislocations evolve under mechanical equilibrium conditions while their motion is assumed

to result from dissipative frictional phenomena (phonon drag, interactions with obstacles...). To do so, the elastic

fields (displacements, strains, stresses) are instantaneously relaxed at each time step of the dislocation motion. For a

strongly heterogeneous material, the numerical strategy that must be considered for the mechanical equilibrium to be

efficiently reached is a study on its own which is not addressed in the present paper. Here, the purpose lies rather in

the way we can discretize the continuous fields on a numerical grid whose intrinsic symmetry does not detrimentally
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interfere with that of an FCC crystalline material (provided the grid spacing is equal to or higher than the interatomic

distance).

Therefore, we decide to consider a simple dissipative scheme on the elastic fields that makes dislocations evolve

within a quasi-static environment. For this, the elastic energy is minimized using the following dissipative equation:

∂∆ui(r, t)

∂t
= −M

δFel

δ∆ui(r, t)
, (5)

where M is a dissipative coefficient and Fel the functional given in Eq. (1). When applied stresses σA
i j

are considered

(soft driving), we make average strains ǫi j to converge toward the corresponding equilibrium values through the

following dissipative scheme:
∂ǫi j(t)

∂t
= −Mǫ

δFel

δǫi j(t)
, (6)

where Mǫ denotes another dissipative coefficient. In order for the quasi-static hypothesis to be granted, M and Mǫ are

chosen high enough so that the characteristic time-scale of the dissipation-driven elastic minimization is much smaller

than that of the dislocation motion (see subsection 3.2).

In elastically inhomogeneous systems, the way the mechanical equilibrium is set could be improved by the use

of more efficient numerical solvers (e.g. Fourier space formulation [21–23] or non-linear conjugate gradient methods

[24]). This will be addressed in a separate work.

2.2. Numerical implementation

The numerical implementation of the actual model requires two important features: (i) the mesh must satisfy

the face-centered cubic (FCC) symmetry, and (ii) the components of a unique physical quantity must be defined at

the same point. Therefore, whatever the space-scale used in the PFMD, the first point guaranties that the physi-

cal phenomena will necessarily respect the underlying crystallographic symmetry. The second point guaranties that

strong microstructural elastic heterogeneities can be easily introduced without requiring a re-meshing procedure or

the extrapolation of some physical quantities. This point will be discussed in more detail in subsection 2.3.

A primary FCC grid is built as displayed in Fig. 1.a, by considering four embedded simple cubic (SC) grids that

are subsequently referenced with the colorized superscripts I, II, III and IV respectively (see colors on-line). As the

calculation of the energy density requires the displacement-gradients (see Eqs. (1–4)), we localize the displacements

ui on the nodes of the primary FCC grid and the displacement-gradients βi j on the octahedral sites constituting a

secondary staggered FCC grid whose nodes actually correspond to the centers of the four SC grids, as shown in Fig.

1.b. With this scheme, the displacement-gradients βi j, the strains εi j and the energy densities fel are all defined on the

octahedral sites constituting the secondary FCC grid.

To highlight in more detail the way we calculate the elastic energy density, we focus on the elementary cell of

the FCC lattice displayed in Fig. 2. We only reproduce one octahedral site in the center of a cubic cell of the first

SC grid. The first diagonal of the octahedron (in red) represents a length element dX1 of length d aligned with the

first direction of space. The second diagonal (in green) stands for dX2 and the third (in blue) for dX3. The nodes are

4



ACCEPTED MANUSCRIPT

A. Ruffini, Y. Le Bouar and A. Finel / Journal of the Mechanics and Physics of Solids 00 (2017) 1–32 5

I

II

III

IV

I

II

IV

a) b)
I

II

III

IV

I I

I I

I I

I

II

III

IV

I I

I I

I I

III

Figure 1. a) Primary FCC grid built with four embedded SC grids referenced with the colorized superscripts I, II, III and IV respectively (see

colors on-line). b) Secondary staggered FCC grid formed by the octahedral sites of the primary FCC grid. The nodes of the secondary grid actually

correspond to the centers of the four SC grids that constitute the primary grid, with consistent nomenclature.

characterized by their displacements ui, indexed in space using the alphanumerical notation a(+1), b(+1) and c(+1),

and colorized/superscripted according to their corresponding underlying SC grid. It may be noted that ui = xi − Xi

with xi and Xi as the current and reference positions of a node respectively. One can also extract the displacements of

the octahedral site uave
i

by taking the average displacements of the six face-centered nodes.

ui (a,b,c)

d

ui (a+1,b,c)

ui (a,b,c+1) ui (a+1,b,c+1)

ui (a,b+1,c) ui (a+1,b+1,c)

ui (a,b+1,c+1) ui (a+1,b+1,c+1)

ui  (a,b,c)

ui  (a+1,b,c)

ui   (a,b,c)

ui   (a,b+1,c)

ui  (a,b,c)

ui  (a,b,c+1)

1

23

4

5

6

I I

I I

I I

I I

II

II

III

III

IV

IV

Figure 2. FCC unit cell where nodes supporting the displacements ui are identified by discs colorized/superscripted according to their underlying

SC grid (see colors on-line). The octahedral site is located at the intersection of its three diagonals that also constitute three length elements dX j of

length d. Squares are the actual sites where the displacement-gradients are calculated: βi1 in red, βi2 in green, and βi3 in blue.

To compute the displacement-gradients βi j defined in Eq. (4), a centered finite difference calculation can be

implemented using the following discretization scheme:

βi1 =
∂ui

∂X1

≡
uII

i
(a + 1, b, c) − uII

i
(a, b, c)

d
, (7)

βi2 =
∂ui

∂X2

≡
uIII

i
(a, b + 1, c) − uIII

i
(a, b, c)

d
, (8)
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βi3 =
∂ui

∂X3

≡
uIV

i
(a, b, c + 1) − uIV

i
(a, b, c)

d
. (9)

The issue with this scheme is that it introduces oscillating deformed modes with zero elastic energy. For instance,

considering ui ∝ cos
(

π
(

X j ± Xk

))

leads with Eqs. (7–9) to fel = 0 unlike what it is theoretically (and physically)

expected. Actually, this pitfall is not due to the adoption of a centered difference scheme. It is due to the fact that the

previous scheme only involves the FCC second-neighbor nodes.

It is well-known that the first-neighbor connectivity of the FCC lattice, which includes first-neighbor equilateral

triangles and regular tetrahedrons, may lead to important frustration effects. For example, in the domain of statistical

mechanics, the correct modeling of the Ising model for an ordering alloy that lies on the FCC lattice requires the use

of a model that incorporates all the many-body correlations included within the tetrahedrons and octahedrons, even in

the simplest case when only first-neighbor interatomic interactions are considered [25, 26].

In the present context, where elastic relaxations are involved, we restore the first-neighbor connectivity by splitting

the βi j components along the diagonals of the octahedron by using the average displacements of the octahedral site

uave
i

. In Fig. 2, the βi1 components are identified by the red squares labeled 1 and 2, βi2 by the green labeled 3 and

4, and βi3 by the blue labeled 5 and 6. Thus, octahedrons are divided into eight tri-rectangular tetrahedrons leading

to eight ways of computing the elastic energy density. For example, when we consider the tetrahedron delimited by

edges 1, 3 and 6, we obtain:

βi1 ≡
uave

i
− uII

i
(a, b, c)

d/2
, (10)

βi2 ≡
uave

i
− uIII

i
(a, b, c)

d/2
, (11)

βi3 ≡
uIV

i
(a, b, c + 1) − uave

i

d/2
, (12)

allowing to compute the displacement-gradient tensor and therefore the elastic energy of the corresponding tetrahe-

dron. This scheme allows the first/second-neighbor connectivity to be granted since first/second-neighbor displace-

ments contribute to uave
i

and therefore to the numerical definition of the displacement gradient βi j. Repeating this

procedure for the seven other tri-rectangular tetrahedrons and summing-up the pondered energy contributions of the

eight tetrahedrons finally leads to the elastic energy density that is considered on the octahedral site. The present

scheme does not lead to the existence of zero-energy deformed modes.

