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Experimental demonstration of nonbilocal
quantum correlations
Dylan J. Saunders,1,2* Adam J. Bennet,1 Cyril Branciard,3 Geoff J. Pryde1

Quantum mechanics admits correlations that cannot be explained by local realistic models. The most studied
models are the standard local hidden variable models, which satisfy the well-known Bell inequalities. To date,
most works have focused on bipartite entangled systems. We consider correlations between three parties con-
nected via two independent entangled states. We investigate the new type of so-called “bilocal” models, which
correspondingly involve two independent hidden variables. These models describe scenarios that naturally arise
in quantum networks, where several independent entanglement sources are used. Using photonic qubits, we build
such a linear three-node quantum network and demonstrate nonbilocal correlations by violating a Bell-like in-
equality tailored for bilocal models. Furthermore, we show that the demonstration of nonbilocality is more noise-
tolerant than that of standard Bell nonlocality in our three-party quantum network.
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INTRODUCTION
Bell’s theorem (1) resolved the long-standing Einstein-Podolsky-Rosen
debate (2) by demonstrating that no local realistic theory can reproduce
the correlations observed when performing appropriate measurements
on some entangled quantum states—so-called (Bell) nonlocal correlations
(3). Entanglement now finds applications as a resource in many quantum
information and communication protocols [for example, see the studies
by Ekert (4) and Bennett et al. (5)]. In most fundamental or applied
experiments to date, the entangled systems come directly from a single
source. However, sometimes, more than one source of entanglement is
used, such as in protocols that rely on entanglement swapping (6) to
generate entanglement between two parties at the ends of a chain (al-
though they share no common history). Because the entanglement
swapping results in a bipartite entangled state, one may examine this
“network” scenario by considering only the nonlocality of the correla-
tions between the measurement outcomes at the terminal nodes. An
“event-ready” Bell test (6), heralded on success signals from all in-
termediate nodes, would then aim to disprove a local theory that is
based on a single local hidden variable (LHV) model. However, such
a test ignores properties of the intermediate channel, such as the fact
that the multiple sources of entanglement may be independent of each
other. This raises an important fundamental question: How does
source independence affect the notion of nonlocality?

To address this question, a new type of LHV model was recently
considered, where the independence properties of the different sources
in an experimental setup are also imposed at the level of the hidden
variables (7, 8). The simplest nontrival quantum network to analyze
this new type of model is a three-node linear network, as depicted in
Fig. 1. In such a network, two independent entanglement sources con-
nect the three nodes, Alice, Bob, and Charlie; the corresponding
model, which involves two independent LHVs, is termed “bilocal.”
Just like standard LHV models satisfy Bell inequalities, it was shown
that bilocal models impose constraints on the corresponding correla-
tions in the form of (nonlinear) Bell-like inequalities—so-called “bilo-
cal inequalities”—which can be violated quantum mechanically (7, 8).
One advantage of considering bilocal models is that one may demon-
strate nonbilocality in situations where no nonlocality could be ob-
tained. For example, in an entanglement swapping experiment that
generates a two-qubit Werner state between Alice and Charlie of the
form rwðvÞ ¼ vjy〉 〈yj þ ð1� vÞ 14 (where |y〉 is a maximally entan-
gled state and 1

4 is the maximally mixed state), a visibility v > 1=
ffiffiffi
2

p
is

required to violate the commonly used Clauser-Horne-Shimony-Holt
(CHSH) Bell inequality (9), whereas bilocal inequalities can detect
nonbilocality for any v > 1/2 (7, 8); thus, one can certify the absence
of a bilocal LHV model under more noise compared to a Bell local
model.

The aim of the present work is to experimentally investigate quan-
tum nonbilocal correlations. We implement the scenarios of Fig. 1 in a
photonic setup. In our experiment, the entangled photon pairs origi-
nate from two nonlinear crystals pumped separately, although by the
same laser beam. To enhance the independence of the two sources, we
actively destroy any coherence in the pump beam between the two
crystals. We test two different bilocal inequalities and find violations
that allow us to disprove bilocal models for the quantum correlations
observed.