Note that even though the discretized procedure has been highlighted considering the octahedral site constituting

the center of the first SC grid, we could also have used octahedral sites supported by SC grids II, III and IV for which,

in Eq. (10 – 12), other nodes supporting the displacement field would have to be involved.

In addition to the initial requirements, this scheme also allows us to use the same number of sites for all the physical

quantities considered thus far. Computationally, this enables us to define these quantities with tables of identical size

without having to consider empty cells. This provides an efficient way for the computer to access the values, which

decreases the numerical cost as well as minimizing the required memory. Having to consider FCC grids is also an
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advantage when the time comes to define the discretized forms of the spatial differential operators (see Appendix A).

Finally, the discretized formulation of the total elastic energy Fel given Eq. (1) writes:

Fel =
∑

octa. sites

fel × V
e f f
octa, (13)

where V
e f f
octa = d3/4 stands for the effective volume of an octahedral site and fel is the elastic energy density expressed

with the discretized form of the βi j components that explicitly involve ui. Thus, by taking the functional derivative of

F̃el = Fel/(Kd3), with K the bulk modulus, the discretized formulation of Eq. (5) is:

∂∆ũi

(

X̃ j, t̃
)

∂t̃
= − M̃

4

∑

octa. sites

∂ f̃el

∂∆ũi

(

X̃ j, t̃
) , (14)

where tildes denote the reduced quantities ũi = ui/a0, X̃ j = X j/d, f̃el = s2 fel/K, M̃ = M/(La2
0
) and t̃ = t/t0 with

t0 = s2/(KL). To define these reduced quantities, the scale factor s = d/a0 is introduced and accounts for the ratio

between the numerical grid spacing d and the physical FCC lattice parameter a0. It may also be noted that the reduced

mobility M̃ and time unit t0 involve a mobility coefficient L which will be related below to the dislocation motion

(see subsection 3.1). In order for the quasi-static hypothesis to be granted (the characteristic time-scale of the elastic

minimization is much smaller than that of the dislocation motion), we will take M̃ = M/(La2
0
) = 10 >> 1. In this

equation, it may be noticed that the sum only refers to the six closest octahedral sites surrounding a node since its

displacements only contribute to the energy density calculated on these sites. Using these notations, the discretized

formulation of Eq. (6) is:
∂ǫ̃i j

(

t̃
)

∂t̃
= − M̃ǫ

4

∑

octa. sites

∂ f̃el

∂ǫ̃i j

(

t̃
) , (15)

where M̃ǫ = Mǫ s
2/L is conveniently taken to be equal to M̃. From the previous equations, it can be noticed that

reduced strains ε̃i j = sεi j (leading to average strains ǫ̃i j = sǫi j) have been introduced and consistently enable us to

define the reduced applied stresses σ̃A
i j
= sσA

i j
/K.

2.3. Pores, cracks and other heterogeneities

Within the present approach, a continuum material is characterized by displacements ui discretized on nodes that

constitute the primary FCC lattice, and by displacement-gradients βi j (or strains εi j, or elastic energy densities fel)

discretized on octahedral sites that constitute the secondary staggered FCC lattice.

In a material whose microstructure is coherent with the FCC lattice, what distinguishes a region from another is the

way its elastic energy fel varies with strains εi j. According to Eq. (2), this is controlled by the elastic coefficients Ci jkl.

With our numerical scheme, these values can be chosen to be different from one position r to another (i.e.: from one

octahedral site to another) since it does not affect the way the continuum fields are calculated and does not introduce

any singular point in which a physical value would have to be interpolated because of its ambiguous localization.

A solid precipitate can therefore be defined in a specific region of the whole system by changing the elastic

coefficients of the corresponding octahedral sites. This results in a domain which is delimited by sharp interfaces that
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necessarily follow the FCC symmetry. With this scheme, we can also introduce a non-material region (a void) by

canceling its corresponding elastic coefficients. This constitutes the strongest heterogeneity that may be considered.

Physically, it allows us to define random shape cavities and even cracks when the non-material regions take the form

of thin platelets. Hence, free surfaces of complex shape can naturally be involved without having the risk of generating

singular fields.

As an example, we have simulated a 100d3 isotropic FCC material. In this case, we only have two independent

elastic coefficients which are the bulk modulus K and the shear modulus chosen to be µ = 0.40K (i.e.: with Poisson

ratio ν ≈ 0.33). For instance, these coefficients could be aluminium ones by taking K ≈ 80 GPa. Then we have

introduced a spherical pore by canceling these coefficients within a central spherical region of radius R0 = 15d, as it

is shown in Fig. 3a. Periodic boundary conditions are considered. The system has been compressed isostatically with

pressure p = 0.00125K (≈ 100 MPa) and relaxed by dissipating its elastic energy. Some components of its stress-field

σi j = Ci jklεkl have been extracted and displayed in Figs. 3b – 3d. This allows us to confirm that the interface of the

pore follows the FCC symmetry and that the elastic field (stresses) is not perturbed by the presence of non-physical

oscillating modes.

Concerning the characteristic length-scale, one can note that it is given by the scale factor s = d/a0 which accounts

for the ratio between the grid spacing d and the FCC lattice parameter a0. In a physical system, when the atomic

aspects are deemed as essential (nanometer discontinuities in interfaces, crystalline defects in the bulk...), it is natural

to select s = 1. In this case, we can adopt a naive representation where the nodes of the FCC grid are atoms interacting

through the harmonic elastic energy potentials of the octahedral sites, and where the cancellation of elastic coefficients

in one of these sites reproduces the breaking of bonds for the six surrounding atoms. Of course, since the model is

a continuum model, higher length-scales can also be considered, where s > 1, especially when atomic short-range

effects are negligible and all that matters is capturing the FCC symmetry (see subsection 6.2). On the contrary, smaller

length-scales are conceivable when the subatomic energy variations must be described [16–19].

3. Phase-field model of FCC dislocations

The PFMD exposed in this work is based on the first approaches developed in Refs. [10, 11]. To our knowledge,

these models have not significantly been improved since the work of C. Shen and Y. Wang [27] in which the coplanar

FCC dislocation reactions are described more rigorously. In this section, this former model is reconsidered with some

improvements that allow us to correctly reproduce the dislocation mobility.

3.1. Set-up of the model

In the micro-elasticity theory, a dislocation is a linear defect defined by the front delimiting two coplanar crystal-

lographic regions, one sheared and one not (the sheared region reflecting more fundamentally the displacement of one

atomic plane to another). The sheared region can be viewed as a platelet-like inclusion labeled p characterized by the

8
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(d)

(b)

(c)

(a)

[100]

[010][100]

[001]

[100]

[010]

[100]

[010]

Figure 3. Spherical pore in a 100d3 compressed isotropic FCC material. In Fig. (a) the (11̄1) clipping plane reveals the removed non-material part

defining the pore. In Figs. (b), (c) and (d), the (001) clipping plane allows us to display the stress field components σ12, σ11 and σ22, respectively

(given in the unit of the bulk modulus K, see colors on-line).

stress-free displacement-gradients β0
i j/p

[28, 29]. For dislocations, these components write:

β0
i j/p =

bi/p n j/p

hp

, (16)

where bi/p is a component of the Burgers vector bp, n j/p is a component of the normal unit vector of the dislocation

slip-plane np and hp is the interlayer spacing of the slip-plane.

In an FCC crystal, one can consider three 1/2〈110〉 slip-directions in four {111} slip-planes of identical spacing

h = d/
√

3. This leads to twelve platelet-like types of inclusion that characterize the twelve p ≡ 1/2〈110〉{111}

dislocation slip-systems. In Fig. 4, these systems are displayed using the nomenclature of Tab. 1.

A platelet-like inclusion characterizing one slip-system p is described as a phase of order parameter ηp. This order

parameter is chosen at position r to be an integer that reflects the shear state of the corresponding element of volume.

According to this point, and because β0
i j/p

given in Eq. (16) stands for an elementary shear of the slip-system p, the

9
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Figure 4. The twelve p ≡ 1/2〈110〉{111} FCC slip-systems with nomenclatures of Tab. 1.

np bp

n1,2,3 =
1√
3

(

11̄1
)

b1 =
a0

2
[110] b2 =

a0

2

[

1̄01
]

b3 =
a0

2

[

01̄1̄
]

n4,5,6 =
1√
3

(

1̄11
)

b4 =
a0

2
[101] b5 =

a0

2

[

1̄1̄0
]

b6 =
a0

2

[

011̄
]

n7,8,9 =
1√
3

(111) b7 =
a0

2

[

11̄0
]

b8 =
a0

2

[

1̄01
]

b9 =
a0

2

[

011̄
]

n10,11,12 =
1√
3

(

111̄
)

b10 =
a0

2
[101] b11 =

a0

2

[

1̄10
]

b12 =
a0

2

[

01̄1̄
]

Table 1. Normal unit vectors np and Burgers vectors bp related to the twelve p ≡ 1/2〈110〉{111} FCC slip-systems.

total stress-free displacement-gradients at position r are:

β0
i j(r) =

12
∑

p=1

β0
i j/p ηp (r) , (17)

where the dislocation field ηp(r) represents the amount of cumulative shear experienced by point r due to the slip-

system p. The dislocation loops therefore introduce a sheared region characterized at position r by the total eigenstrain

components:

ε0
i j(r) =

β0
i j

(r) + β0
ji
(r)

2
. (18)

Inside one such region, the variation of the elastic energy density fel must be computed taking the sheared state as the

new reference state. To do so, the expression of fel given in Eq. (2) is modified by a change in the strain origin with

eigenstrains given in Eq. (18). The strain components εi j are thus replaced by (εi j − ε0
i j

) and the next mentions of the

elastic energy density will now refer to this new ηp–dependent definition: fel

{

εi j(r), ηp(r)
}

.

Then, we consider kinetic equations that control the temporal evolution of dislocations. For this, we adopt the

time-dependent Ginzburg-Landau approach that requires us to define a phenomenological non-elastic energy written

as [30]:

FGL =

∫

V

fcryst

{

ηp(r)
}

+ fgrad

{

ηp(r)
}

dV. (19)

10



ACCEPTED MANUSCRIPT

A. Ruffini, Y. Le Bouar and A. Finel / Journal of the Mechanics and Physics of Solids 00 (2017) 1–32 11

In Eq. (19), fcryst and fgrad are the crystalline and gradient energy densities that stand for the Landau and Ginzburg

terms respectively. We will also use the Ginzburg-Landau energy density fGL = fcryst + fgrad.

In the simplest formulation of the model, we only consider perfect dislocations with a diffuse realistic core struc-

ture. In this case, the crystalline energy density fcryst is chosen to stabilize the order parameter ηp at values that are

integers, since ηp reflects the amount of elementary shear as defined in Eq. (17). We also chose to implement a model

in which the coplanar dislocation interactions are correctly reproduced. To do so, the crystalline energy must reflect

the fact that a dislocation of one slip-system can have several equivalent representations. For example, as it can be

noticed in Fig. 4, a dislocation with Burgers vector b = −b3 characterized by (η1 = η2 = 0, η3 = −1) is equivalent to

b = b1 + b2 with (η1 = η2 = 1, η3 = 0). This is achieved in the model developed in Ref. [27] where the crystalline

energy writes:

fcryst = 2A
{

4 − cos
[

π (η1 − η2)
]

cos
[

π (η2 − η3)
]

cos
[

π (η3 − η1)
]

− cos
[

π (η4 − η5)
]

cos
[

π (η5 − η6)
]

cos
[

π (η6 − η4)
]

− cos
[

π (η7 − η8)
]

cos
[

π (η8 − η9)
]

cos
[

π (η9 − η7)
]

− cos
[

π (η10 − η11)
]

cos
[

π (η11 − η12)
]

cos
[

π (η12 − η10)
]}

. (20)

In Eq. (20), A corresponds to the half amplitude of the crystalline energy density. Generally speaking, fcryst is related

to the generalized stacking fault energy (or γ–surface) that can be extracted from first principle calculations [16–18]

and A can be related to the unstable stacking fault energy [31].

In this formulation, the gradient term fgrad is chosen to penalize the energy when the order parameters ηp vary in

space. This allows us to obtain a diffuse front of ηp at its transition region, where the order parameter passes from one

integer value to another (i.e.: where a crystallographic plane passes from one shear state to another). Here, we use the

formula of the gradient energy density introduced in Ref. [27]:

fgrad =
B

2

12
∑

p,q=1

bp · bq

b2

(

np × ∇ηp

)

·
(

nq × ∇ηq

)

. (21)

In Eq. (21), B is an amplitude scaling as a stress multiplied by a unit area which is chosen to be the same for each

slip-system p. The symbol ∇ stands for the gradient vector, and × is the cross product.

For a non-conserved order parameter, as it is the case for dislocations, the spatial-temporal evolution of ηp is

controlled by the Allen-Cahn equation given by [32]:

∂ηp (r, t)

∂t
= −L

(

δFel

δηp (r, t)
+
δFGL

δηp (r, t)

)

, (22)

11
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where L is a mobility coefficient. In subsection 3.3, it is shown how this parameter can be related to the mobility of

dislocations.

3.2. Numerical details

For the numerical implementation, from Eq. (17), we introduce a reduced total stress-free displacement gradient

β̃0
i j
= sβ0

i j
with s = d/a0 such that ηp still reflects the amount of cumulative shear experienced by point r whatever the

working space-scale. This is the same as defining β̃0
i j

with reduced Burgers vectors b̃p = bp/a0 and interlayer spacing

h̃ = h/d. At small strain, from Eq. (18), this procedure leads to the definition of reduced eigenstrains ε̃0
i j
= sε0

i j
. By

using these reduced quantities, the reduced elastic energy density f̃el already introduced in Eqs. (14) and (15) writes:

f̃el =
1

2
C̃i jkl

(

ε̃i j − ε̃0
i j

) (

ε̃kl − ε̃0
kl

)

− σ̃A
i jε̃i j, (23)

with C̃i jkl = Ci jkl/K and, as above, ε̃i j = sεi j and σ̃A
i j
= sσA

i j
/K.

Since the order parameter reflects the shear state of an element of volume, we decide to localize ηp on the octahe-

dral site of the FCC grid. As a consequence, the Ginzburg-Landau energy density fGL = fcryst + fgrad as well as the

amplitudes A and B are also defined on the octahedral sites. In this case, the discretized formulation of the non-elastic

Ginzburg-Landau energy FGL given Eq. (19) writes:

FGL =
∑

octa. sites

fGL × V
e f f
octa, (24)

where V
e f f
octa = d3/4. Thus, by taking the functional derivative of F̃GL = FGL/(Kd3), Eq. (22) becomes:

∂ηp

(

X̃i, t̃
)

∂t̃
= −1

4























∂ f̃el

∂ηp

(

X̃i, t̃
) +

∂ f̃GL

∂ηp

(

X̃i, t̃
) − ∂
∂X̃ j

∂ f̃GL

∂ηp(X̃i,t̃)
∂X̃ j























, (25)

or by explicitly expanding the gradient energy contributions given Eq. (21):

∂ηp

(

X̃i, t̃
)

∂t̃
= −1

4

















∂ f̃el

∂ηp

(

X̃i, t̃
) +

∂ f̃cryst

∂ηp

(

X̃i, t̃
)

− B̃

12
∑

q=1

b̃p · b̃q

b̃2



















np/ j nq/ j

∂2ηq

(

X̃i, t̃
)

∂X̃ j∂X̃ j

− np/ j nq/k

∂2ηq

(

X̃i, t̃
)

∂X̃ j∂X̃k





































, (26)

where tildes denote the aforementioned reduced quantities with f̃cryst = s2 fcryst/K, f̃grad = s2 fgrad/K and considering

Ã = s2A/K and B̃ = B/(Ka2
0
) with, as defined above, t0 = s2/(KL). In this equation, it may be noticed that the sum is

removed since the order parameter (and its spatial derivatives) only contribute to the energy density calculated on the

same octahedral site. A quantitative estimation of t0 for a typical situation (nickel-based superalloys) is given in the

next subsection.