Local versus bilocal models
The differences between testing locality and bilocality on a three-node
quantum network are highlighted in Fig. 1. Let us first introduce a
standard LHV three-party model: Consider a tripartite probability
distribution of the form

Pða; b; cjx; y; zÞ ¼ ∫dl rðlÞPða x; lÞPðb y; lÞPðc z; lÞjjj ð1Þ

where Alice, Bob, and Charlie have measurement inputs x, y, z and
measurement outputs a, b, c, respectively, and the LHV l with the
distribution r(l) can be understood as describing the joint state of
the three systems. P(a|x, l), P(b|y, l), and P(c|z, l) are the local prob-
abilities for each separate outcome, given l. A probability distribution
P(a, b, c|x, y, z) of the form of Eq. 1 is said to be (Bell) local; one that
cannot be expressed in that form is called (Bell) nonlocal (3).

In a practical experiment, where the abovementioned tripartite
probability distribution is obtained by measuring some physical
systems—for example, particles—it is natural to assume that the
LHV l originates from the source that prepares and sends those
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systems. However, for our three-node quantum network of Fig. 1,
there are two independent sources of entangled particles—S1 and S2. It
is then natural to consider two LHVs, l1 and l2, one attached to each
source, and write

Pða;b;cjx; y; zÞ ¼ ∫dl1 dl2 rðl1l2ÞPða x; l1ÞPðb y; l1; l2ÞPðc z; l2Þjjj

ð2Þ
Here, the local probabilities of each party are conditioned only on the
LHV(s) attached to the source(s) from which they receive the particles:
l1 for Alice, l2 for Charlie, and both l1 and l2 for Bob, at the
intermediate node. So far, the correlations producible by the local de-
compositions in Eqs. 1 and 2 are equivalent. For example, the joint
distribution of the two LHVs r(l1, l2) could be nonzero only when
l1 = l2 = l (7). However, we shall now introduce the critical bilocality
assumption, based on the physical arrangement of our quantum
network: The independence of the two sources S1 and S2 carries over
to the LHVs l1 and l2. That is, their joint distribution r(l1, l2) must
factorize

rðl1; l2Þ ¼ rðl1Þrðl2Þ ð3Þ

Probability distributions P(a, b, c|x, y, z) that can be expressed as in
Eq. 2, with r(l1, l2) satisfying Eq. 3, are said to be “bilocal;” those that
cannot be expressed as such are termed “nonbilocal” (7, 8).

Demonstrating nonbilocality
The decomposition of Eq. 2, together with Eq. 3, imposes certain re-
strictions on the correlations that can be produced by bilocal models.
Note that any bilocal model is in particular Bell local, so that it must
satisfy all Bell inequalities; any violation of a Bell inequality is already a
demonstration of nonbilocality. However, it is also possible to derive
stronger constraints for bilocal models, which specifically make use of
Saunders et al., Sci. Adv. 2017;3 : e1602743 28 April 2017
the independence condition of Eq. 3. In the study by Branciard et al.
(8), different bilocal inequalities were obtained, of the general form

B :¼
ffiffiffiffiffi
jIj

p
þ

ffiffiffiffiffi
jJj

p
≤ 1 ð4Þ

where I and J are linear combinations of the observed probabilities
P(a, b, c|x, y, z) (see Methods for details). A violation of such an
inequality, that is, a B value greater than 1, is a proof of nonbilocality,
as it rules out any possible bilocal model—in a similar way that a
CHSH value, BCHSH; greater than 2 disproves any Bell local model
(see the Supplementary Materials) (9).