12
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In Eqs. (21) and (26), the first and second spatial derivatives of the order parameters ηp (gradient vector and

Hessian matrix respectively) must also be introduced. These differential operators discretized on the FCC grid are

calculated in Appendix A. As a matter of fact, these operators correspond to the FCC stencil used in the acoustics

community to perform the finite difference approximations of the Laplacian (Hessian trace). Interestingly, the FCC

stencil is numerically shown to provide good precision and an optimized computational efficiency compared to other

cubic stencils [47]. In the present work, this FCC stencil emerges naturally because of the use of an explicit FCC grid.

3.3. Connection with dislocation’s physical properties

Let us consider a single FCC straight edge dislocation of Burgers vector b located at the origin of the Cartesian

frame (e1, e2, e3) such that b = be1 = a0/
√

2 e1 and the normal vector is n = e3.

In this situation, the total eigenstrain tensor given in Eq. (18) has two non-zero components ε0
13

(x) = ε0
31

(x) =

b
2h
η(x), and the order parameter that characterizes the amount of shear in the slip-plane is such that η (x→ −∞) = 0

and η (x→ +∞) = 1 as it is shown in Fig. 5. Formally, its kinetic evolution is given by Eq. (22) that here becomes:

∂η(x, t)

∂t
= −L













−2σ13(x)
∂ε0

13
(x, t)

∂η(x, t)

+2πA sin
[

2πη (x, t)
] − B

∂2η(x, t)

∂x2

)

, (27)

with the stress component σ13 = C1313(ε13 − ε0
13

).
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2

Figure 5. Profile of the order parameter η0 from Eq. (29) in full line and normalized Ginzburg-Landau energy density fGL/ f 0
GL

in dashed line –

calculated with the solution of η0. In this graph, the values are normalized to unity taking ξ = d and f 0
GL
= 4A. The total Ginzburg-Landau energy

given Eq. (19) is the surface area of the filling zone. This quantity also corresponds to the core energy of the straight edge dislocation.

To determine the analytic function that describes the profile of η, we analyze the static case by taking ∂η/∂t = 0,

assuming that the elastic contributions can be neglected (σ13 ≈ 0). In this case, Eq. (27) reduces to the sine-Gordon

equation [33]:

2πA sin
[

2πη (x)
] − B

∂2η (x)

∂x2
= 0. (28)
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whose solution is the soliton η0 given by:

η0 (x) =
2

π
arctan

(

exp

(

x

ξ

))

, (29)

with:

ξ =
1

2π

√

B

A
, (30)

the length characterizing the spreading of the order parameter at point x = 0, as it is shown in Fig. 5. Since η reflects

the amount of shear in the slip-plane, ξ also characterizes the size of the dislocation core.

By introducing this solution in FGL given in Eq. (19), and integrating within the slip-plane of thickness h, one

can determine the Ginzburg-Landau non-elastic energy associated with the profile of η which is nothing but the core

energy (per unit length) of the straight edge dislocation:

Wcore =
4h

π

√
AB. (31)

The amplitudes A and B are thus related to ξ and Wcore, the size and the energy of the dislocation core respectively.

In a very generic way, the transition region described by a PFMD is diffuse at the space-scale of the numerical

grid while the other parameters are chosen so that the core energy and dislocation velocity are physically correctly

reproduced. In this work, we decide to consider Wcore = 0.1µb2 = 0.05µa2
0

as a realistic physical value [34, 35] and

ξ = 0.5d. With this parametrization, the dislocation core is diffuse enough so that the FCC numerical grid does not

introduce lattice resistance on dislocations. In other words, Peierls stress is assumed negligible. This leads to the

reduced quantities:

Ã =
s2A

K
=

√
3

80
µ̃ and B̃ =

B

Ka2
0

= π2Ã, (32)

with µ̃ = µ/K. Interestingly, we note that these value are independent of the scale factor s which only modifies the

definition of reduced energies, strains, stresses, displacement-gradients and time unit.

Let us now consider the situation where an external stress is applied such that it results in a resolved shear stress

σr ≡ σ13 in the dislocation slip-plane. In this case, the dislocation glides and reaches a steady-state motion which

is characterized, in the PFMD, by the displacement along x of the profile of the order parameter η. The dislocation

velocity v can be calculated by following a standard asymptotic analysis of the phase-field equations (see for example

[36, 37]) where the profile is assumed to be unchanged and still well described by the soliton η0. In one such situation,

η0 is shifted over a length −vt such that η0 (x) = η0 (x + vt). In the Cartesian frame (e1, e2, e3), since η0 describes the

static equilibrium profile, Eq. (27) reduces to:

v
∂η0(x)

∂x
= 2 L σr

∂ε0
13

(x)

∂η(x)



















η0(x)

. (33)

By introducing the eigenstrain ε0
13
= b

2h
η(x), multiplying each term with (∂η0 (x) /∂x) and taking the integral from −∞

to +∞, one obtain the dislocation velocity at the so-called asymptotic limit:

2h

Lπ2ξ
v = b σr. (34)
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This calculation allows us to show that the dissipative formalism of the PFMD naturally leads to a linear rela-

tionship between dislocation velocity and the resolved shear stress. Therefore, we can use the model to reproduce

any situation where a linear relationship between dislocation velocity and stress is observed. Such a dependence is

generally characterized by the relationship:

B f r v = b σr, (35)

where B f r is a friction coefficient and b the Burgers vector norm. A direct comparison between Eqs. (34) and (35)

yields to:

L =
2h

B f rπ2ξ
, (36)

which provides us with a way to link the phenomenological mobility coefficient L and the material parameter B f r

[38]. The present development also leads to a link between the time unit t0 and material constants. More precisely,

using Eq. (36) and the previous parameters, we obtain t0 = s2/(KL) ≈ 4.27s2B f r/K.

In pure metals, the linear relationship given Eq. (35) is experimentally related to phonon drag mechanisms and

B f r is nothing but the phonon drag coefficient [34, 35]. That said, we can also take the example of the γ-phase in

nickel-based superalloys where a linear relationship is also experimentally observed. In this case, dislocations glide in

a multi-component solid solution and B f r is viewed as a more general friction term that accounts for all the operative

dissipative phenomena. In this context, we can obtain an order of magnitude of t0 ≈ 4.27s2B f r/K by considering

that the Burgers vector of the dislocation is about b ≈ 10−10 m. In Ref. [39], dislocation velocities v ≈ 10−7 m/s

can be extracted with experienced stresses of about σr ≈ 107 Pa. Using Eq. (35), we can thus estimate B f r ≈ 104

Pa.s. By taking a bulk modulus of about K ≈ 1011 Pa as in Ref. [3], a value t0 ≈ s20.427 µs is finally obtained.

When atomistic space-scales are considered, s = 1 and t0 ≈ 0.427 µs. That said, when atomic-range effects are

negligible and larger grid spacing are conceivable (s > 1), the characteristic time-scale of the dislocation motion is

opportunistically increased with a square dependence.

4. Modification of the PFMD

In this section, we point out some limitations in the prior formulations of the model and make some improvements

that provide a more physical coupling between the different fields.

4.1. On the coupling between ηp and σi j

According to the way the PFMD is developed, a dislocation loop is characterized by a region in which the order

parameter ηp is an integer whose value reflects the amount of elementary shear βi j/p given Eq. (16). When the

dislocation is static, this requirement is fulfilled by considering an eigenstrain ε0
i j

which varies linearly with ηp, as

written in Eqs. (17) and (18). However, a problem arises when considering its temporal variations.

For this, we only have to look at Eq. (27) to note that there exists no stationary solution of η that can be an integer

as long as the stress σ13 is different from zero. More generally, the order parameters ηp are always different from zero
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as long as there is a stress field σi j. This causes dissipation in the elastic regions which have not yet been sheared by

the passage of dislocations, and generates a non-physical dependence between the amount of shear introduced by a

dislocation and the stress which is locally experienced.

This spurious dissipation mechanism is automatically removed within the loopon formalism proposed in [14],

in which the order parameters ηp associated to the plastic activity are subjected to automaton-like dynamics only

controlled by elastic driving forces with no recourse to a Ginzburg-Landau core energy. In the present model, the

dynamics of ηp are partially controlled by a Ginzburg-Landau energy which confers to these order parameters a

spatially continuous character. This property is at the origin of the artificial dissipation mechanism mentioned above.

To remove this artifact, one strategy is to replace the order parameter ηp by a function f (ηp) in the definition of

the stress-free displacement-gradients:

β0
i j(r) =

12
∑

p=1

β0
i j/p f

(

ηp (r)
)

. (37)

Within this formulation, the function f must be such that f (ηp) = ηp when ηp is an integer. Then, in Eq. (27), we note

that the elastic term becomes proportional to ∂ f (ηp)/∂ηp. The coupling between ηp and σi j can therefore be canceled

by taking a function so that ∂ f (ηp)/∂ηp = 0 when ηp is an integer. In some previous works, we found two functions

that possess the aforementioned properties which have been used for this purpose. The first, introduced by Levitas et

al. in Refs. [40–42], is given by:

f (ηp) =
[

ηp

]

+
{

ηp

}2 (

3 sgn
(

ηp

)

− 2
{

ηp

})

, (38)

where [ ], { } and sgn( ) denote the integer part, the fractional part and the sign functions, respectively. The second,

introduced by Hu et al. in Ref. [43], writes:

f (ηp) = ηp − sin
(

2πηp

)

/ (2π) . (39)

In both cases, it can be checked that the use of f (ηp) does not affect the analytical expressions of the phase-field

parameters A, B and L determined in subsection 3.3. As discussed in detail in Ref. [42], the first function given Eq.

(38) allows us to nucleate dislocations beyond a critical stress, while the function given Eq. (39) definitively cancels

the spontaneous generation of any dislocation. Even though the first approach seems to be more realistic, the critical

stress of the dislocation nucleation cannot be easily controlled. For this reason, and because nucleation aspects are

not considered in the present article, we chose to use the second function f (ηp) = ηp − sin
(

2πηp

)

/(2π) which is also

numerically more tractable.

4.2. On the coupling between several ηp

Another contradiction arises when we focus on the concomitant temporal evolution of the different order param-

eters ηp that describe three slip-systems of a common slip-plane. To understand this, let us consider the slip-systems

p = 1, 2, 3 with the slip-plane (11̄1) described in Fig. 4. In this case, only η1, η2 and η3 can take values different from
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zero. As a consequence, the crystalline energy density given Eq. (20) becomes:

fcryst = 2A
{

1 − cos
[

π (η1 − η2)
]

cos
[

π (η2 − η3)
]

cos
[

π (η3 − η1)
]}

, (40)

and the temporal evolution of the different ηp, controlled by the Allen-Cahn equation Eq. (26), involves the following

crystalline driving forces:

∂ fcryst

∂η1

= 2πA cos
[

π (η2 − η3)
]

sin
[

π (2η1 − η2 − η3)
]

, (41)

∂ fcryst

∂η2

= 2πA cos
[

π (η3 − η1)
]

sin
[

π (2η2 − η3 − η1)
]

, (42)

∂ fcryst

∂η3

= 2πA cos
[

π (η1 − η2)
]

sin
[

π (2η3 − η1 − η2)
]

. (43)

Now we imagine a system with only one moving dislocation characterized by η1. The other parameters η2 and

η3 are initially equal to zero. Almost everywhere, the order parameter is η1 = 0 or 1, except in the diffuse transition

regions in which η1 ∈ ]0, 1[. According to Eq. (41), almost everywhere, the crystalline driving force of η1 is equal

to zero, except in the transition region. Herein, since the temporal derivative of η1 is proportional to ∂ fcryst/∂η1, the

value is changed, which actually contributes to the dislocation motion.

The problem in this region is that, according to Eqs. (42) and (43), values of η1 different from zero also contribute

to the crystalline driving forces of η2 and η3. As a consequence, the two other order parameters take a value different

from zero in the transition region of the first one. This leads to the spontaneous generation of the coupled slip-systems

and for one order parameter it is impossible to proceed without the two others.

Although the formulation of crystalline energy is relevant when it is to consider the interaction of preexistent

dislocations, it appears that it can generate nonphysical situations when we consider their dynamics. Notably: (i)

kinematics are perturbed by the unexpected changes in the profile of a given ηp, and (ii) the activation of other slip-

systems can spontaneously generate dislocations without justification. Even though this mechanism can be physically

relevant, its correct reproduction within a continuous PFMD formulation would require at least a mesh with a sub-

atomic grid spacing. Conversely, it may lead to spurious effects when using a coarser grid, which is the aim of the

present PFMD formulation.

Therefore, since we expect that the dynamics of a given ηp, controlled by Eq. (22), be executed only if an integer

value preexists in the system, we decide to introduce a test algorithm that activates it only when the order parameter

on a given octahedral site is different from the values of its neighbors. Formally, this is the same as performing a test

on the gradient of ηp and verifying that its absolute value is higher than zero. Because values very close to zero are

expected to be computed as long as a the corresponding slip-systems take place somewhere in the system, we chose to

compare the gradient to a threshold value ∇ηthrs
p not much higher than zero and set the order parameter to the closest

integer when the gradient is below. In our simulations, the absolute value of the gradient is compared to its theoretical
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value calculated at a distance x = 3ξ from the center of the profile. Taking the spatial derivative of η as it is given in

Eq. (29), one obtains ∂η (x) /∂x = 1/ (πξ cosh (x/ξ)) and thus ∇ηthrs
p = 0.0316/ξ = 0.0632d−1 with ξ = 0.5d.

It is worth mentioning that this test only activates the dynamics within the core transition regions, as displayed

in Fig. 5, instead of the whole system. As a consequence, in a material that contains only a few dislocations, the

computational time required for this test is compensated by the time which is saved by avoiding the calculation of the

dynamics in every octahedral sites.

5. Validation of the present model

To validate the model and show its consistency with the analytical developments, we have simulated a single dislo-

cation loop collapsing under its own stress field, two interacting dislocations forming junctions and three-dimensional

loops emerging from a Frank-Read source. In this section, simulations are performed on the atomic-scale considering

d = a0 which corresponds to s = 1.

5.1. One dislocation loop

We start with the simulation of a single dislocation loop collapsing under its own stress field. To do so, we have

considered a 100d3 FCC isotropic material of shear modulus µ = 0.40K with periodic boundary conditions. In the

(11̄1) slip-plane, we have introduced a circular dislocation loop of initial radius R0 = 40d with the Burgers vector

b1 = a0[110]/2. The phase-field amplitudes are chosen to be Ã =
√

3µ̃/80 = 0.0087 and B̃ = π2Ã = 0.085 in

agreement with the static theoretical expressions that give Wcore = 0.1µb2 and ξ = 0.5d for the energy and the size of

the dislocation core respectively.

In Fig. 6, we have extracted at a given time the simulated values of the order parameter η1 and the Ginzburg-

Landau energy density fGL as a function of the normalized coordinate x/d along the [110] direction. These values are

compared to the static theoretical ones obtained in subsection 3.3 considering Ã = 0.0087 and B̃ = 0.085.

First, as expected, η1 is found to be strictly equal to an integer value as long as it does not describe the diffuse

transition region. This is due to the function f (η) given in Eq. (39), introduced in subsection 4.1 to cancel the

dependence between the amount of plastic shear and the stress field. Similarly, in consistency with the modified

algorithm proposed in subsection 4.2, it has been checked (but not shown here) that the coupled order parameters η2

and η3 remain equal to zero during the kinetic evolution of η1.

Inside the transition region, the order parameter η1 is found to be slightly different from η0 as given in Eq. (29).

This difference is due to the fact that η0 is determined in the static case by neglecting the elastic contributions. That

said, it is interesting to note that the spreading of the core is close in both cases, confirming that its order of magnitude

is about a few ξ = 0.5d.