The bilocal inequalities described above apply to scenarios where
Alice and Charlie have binary inputs and outputs. As for Bob, we con-
sider two cases that are of particular experimental relevance. In the
first case, he has a single fixed input (measurement setting) and four
possible outputs (measurement results); following the notations of
Branciard et al. (8), we shall label this case “14” and write the corre-
sponding inequality asB14 ≤ 1. In the second case, Bob still has a fixed
input, but he now has three possible outputs; we shall label this case
“13” and write B13 ≤ 1. As discussed below, these two cases will cor-
respond in the experiment to a full and a partial BSM implemented by
Bob, respectively.
RESULTS
To test the two bilocal inequalitiesB14,B13 ≤ 1, we realized a photonic
implementation of an entanglement swapping type of experiment [for
example, see the study by Pan et al. (10)] that implements the three-
node quantum network of Fig. 1. Two “sandwich” type 1 spontaneous
parametric downconversion (SPDC) sources (11) supplied the entan-
gled photonic links between the nodes (see Fig. 2). To justify that the
bilocality assumption is reasonable, one should ideally have truly
independent sources. In our case, we used two separate nonlinear
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Fig. 1. Quantum network tests of locality and bilocality. Here we show an event-ready Bell test (A and B) and a test of bilocality (C and D) on a three-node network.
(A) and (C) conceptually show the experimental arrangement involving the entangled photon pairs (green arrows) emitted from two independent sources (S1 and S2),
the three nodes [Alice (A), Bob (B), and Charlie (C)], and a referee, Victor (V), who computes and analyzes the correlations between the inputs [measurement settings x, (y,) z]
and outputs (measurement results a, b, c) of A, B, and C sent to him via classical communication channels (dashed arrows). The diagrams also show the regions of influence of
the LHVs in the two models under consideration, l (blue shading) for the (Bell) locality case or l1 (green shading) and l2 (salmon shading) for bilocality. The pink double arrow
represents the quantum correlations between the terminal nodes in each case. The physical arrangement is such that Bob’s measurement device has two input ports
(incoming channels, green arrows), one from each source (S1 and S2). In the simplest event-ready implementation (A and B), Bob’s measurement result b is a binary variable
that heralds a trial of a Bell test between Alice and Charlie, when Bob’s (fixed) Bell state measurement (BSM) successfully projects his two incoming systems onto, for
example, the singlet state (6). In (C) and (D), on the other hand, b may be composed of more than one bit (corresponding to the result of a more informative joint
measurement by Bob) and is taken into account in the test of a bilocal inequality. (B) and (D) highlight the different network architecture of the two tests, including
the nodes and connections (solid lines), the input measurement settings (x, y, z), and the measurement results (a, b, c).
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crystals to realize the parametric downconversion; however, the two
crystals were pumped by a strong beam originating from the same
laser. To increase the degree of independence between the two sources,
we installed a TVPS in the pump beam before the source S2. The
TVPS comprised a rotatable optical flat connected to an automated
stage and a remote quantum random number generator (12), adding
a genuinely random phase offset between sources S1 and S2 on each
trial of the experiment and thus destroying any quantum coherence
(see the Supplementary Materials for details).

At the central node, Bob implements an entangling BSM (13) to
essentially fuse the two sources of entanglement S1 and S2 via entan-
glement swapping (6). Using linear optics only, it is impossible to
construct an ideal BSM device that reliably discriminates between
all four Bell states, which would be necessary for deterministic entan-
glement swapping (14). However, it is possible to experimentally
simulate the statistics of an ideal BSM. We construct such a BSM de-
vice that projects onto one of the four Bell states. We then implement
local unitaries to project separately, in different experimental runs,
onto the three remaining states and combine the statistics at the
end of the experiment to mimic a universal BSM device. In this case,
Bob’s implemented measurement device has four input settings (one
for each of the canonical Bell states, |F+〉, |F−〉, |Y+〉, and |Y−〉) and
one bit of output (indicating successful projection onto the relevant
state)—such that on each run of the experiment, we only project onto
a single Bell state. After recombining the statistics at the end of the
experiment, Bob has simulated an ideal BSM device with a single input
setting (corresponding to precisely performing a BSM) and four possi-
Saunders et al., Sci. Adv. 2017;3 : e1602743 28 April 2017
ble measurement results (outputs b), one corresponding to each of the
four Bell states. It is precisely in this one-input/four-output scenario that
one can test the B14 ≤ 1 bilocal inequality introduced previously. Con-
veniently, it is also possible using linear optics to construct a partial
BSM device that projectively resolves two of the four Bell states (for
example, |F+〉 and |F−〉), accompanied by a third projection that groups
the remaining two Bell states (for example, |Y±〉) into a single outcome
(15)—a single-input, three-output measurement that allows one to test
the B13 ≤ 1 bilocal inequality. As for Alice and Charlie, as mentioned
above, they should have binary inputs (measurement settings) and out-
puts (measurement results) to test these two inequalities. We implemen-
ted projective measurements of the observables Âx and Ĉz (depending
on the inputs x, z = 0, 1) defined as Â0 ¼ Ĉ0 ¼ ðŝz þ ŝxÞ=

ffiffiffi
2

p
(using

the corresponding half–wave plate setting q0 = 11.25°) and Â1 ¼
Ĉ1 ¼ ðŝz � ŝxÞ=

ffiffiffi
2

p
(q1 = − 11.25°) in the 14 case (where ŝz;x are

the standard Pauli matrices) and as Â0 ¼ Ĉ0 ¼ ð ffiffiffi
2

p
ŝz þ ŝxÞ=

ffiffiffi
3

p
(q0 ≈ 8.82°) and Â1 ¼ Ĉ1 ¼ ð ffiffiffi

2
p

ŝz � ŝxÞ=
ffiffiffi
3

p
(q1 ≈ − 8.82°) in

the 13 case, which, in principle, provide the optimal violations of the
two inequalities (8).

Each entanglement source Si (i = 1, 2) ideally produces a pure Bell
state. However, because of minor experimental imperfections, the
produced states were close to Werner states (as described in the Intro-
duction) with visibility vi ≳ 0.94 [determined via quantum state tomo-
graphy (16)] for both sources for all implementations of Bob’s BSM.
The fidelity of the BSM was maximized using single-mode fibers, nar-
rowband frequency filters (~3-nm full width at half maximum), and a
high-precision translation stage, affording subcoherence length timing
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Fig. 2. Experimental setup to test bilocality in a three-node quantum network. The nodes—Alice, Bob, and Charlie—are highlighted in green, and the entan-
glement sources connecting them—S1and S2—are highlighted in red. Both entanglement sources [sandwich bismuth triborate (BiBO) crystals and temporal walk-off
precompensators (11)] are pumped by a mode-locked, 410-nm, 80-MHz frequency–doubled titanium-sapphire oscillator. To substantiate the assumption that the LHVs
l1 and l2 attached to the two sources are independent, we erased any coherence in the pump beam between S1 and S2 via a time-varying phase shifter (TVPS) set using a
quantum random number generator (QRNG) (see the Results and the Supplementary Materials for details). Alice and Charlie implement their measurements (with settings x, z
and outputs a, c) using polarization optics: quarter–wave plates, half–wave plates, polarizing beam splitters (PBSs), single-mode fibers (SMFs), and single-mode fiber couplers
(SMFCs). Bob implements his BSM using a 50:50 beam splitter (BS) and polarization optics, which has two input ports (incoming channels), one from each entanglement
source. Bob ensures that he implements the correct BSM (that is, he projects onto the desired Bell state in the simulated full BSM) (see Results) by implementing single-qubit
unitaries using a fiber polarization controller (FPC) and phase gates (f1 and f2, tilted half–wave plates), with each combination corresponding to one of the simulated
measurement outputs, b. Bob also implements pseudo–number-resolving detectors on each of his four output ports when implementing the partial BSM (see Results), using
a fiber 50:50 BS (fiber BS) to split each output port into two bucket avalanche photon detectors (APDs). We observe four-photon coincidence events—one click for Alice
and Charlie and two clicks for Bob—on the APDs using a field programmable gate array, with a coincidence window of 3 ns to signify successful operation of our
quantum network and to calculate all probabilities P(a, b, c|x, y, z). Further experimental details are given in the Supplementary Materials.
3 of 6