Note that even though the profile of η1 in the transition region may reflect a dissociated core, it still describes a

perfect core in consistency with the present PFMD. In fact, the core structure would have to be characterized by the
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Figure 6. Order parameter η1 and Ginzburg-Landau energy density fGL as a function of x/d. The values extracted from the simulations are compared

to η0 given in Eq. (29) and fGL that can be calculated in subsection 3.3. The Ginzburg-Landau energy densities are normalized considering the

maximal static theoretical value f 0
GL
= 0.0348Kd2.

disregistry vector [44] which here, is not proportional to η1 but to the function f (η1) given Eq. (39). Its effect is to

make the disregistry profile more regular than the η1 profile.

If we now focus on the simulation’s value of the Ginzburg-Landau energy density fGL, we note that the pic

is concomitantly flattened and widened compared to the one given by the static approximated analytical solution.

However, the area below the curve that gives the core energy of the dislocation is not significantly modified. Therefore,

we found a simulated value of about Wcore = 0.13µb2 which is actually close to the static theoretical one (Wcore =

0.1µb2).

To investigate the kinematic aspects of our model, we chose to study the temporal evolution of the surface area of

the dislocation loop following [14]. For this, we start to write its elastic energy W as it can be calculated within the

framework of linear elasticity [34]:

W(R) =
µb2R

4

2 − ν
1 − ν

(

ln

(

4R

r0

)

− 2

)

, (44)

where R is the radius of the loop, b its Burgers vector norm, µ the shear modulus and ν is the Poisson ratio. In this

equation, r0 << R denotes the cut-off distance enclosing the core region below which the continuous description of

elasticity does not remain valid. In the present model, r0 is expected to be equivalent to the core size of the dislocation,

which is characterized in Fig. 6 by the length of the diffuse transition region.

During the collapse, the stress experienced by a line element of the loop is given by σ = −W ′(R)/(2πb) [34].

Since the velocity of the line element is given by Eq. (35), we can show, using Eq. (44), that the temporal evolution

of S (t) = πR2(t) must finally satisfy:

Ṡ (t) = − µb
2

4B f r

2 − ν
1 − ν

(

ln

(

4
√

S (t)/π

r0

)

− 1

)

, (45)

where B f r = 2h/(Lπ2ξ) is the viscous coefficient given in Eq. (36). In this equation, the only free parameter is the

cut-off r0 since b = a0/
√

2, ν = 0.33 and B f r = 2.34Kt0. Therefore, we can estimate S by the numerical integration
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of Eq. (45) considering a reasonable value of r0 << R.

In Fig. 7, the normalized surface area S/S 0 of the loop has been extracted from the simulation and plotted as a

function of the reduce time t/t0. The value is compared to the theoretical one resulting from Eq. (45) considering

r0 = 2.05d, which has been found to be the best fitting parameter.

Figure 7. Theoretical and simulated normalized surface area of the loop S/S 0 versus time t/t0. The insert shows different snapshots of the

dislocation loop of Burgers vector b1 = a0[110]/2 during its collapse.

First, we note that r0, which characterizes the size of the core, is consistent with the one that would be found in

Fig. 6. Then, we confirm that the temporal evolution of S/S 0 extracted from the simulation reproduces the theoretical

normalized value found with linear elasticity. The remaining discrepancies can be explained by the fact that, during

its collapse, the dislocation loop does not remain circular, as it is shown in the insert of Fig. 7. This is because the

line tension of the loop is not really isotropic, as supposed in the analytical integration, but higher along its screw

component.

5.2. Self and coplanar interactions

In the simulation box considered previously, we introduce two dislocation loops of Burgers vectors b3 = a0[01̄1̄]/2

in the same slip-plane (11̄1). They are initially located and oriented as exposed in Fig. 8a. By applying the stress:

σ =
τ

3
√

2



































2 2̄ 1̄

2̄ 2 1

1̄ 1 4̄



































, (46)

we obtain in the plane (11̄1) a shear stress τ > 0 (aligned with [11̄2̄]) that provokes the expansion of the loops. As

shown on Fig. 9b, the loops react and annihilate. This reaction is called the self annihilation. It results in a larger loop

of Burgers vectors b3 = a0[01̄1̄]/2.

Then, reviving the work performed in Ref. [27], we consider two dislocation loops with dissimilar Burgers vectors

−b3 = a0[011]/2 and −b2 = a0[101̄]/2, introduced and orientated as displayed in Fig. 9a. They grow under the
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τ

a) b)

b3
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Figure 8. Self-reaction annihilation of dislocation loops with Burgers vector b3 = a0[01̄1̄]/2 in the slip-plane (11̄1). (a) Initial configuration. (b)

Reaction under the planar stress τ.

applied stress σ given in Eq. (46). As shown in Fig. 9b, the dislocations meet themselves and react to form a coplanar

junction of Burgers vector −b2 − b3 = b1 = a0[110]/2. Because τ is perpendicular to this new line segment, the latter

remains static. In consistency with the formulation of the crystalline energy density given Eq. (20), the core energy of

the junction is the same as the original dislocation segments (not the double as in the first historical models [10, 11]).

We therefore confirm that the model correctly reproduces the coplanar dislocation reactions in an FCC material.

[100]

[001]

[010]

(111) [100]

[001]

[010]

(111)

-b3

τ

-b3

a) b)

-b2
-b2

b1

Figure 9. Coplanar reaction of dislocation loops with Burgers vector −b3 = a0[011]/2 and −b2 = a0[101̄]/2 in the slip-plane (11̄1). (a) Initial

configuration. (b) Reaction under the planar stress τ resulting in the formation of a junction of Burgers vector b1 with identical core energy.

5.3. Interaction in two intersecting slip-planes

We now consider the interaction of dislocations gliding in two intersecting slip-planes. First, a dislocation loop of

Burgers vector −b3 = a0[011]/2 is introduced in its (11̄1) slip-plane while another of Burgers vector −b4 = a0[1̄01̄]/2

is first localized in its own (1̄11) slip-plane. They are both oriented as shown in Fig. 10a. Under an applied stress
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σ33 < 0, the loops undergo the same positive resolved shear stress σr = σ33/
√

6 that induces their expansion. In Fig.

10b, the dislocations react to form a junction of Burgers vector −b3−b4 = −b7 = b11 = a0[1̄10]/2. Since this Burgers

vector does not correspond to any of the original slip-systems, the junction remains stationary, constituting a sessile

Lomer lock [35].

[100]

[001]

[010]

[100]

[001]

[010]

(111)

-b3

-b3
a) b)

-b4

b11

-b4

(111)

(111)

(111)

Figure 10. Sessile Lomer lock reaction of dislocation loops with Burgers vector −b3 = a0[011]/2 and −b4 = a0[1̄01̄]/2 in the slip-plane (11̄1)

and (1̄11) respectively. (a) Initial configuration. (b) Reaction under a stress σ33 < 0 resulting in the formation of a junction of Burgers vector

−b7 = b11 = a0[1̄10]/2.

Then, two dislocation loops of Burgers vectors −b1 = a0[1̄1̄0]/2 and −b5 = a0[110]/2 lying in their own slip-

planes (11̄1) and (1̄11) respectively, have been introduced and orientated as shown in Fig. 11a. By applying a stress

σ11 > 0, the loops expand under the positive resolved shear stress σr = σ11/
√

6. At their intersection, the loops

annihilate (−b1 − b5 = 0). This reaction is called the colinear annihilation.
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(111) (111)
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-b5

Figure 11. Colinear annihilation reaction of the dislocation loops with Burgers vector −b1 = a0[1̄1̄0]/2 and −b5 = a0[110]/2 in the slip-plane

(11̄1) and (1̄11) respectively. (a) Initial configuration. (b) Annihilation under a stress σ11 > 0.
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Physically, the colinear annihilation leads to a perfect crystal that does not generate any kind of energy. In the

simulations however, as in every PFMD considered thus far [10–14], the intersecting line resulting from the annihila-

tion reaction still exhibits a dipole of dislocations that generates a small non-zero stress field, as well as a core energy

due to the formulation of the Ginzburg-Landau free energy. Because the range of the dipole stress field is much lower

than the one generated by an isolated dislocation, its effects are assumed to be negligible. As for the residual core

energy, one should propose a non trivial development of the PFMD which is beyond the scope of the present article.