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

http
D

ow
nloaded from

 

resolution and ensuring high-quality Hong-Ou-Mandel (HOM) inter-
ference. We measured a resultant HOM visibility of vBSM1;2 ¼ ð85±5Þ%
when Bob implemented the 14-BSM and vBSM1;2 ¼ ð91±3Þ% for Bob’s
13-BSM. The visibility of the closest Werner state to the resultant en-
tangled state at Alice’s and Charlie’s terminal nodes (conditioned on
Bob’s BSM result) was estimated using quantum state tomography,
yielding v14 ≈ 0.78 and v13 ≈ 0.85, respectively—in agreement with
the product of the visibility of each entangled source and the BSM
visibility, as expected.

To further verify that our network was producing Werner-like states,
we compared the measured CHSH inequality with the inferred entan-
glement visibilities. We tested the CHSH inequality BCHSH ≤ 2 (see
the Supplementary Materials) (9) on the resultant state of Alice and
Charlie after successful entanglement swapping, a standard [event-
ready (6)] test of Bell locality. We recorded B14

CHSH ¼ 2:22 ± 0:06
and B13

CHSH ¼ 2:41 ± 0:05, agreeing with the measured v’s above,
and both with clear violations of the local bound. Next, the bilocal
inequalities of Eq. 4, for both the full (case “14”) and partial (case “13”)
BSMs, were tested in our network, with clear violations in both cases:
B14 = 1.25 ± 0.04 > 1 andB13 = 1.17 ± 0.02 > 1 (see the Supplementary
Materials for further details). To explore the noise robustness of our
locality and bilocality tests, we added various amounts of white
noise to our experimental data (see Fig. 3). We implemented this by
swapping the labels on Alice’s measurement outcomes on selected
experimental runs, mimicking the effect of white noise by washing
Saunders et al., Sci. Adv. 2017;3 : e1602743 28 April 2017
out the correlations (see Methods). This experimentally verified the
prediction that in the presence of noise, there exists a region where
nonbilocal correlations can be observed but nonlocal correlations
cannot (7, 8).
 on M
ay 25, 2021
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DISCUSSION
We have thus experimentally demonstrated the violation of two
Bell-like inequalities tailored for quantum networks with independent
entanglement sources and verified that those inequalities can be vio-
lated at added noise levels for which a CHSH inequality cannot. As
with quantum (EPR-) steering (17), for example, the addition of an
extra assumption (here, source independence) relaxes the stringent in-
tolerance to noise of nonlocality demonstrations.

Our violation of bilocal inequalities shows, in principle, that no
bilocal model can explain the correlations we observed. However, we
acknowledge that, like most Bell tests until very recently (18–20), our
experiment is subject to some loopholes. In addition to the issue of
space-like separation and the detection loophole (21), the specificity
of the bilocality assumption opens a new “source independence loop-
hole” when the entanglement sources are not guaranteed to be fully
independent. In our experiment, we enhanced the source indepen-
dence by erasing the quantum coherence between the pump beams
of our two separate SPDC sources. Nevertheless, the bilocality viola-
tions we observed could still, in principle, be explained by some hid-
den mechanism that would correlate the two sources (and the two
LHVs l1, l2 attached to them in a bilocal model), for instance, via
the shared pump beam. To be able to draw more satisfying conclu-
sions with regard to nonbilocality, the next step will be to realize a
similar experiment with “truly independent” sources [following in
the footsteps of Kaltenbaek et al. (22) and Erven et al. (23)]—but
keeping in mind that just like a Bell test can never rule out a super-
deterministic explanation (24), it is impossible to guarantee that two
separate sources are genuinely independent, as they could have been
correlated at the birth of the universe.