5.4. Frank-Read source

To simulate a Frank-Read source, we decide to introduce a dislocation segment of type b = a0[1̄1̄0]/2 with pinned

extremities in the simulation box. For this, a static rectangular loop of Burgers vector −b5 = a0[110]/2 has been

considered in the (1̄11) slip-plane, supplemented by a small embryo of loop of Burgers vector −b1 = a0[1̄1̄0]/2 in the

(11̄1) plane. Due to the annihilation of the two loops along the MN segment, the dynamics on the order parameter

η1 allow us to reproduce the bowing of the screw dislocation segment MN in the (11̄1) slip-plane. By applying

a stress σ11 > 0, the MN dislocation line of screw character bows and forms an extended loop of Burgers vector

−b1 = a0[1̄1̄0]/2 as is shown in Fig. 12. After one cycle, another loop is spontaneously nucleated, still activating

the Frank-Read source. One such simulation allows us to confirm that the model can reflect realistic dislocation

multiplication mechanisms.

[100]

[001]

[010]

(111)

(111)

M N

Figure 12. Superimposed snapshots showing the Frank-Read source during subsequent equidistant time moments under the applied stress σ11 =

0.08K.
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6. Applications

In this section, we present some applications that demonstrate the ability of the model to describe, at different

space-scales, dislocations operating in the presence of heterogeneities made of voids and free surfaces.

6.1. Traction of a cylindrical nanopillar

First, we simulate the traction of a cylindrical nanopillar [45] that contains a source of spiral dislocations provoking

the shear of the system. To be more concrete, we assume that the material is an aluminium single crystal with bulk

modulus K ≈ 80 GPa, shear modulus µ = 0.40K and lattice parameter a0 = d = 0.405 nm (corresponding to s = 1).

Initially, a 200 × 100 × 100d3 system is generated. Then, by taking the pillar aligned with the direction of

traction [100], we define the non-material parts (of zero elastic and phase-field coefficients) outside a cylindrical

region generated by a disc of radius R0 = 49d and normal vector [100]. By doing so, we obtain a cylindrical pillar

with lateral free surfaces oriented perpendicularly to the direction [100]. Along this direction, periodic boundary

conditions are still considered.

A spiral source is subsequently introduced by reproducing the procedure described in subsection 5.4. Because

of the presence of the lateral free surfaces, the rectangular loop of Burgers vector −b5 stands partially outside the

nanopillar, forming a step made of the intersecting section between its slip-plane and the free surface. Inside the

material, the upper screw segment of the loop bows under a uniaxial stress σ11 > 0, forming a spiral dislocation

of Burgers vector −b1 = a0[1̄1̄0]/2 in the (11̄1) slip-plane. One such loop appears as a spiral because its second

extremity ends on the free surface which does not constitute a pinned point. Through its N rotations, the spiral

dislocation induces the shear of the nanopillar, forming a step of amplitude Nb along its entire surface section.

In Fig. 13, different snapshots of the systems are exposed during subsequent equidistant time moments. It is

shown how the spiral dislocation moves and generates the step on the free surface (visible in Fig. 13.d). During its

motion, the dislocation line intersects its initial position (in red, see color on-line) that causes the formation of a small

discontinuity. This is actually due to the diffuse formulation of the PFMD which does not allow to entirely remove

the Ginzburg-Landau energy along this line. That said, as shown in Fig. 13, this does not modify the global shape of

the spiral and does not change the consequence of its movement. Above all, we confirm that the coupling between

dislocations and free surfaces is naturally considered within the present model.

Instead of directly considering a non-material part outside the cylinder, one could also imagine an intermediate

material with different elastic coefficients, playing the role of a shell with a cylindrical ring shape. In this case,

the present PFMD would be able to reproduce a nanopillar whose surface properties have been changed (oxidation,

elaboration processes...) and its effects could be systematically investigated. A fracturing criterion could also be

introduced, by following the strategy exposed in Ref. [38] for instance, which would provide a way of studying the

brittle to ductile transition. Of course, these examples are beyond the scope of the present article.
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Figure 13. Traction of cylindrical nanopillar under uniaxial stress σ11 > 0. (a) Initial stages where the upper segment of type b1 bows and generates

an external step highlighted by a dashed line. The presence of another static step formed by the partial rectangular loop of Burgers vector −b5 may

also be noted. (b,c,d) The bowed segment propagates, extending the step and taking the form of a spiral due to the presence of the free-surface. (e)

External appearance of the pillar after the spiral has rotated three times.

6.2. Dislocations interacting with a spherical pore

For the last application, we drew on the work of Refs. [3, 46] which consists in studying the effect of plasticity on

the pore closure in nickel-based superalloys during hot isostatic pressing (at T = 1288◦C). In this case, the material

is elastically strongly anisotropic. Of course, in the present article, we restrict our analysis to a simple example

whose purpose is to illustrate the potentiality of the model instead of achieving a complete investigation on the pore–

dislocations interactions.

Therefore, we have reconsidered the system exposed in subsection 2.3 that consists of a 100d3 FCC material

under periodic boundary conditions, containing a central spherical pore of radius R0 = 15d. Due to the cubic elastic

behavior, the elastic energy density now writes:

fel =
K

2
(ε11 + ε22 + ε33)2

+
C′

3

[

(ε11 − ε22)2 + (ε11 − ε33)2 + (ε22 − ε33)2
]

+
µ

2

[

(2ε12)2 + (2ε13)2 + (2ε23)2
]

, (47)

where K = 164.9 GPa is the bulk modulus and C′ = 0.09K, µ = 0.42K are the two shear modulus found in [3]. The

strong anisotropy can be highlighted by the Zener anisotropy ratio µ/C′ = 4.6. For this material, we consider the

lattice parameter of nickel a0 = 0.352 nm in a context where short-range dislocation interactions are not involved.
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This enables us to work at the micron-scale by considering s = d/a0 = 690 which corresponds to d = 234 nm.

Then, as it is shown in Fig. 14.a, nine dislocation loops of radius R = 45d and Burgers vector b1 = a0[1̄1̄0]/2 are

introduced into nine different (11̄1) slip-planes. They are stacked and centered along the diagonal of direction [11̄1].

d)

a)

b)

c)
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Figure 14. [01̄0] and [11̄1] views of a spherical pore of radius R0 = 15d ≈ 3.6 µm in a 100d3 ≈ 24.3 µm3 FCC material surrounded by nine

dislocations of Burgers vector b1 lying in nine different (11̄1) slip-planes. They are stacked and centered along the green diagonal of direction [11̄1]

(see colors on-line). The dislocation loop whose slip-plane intersects the equatorial plane of the pore is colorized in red. (a) Initial configuration.

(b,c) Evolution during subsequent moments in time. (d) Final compressed equilibrium configuration.

The effect of the pore on the dislocations’ behavior is observed under isostatic pressure p = 6.10−4K ≈ 100 MPa

which corresponds to the loading involved in Refs. [3, 46]. The snapshots exposed in Fig. 14 show the evolution of

dislocations as the system reaches its compressed equilibrium configuration.

It is found that the dislocation loops adopt a non-trivial equilibrium shape and become stacked in a way that is

influenced by the anisotropic stress-field of the pore (and the other dislocations). Notably, for each of the loops, we

observe that one of its two edge parts moves from its initial position to a position consisting in the intersection between
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its slip-plane and the diagonal of direction [11̄1]. At the equilibrium, this results in a pattern of dislocations described

in Fig. 14.d for which the center of the pore is a point of symmetry and where edge parts are aligned with the diagonal.

For our purpose, it is interesting to focus on the equatorial dislocation, colorized in red in Fig. 14, which is

observed to shrink more rapidly than the other loops while a part of its line is captured by the pore through the

spherical free surface. At the end of the simulation, this loop results in two smaller loops partially attached to the

pore, leading to the formation of a surface step (not shown in the figure). To our knowledge, this typical behavior can

neither be expected with simple analytical calculations nor easily modeled with already existing numerical approaches.

Within the present description, all mechanical effects are automatically considered. They range from the stress-

field generated by the pore inside the material domain to the image force experienced by the dislocations due to the

presence of the surface. They also include the effects of the other dislocations and those of the steps generated on the

pore surface. As a consequence, one such model would be of great interest in the study of the microscale mechanisms

involved during hot isostatic pressing of FCC materials. This is an ongoing study.

7. Conclusion

In this article, we first expose a new finite difference scheme that allows us to rigorously discretize any continuous

fields on an explicit face-centered cubic (FCC) grid. In this scheme, multi-component physical quantities (vectors,

tensors...) are all localized on the same computational node which enables us to consider any kind of elastic hetero-

geneity (precipitates, voids, cracks...) and any complex specimen shape.

Then, we introduce a classical phase-field model of dislocations (PFMD) considering the slip-systems of the FCC

geometry. A particular attention is paid to the dislocation core behaviors in order to remove potentially spurious effects

that are present in previous PFMDs when the chosen numerical resolution is not subatomic. We also establish the link

between the mobility parameter L associated to the phase-field dynamics of the dislocation fields ηp and experimental

friction coefficients B f r that control the viscous glide of dislocations.

The model is tested in a few simple cases (dislocation collapse, junctions, Franck-Read source) and illustrated

in more concrete applications, standing at different space-scales, where dislocations operate in the presence of mi-

crostructural heterogeneities, such as free-surfaces (cylindrical nanopillar) and voids (pore under isostatic pressure).

As a perspective of the present work, we plan to use this model to investigate pore closure by plastic flow under

hot isostatic pressing [3]. Concerning the numerics, we also plan to improve the mechanical solver in the context

of heterogenous materials by considering a Fourier space formulation and/or minimizing the elastic fields by using

non-linear conjugate gradient methods.

Finally, thanks to the variational formulation of the PFMD framework, its extension to the coupling with an

evolving microstructure is straightforward (provided all the phases display an FCC crystallography), notably because

the present discretization scheme does not depend on whether the phase boundaries are mobile are not. Of course, the

present approach could also be the base of a lot of numerical models where considering the intrinsic FCC symmetry
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is of paramount importance.
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Appendix A. Discretization of the spatial differential operators

In Fig. A.15, we have reproduced the FCC unit cell displayed in Fig. 2 by conserving the octahedral sites only.

At the center, the order parameter η(a, b, c) is the one defined on the first SC grid, indexed in space with the integers

a, b and c (removed in what follows, for clarity). Its neighboring values η(an, bn, cn) are defined on the twelve closest

octahedral sites such that an = a(±1), bn = b(±1) and cn = c(±1). They are colorized according to their underlying

SC grid but indexed independently from it (see colors on-line). In the reference cubic frame, the coordinates of the

nearest neighbor vectors are ∆X1 = (an − a)d/2, ∆X2 = (bn − b)d/2 and ∆X3 = (cn − c)d/2, respectively, where d still

designates the FCC lattice parameter.

d

η(a,b,c)

η(a,b+1,c+1)

η(a,b-1,c+1)

η(a,b-1,c-1)
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η(a+1,b-1,c)

η(a+1,b+1,c)

Figure A.15. FCC unit cell where the octahedral sites supporting the order parameters η are identified by octahedrons colorized according to their

underlying SC grid (see colors on-line).

To calculate the spatial differential operators of η on its own octahedral site, the order parameters η(an, bn, cn) are

expressed as a function of η using the Taylor series:

η(an, bn, cn) = η +
∑

i

∆Xi

∂η

∂Xi

+
∑

i

∑

j

∆Xi∆X j

2

∂2η

∂Xi∂X j

+ O(d3). (A.1)

28



ACCEPTED MANUSCRIPT

A. Ruffini, Y. Le Bouar and A. Finel / Journal of the Mechanics and Physics of Solids 00 (2017) 1–32 29

The next step consists in performing a linear combination of the Taylor series that conserves the components of interest

and removes the others. This is how we obtain the discretized form of the gradient components ∂η/∂Xi:

∂η

∂X1

=
1

4d

[

η(a + 1, b + 1, c) + η(a + 1, b − 1, c)

− η(a − 1, b + 1, c) − η(a − 1, b − 1, c)

+ η(a + 1, b, c + 1) + η(a + 1, b, c − 1)

− η(a − 1, b, c + 1) − η(a − 1, b, c − 1)
]

+ O(d2), (A.2)

∂η

∂X2

=
1

4d

[

η(a + 1, b + 1, c) + η(a − 1, b + 1, c)

− η(a + 1, b − 1, c) − η(a − 1, b − 1, c)

+ η(a, b + 1, c + 1) + η(a, b + 1, c − 1)

− η(a, b − 1, c + 1) − η(a, b − 1, c − 1)
]

+ O(d2), (A.3)

∂η

∂X3

=
1

4d

[

η(a + 1, b, c + 1) + η(a − 1, b, c + 1)

− η(a + 1, b, c − 1) − η(a − 1, b, c − 1)

+ η(a, b + 1, c + 1) + η(a, b − 1, c + 1)

− η(a, b + 1, c − 1) − η(a, b − 1, c − 1)
]

+ O(d2), (A.4)

and the discretized form of the Hessian components ∂2η/(∂Xi∂X j):

∂2η

∂X2
1

=
1

d2

[

η(a + 1, b + 1, c) + η(a + 1, b − 1, c)

+ η(a − 1, b + 1, c) + η(a − 1, b − 1, c)

+ η(a + 1, b, c + 1) + η(a + 1, b, c − 1)

+ η(a − 1, b, c + 1) + η(a − 1, b, c − 1)

− η(a, b + 1, c + 1) − η(a, b + 1, c − 1)

− η(a, b − 1, c + 1) − η(a, b − 1, c − 1)

− 4η
]

+ O(d2), (A.5)

∂2η

∂X2
2

=
1

d2

[

η(a + 1, b + 1, c) + η(a + 1, b − 1, c)

+ η(a − 1, b + 1, c) + η(a − 1, b − 1, c)

+ η(a, b + 1, c + 1) + η(a, b + 1, c − 1)

+ η(a, b − 1, c + 1) + η(a, b − 1, c − 1)

− η(a + 1, b, c + 1) − η(a + 1, b, c − 1)

− η(a − 1, b, c + 1) − η(a − 1, b, c − 1)

− 4η
]

+ O(d2), (A.6)
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∂2η

∂X2
3

=
1

d2

[

η(a, b + 1, c + 1) + η(a, b + 1, c − 1)

+ η(a, b − 1, c + 1) + η(a, b − 1, c − 1)

+ η(a + 1, b, c + 1) + η(a + 1, b, c − 1)

+ η(a − 1, b, c + 1) + η(a − 1, b, c − 1)

− η(a + 1, b + 1, c) − η(a + 1, b − 1, c)

− η(a − 1, b + 1, c) − η(a − 1, b − 1, c)

− 4η
]

+ O(d2), (A.7)

∂2η

∂X1∂X2

=
1

d2

[

η(a + 1, b + 1, c) + η(a − 1, b − 1, c)

− η(a + 1, b − 1, c) − η(a − 1, b + 1, c)
]

+ O(d2), (A.8)

∂2η

∂X1∂X3

=
1

d2

[

η(a + 1, b, c + 1) + η(a − 1, b, c − 1)

− η(a + 1, b, c − 1) − η(a − 1, b, c + 1)
]

+ O(d2), (A.9)

∂2η

∂X2∂X3

=
1

d2

[

η(a, b + 1, c + 1) + η(a, b − 1, c − 1)

− η(a, b + 1, c − 1) − η(a, b − 1, c + 1)
]

+ O(d2). (A.10)

As a matter of fact, these formulas correspond to the FCC stencil used in the acoustics community to perform the

finite difference approximations of the Laplacian (Hessian trace) [47].
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