The bilocality assumption, as well as its extension to “N-locality”
in more complex scenarios involving N-independent sources, provides
a natural framework to explore and characterize quantum correlations
in multisource, multiparty networks (7, 8). “N-local inequalities” have
been derived in the line of Bell and bilocal inequalities (25–33), which
could be tested in possible extensions of the present experiment and in
future larger quantum networks. An interesting question is whether
the violation of these inequalities could be directly exploited and could
allow for useful applications in quantum information processing—
similar to the demonstration of Bell nonlocality or quantum steering
which can, for example, be used to certify the security of quantum
key distribution, or the privacy of randomness generation, in a device-
independent way (34–37). We note that, contrary to the event-ready
Bell test, the violation of the bilocal inequalities tested here does not by
itself certify that Bob must have performed an entangling measure-
ment and that Alice and Charlie end up sharing an entangled state
(a counterexample is presented in the Supplementary Materials); thus,
it is not sufficient for information processing protocols that require
such a certification. However, we expect other possible applications
to be discovered, which will fully harness the non–N locality of quan-
tum correlations, for instance, in cases where nonlocality cannot be
demonstrated. The problem of characterizing and demonstrating
non–N-local correlations will become more and more crucial as future
quantum networks continue to grow in size and complexity.
Fig. 3. Evidence of noise-tolerant nonbilocality. We measured bilocality param-
eters and estimated the corresponding values of visibility v obtained for the best
quality of our network (the ○ data point corresponds to B14 and the other one
corresponds to B13). The error bars for B arise from Poissonian statistics, whereas
the error on v is calculated using the product of the source visibility vi and the
measured HOM dip visibility vBSM1;2 and agrees with the measured BCHSH (see the
main text and the Supplementary Materials for details). To test the noise tolerance
of nonbilocal correlations, we introduce noise in our data by randomly “flipping”
trials of Alice’s measurement (see Methods), allowing us to predict the
performance of our network to added white noise by simulating Werner states
with v14 ≈ 0.78 and v13 ≈ 0.85, the maximum entanglement visibilities of our net-
works. The orange-shaded areas show the expected performance of our network
under added noise to ±1 SD. The dashed (dotted) lines are the expected values
forB14(v) =

ffiffiffiffiffi
2v

p
andB13(v) =

ffiffiffiffiffiffiffiffiffiffi
3v=2

p
(8). Both sets of experimental values forB14(v)

and B13(v) (orange-shaded areas) occupy the region that is nonbilocal (B > 1; above
the red dashed line) and will not violate the CHSH inequality, for v ≤ 1=

ffiffiffi
2

p
(left of

the green dashed line) (gray-shaded region). Note that in our case with binary inputs
and outputs for Alice and Charlie and a fixed measurement setting for Bob, CHSH
(with its symmetries) is the only relevant Bell inequality (39, 40). This provides
evidence for the higher noise tolerance of nonbilocal correlations compared to Bell
nonlocal correlations.
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METHODS
Bilocal inequalities
The quantities I and J in the bilocal inequalitiesB :¼ ffiffiffiffiffi

Ij jp þ ffiffiffiffiffi
Jj jp
≤ 1

(Eq. 4) that we tested in our experiment were defined from the ob-
served probabilities P(a, b, c|x, z) as follows. [Because we consider
cases where Bob has a single fixed measurement setting y, we can ig-
nore it when writing P(a, b, c|x, z).]

Let us start with the full BSM, with four possible outcomes—the
case labeled 14. Here, Bob’s output consists of two bits, b = b0b1.
Using some of the notations and forms introduced by Branciard et al.
(8), we first define, for j = 0 and 1, the tripartite correlators (expecta-
tion values)

〈AxB
jCz〉P14 :¼ ∑

a;b0;b1;c
ð�1Þaþb jþcP14 ða; b0b1; c x; zÞj ð5Þ

where the sum is over all outputs a, b0, b1, c = 0, 1 of the three parties.
These correlators, for the various values of x, z = 0, 1, then sum
together in the following way to define I14 and J14 as

I14 :¼ 1
4
∑
x;z

〈AxB
0Cz〉P14 ; J14 :¼ 1

4
∑
x;z

ð�1Þxþz
〈AxB

1Cz〉P14 ð6Þ

The case of a partial three-outcome BSM, labeled 13, is slightly
complicated by the asymmetry in the partial BSM. Here, we denote
Bob’s three possible outcomes as b = b0b1 = 00, 01, {10 or 11}. The
tripartite correlators are defined as

〈AxB
0Cz〉P13 :¼ ∑

a;c
ð�1Þaþc½P13 ða; 00; c x; zÞ þ P13 ða; 01; c x; zÞjj

�P13 ða; f10 or11g; c x; zÞ�j ð7Þ

and, restricting to the case where Bob gets one of the first two out-
comes (that is, b0 = 0)

〈AxB
1Cz〉P13 ;b0¼0 :¼ ∑

a;c
ð�1Þaþc½P13 ða; 00; c x; zÞ � P13 ða; 01; c x; zÞ�jj

ð8Þ

Similarly as before, these correlators then sum together to now define

I13 :¼ 1
4
∑
x;z

〈AxB
0Cz〉P13 ; J13 :¼ 1

4
∑
x;z

ð�1Þxþz
〈AxB

1Cz〉P13 ;b0¼0 ð9Þ

We provide in the Supplementary Materials all the probabilities
P(a, b, c| x, y) measured in both our 14 and 13 tests, which allowed us
to compute our experimental values for I; J; andB :¼ ffiffiffiffiffi

Ij jp þ ffiffiffiffiffi
Jj jp
:

Adding noise to our network
To investigate the noise tolerance properties of testing different lo-
cal and bilocal models in our quantum network, we added white
noise to our measured correlations. Ideally, the joint state shared
Saunders et al., Sci. Adv. 2017;3 : e1602743 28 April 2017
between Alice and Charlie (outer nodes) after entanglement swapping
would be one of the four Bell states. However, because of experimental
noise, the states produced can instead be approximated by a Werner
state of the form

rwðvÞ ¼ vjy〉〈yj þ ð1� vÞ1
4

ð10Þ

where |y〉 is the resulting shared Bell state after the swapping opera-
tion and 1

4 is the maximally mixed two-qubit state. In our experiment,
the state W had visibilities of v14 ≈ 0.78 and v13 ≈ 0.85 before introduc-
ing further white noise; the values of v in the 14 and 13 cases mainly differ
because of the differences in Bob’s BSM visibility between runs. This
agrees with the source visibilities determined using quantum state tomo-
graphy and with the visibility of the BSM determined by measuring a
heralded HOM dip visibility, by scanning the automated delay stage in
Bob’s BSM apparatus. This also agrees with the measured CHSH
parameter values for our network.

To add further noise, our procedure was inspired by the effect of
white noise on the observed statistics.We flipped Alice’s measurements
with probability p = (1 − vadded/2) to simulate adding further noise with
visibility vadded, ending up with a global visibility v = v14/13 vadded for the
state of Eq. 10. This mirrors the effect of a depolarizing channel for our
polarization-encoded qubits, allowing us to vary the value of v for the
Werner states produced in our network, up to the limit of v ≤ v14/13.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/4/e1602743/DC1
Characterization of the TVPS
Photon counting and experimental details
Experimental violation of the bilocal inequalities
Experimental violation of the CHSH inequality
Our bilocal inequalities violations are not device-independent certifications of A-C
entanglement: Counterexample
table S1. Measured probabilities P14(a, b, c|x, z) and correlators 〈AxBjCz 〉P14 in our test of
the B14 ≤ 1 bilocal inequality.
table S2. Measured probabilities P13(a, b, c|x, z) and correlators 〈AxBjCz 〉P13 in our test of
the B13 ≤ 1 bilocal inequality.
table S3. Observed violations of the bilocal inequalities B :¼ ffiffiffiffijIjp þ ffiffiffiffiffijJjp

≤1.
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